mm: add alloc_pages_exact() and free_pages_exact()
[linux-2.6] / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
6fa6c3b1 12 *
1da177e4 13 * 1993-09-02 Philip Gladstone
6fa6c3b1 14 * Created file with time related functions from sched.c and adjtimex()
1da177e4
LT
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/module.h>
31#include <linux/timex.h>
c59ede7b 32#include <linux/capability.h>
2c622148 33#include <linux/clocksource.h>
1da177e4 34#include <linux/errno.h>
1da177e4
LT
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
1aeb272c 38#include <linux/slab.h>
71abb3af 39#include <linux/math64.h>
1da177e4
LT
40
41#include <asm/uaccess.h>
42#include <asm/unistd.h>
43
bdc80787
PA
44#include "timeconst.h"
45
6fa6c3b1 46/*
1da177e4
LT
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
49 */
50struct timezone sys_tz;
51
52EXPORT_SYMBOL(sys_tz);
53
54#ifdef __ARCH_WANT_SYS_TIME
55
56/*
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
61 */
62asmlinkage long sys_time(time_t __user * tloc)
63{
f20bf612 64 time_t i = get_seconds();
1da177e4
LT
65
66 if (tloc) {
20082208 67 if (put_user(i,tloc))
1da177e4
LT
68 i = -EFAULT;
69 }
70 return i;
71}
72
73/*
74 * sys_stime() can be implemented in user-level using
75 * sys_settimeofday(). Is this for backwards compatibility? If so,
76 * why not move it into the appropriate arch directory (for those
77 * architectures that need it).
78 */
6fa6c3b1 79
1da177e4
LT
80asmlinkage long sys_stime(time_t __user *tptr)
81{
82 struct timespec tv;
83 int err;
84
85 if (get_user(tv.tv_sec, tptr))
86 return -EFAULT;
87
88 tv.tv_nsec = 0;
89
90 err = security_settime(&tv, NULL);
91 if (err)
92 return err;
93
94 do_settimeofday(&tv);
95 return 0;
96}
97
98#endif /* __ARCH_WANT_SYS_TIME */
99
bdc80787
PA
100asmlinkage long sys_gettimeofday(struct timeval __user *tv,
101 struct timezone __user *tz)
1da177e4
LT
102{
103 if (likely(tv != NULL)) {
104 struct timeval ktv;
105 do_gettimeofday(&ktv);
106 if (copy_to_user(tv, &ktv, sizeof(ktv)))
107 return -EFAULT;
108 }
109 if (unlikely(tz != NULL)) {
110 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
111 return -EFAULT;
112 }
113 return 0;
114}
115
116/*
117 * Adjust the time obtained from the CMOS to be UTC time instead of
118 * local time.
6fa6c3b1 119 *
1da177e4
LT
120 * This is ugly, but preferable to the alternatives. Otherwise we
121 * would either need to write a program to do it in /etc/rc (and risk
6fa6c3b1 122 * confusion if the program gets run more than once; it would also be
1da177e4
LT
123 * hard to make the program warp the clock precisely n hours) or
124 * compile in the timezone information into the kernel. Bad, bad....
125 *
bdc80787 126 * - TYT, 1992-01-01
1da177e4
LT
127 *
128 * The best thing to do is to keep the CMOS clock in universal time (UTC)
129 * as real UNIX machines always do it. This avoids all headaches about
130 * daylight saving times and warping kernel clocks.
131 */
77933d72 132static inline void warp_clock(void)
1da177e4
LT
133{
134 write_seqlock_irq(&xtime_lock);
135 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
136 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
1001d0a9 137 update_xtime_cache(0);
1da177e4
LT
138 write_sequnlock_irq(&xtime_lock);
139 clock_was_set();
140}
141
142/*
143 * In case for some reason the CMOS clock has not already been running
144 * in UTC, but in some local time: The first time we set the timezone,
145 * we will warp the clock so that it is ticking UTC time instead of
146 * local time. Presumably, if someone is setting the timezone then we
147 * are running in an environment where the programs understand about
148 * timezones. This should be done at boot time in the /etc/rc script,
149 * as soon as possible, so that the clock can be set right. Otherwise,
150 * various programs will get confused when the clock gets warped.
151 */
152
153int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
154{
155 static int firsttime = 1;
156 int error = 0;
157
951069e3 158 if (tv && !timespec_valid(tv))
718bcceb
TG
159 return -EINVAL;
160
1da177e4
LT
161 error = security_settime(tv, tz);
162 if (error)
163 return error;
164
165 if (tz) {
166 /* SMP safe, global irq locking makes it work. */
167 sys_tz = *tz;
2c622148 168 update_vsyscall_tz();
1da177e4
LT
169 if (firsttime) {
170 firsttime = 0;
171 if (!tv)
172 warp_clock();
173 }
174 }
175 if (tv)
176 {
177 /* SMP safe, again the code in arch/foo/time.c should
178 * globally block out interrupts when it runs.
179 */
180 return do_settimeofday(tv);
181 }
182 return 0;
183}
184
185asmlinkage long sys_settimeofday(struct timeval __user *tv,
186 struct timezone __user *tz)
187{
188 struct timeval user_tv;
189 struct timespec new_ts;
190 struct timezone new_tz;
191
192 if (tv) {
193 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
194 return -EFAULT;
195 new_ts.tv_sec = user_tv.tv_sec;
196 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
197 }
198 if (tz) {
199 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
200 return -EFAULT;
201 }
202
203 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
204}
205
1da177e4
LT
206asmlinkage long sys_adjtimex(struct timex __user *txc_p)
207{
208 struct timex txc; /* Local copy of parameter */
209 int ret;
210
211 /* Copy the user data space into the kernel copy
212 * structure. But bear in mind that the structures
213 * may change
214 */
215 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
216 return -EFAULT;
217 ret = do_adjtimex(&txc);
218 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
219}
220
1da177e4
LT
221/**
222 * current_fs_time - Return FS time
223 * @sb: Superblock.
224 *
8ba8e95e 225 * Return the current time truncated to the time granularity supported by
1da177e4
LT
226 * the fs.
227 */
228struct timespec current_fs_time(struct super_block *sb)
229{
230 struct timespec now = current_kernel_time();
231 return timespec_trunc(now, sb->s_time_gran);
232}
233EXPORT_SYMBOL(current_fs_time);
234
753e9c5c
ED
235/*
236 * Convert jiffies to milliseconds and back.
237 *
238 * Avoid unnecessary multiplications/divisions in the
239 * two most common HZ cases:
240 */
241unsigned int inline jiffies_to_msecs(const unsigned long j)
242{
243#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
244 return (MSEC_PER_SEC / HZ) * j;
245#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
246 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
247#else
bdc80787 248# if BITS_PER_LONG == 32
b9095fd8 249 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
bdc80787
PA
250# else
251 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
252# endif
753e9c5c
ED
253#endif
254}
255EXPORT_SYMBOL(jiffies_to_msecs);
256
257unsigned int inline jiffies_to_usecs(const unsigned long j)
258{
259#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
260 return (USEC_PER_SEC / HZ) * j;
261#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
262 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
263#else
bdc80787 264# if BITS_PER_LONG == 32
b9095fd8 265 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
bdc80787
PA
266# else
267 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
268# endif
753e9c5c
ED
269#endif
270}
271EXPORT_SYMBOL(jiffies_to_usecs);
272
1da177e4 273/**
8ba8e95e 274 * timespec_trunc - Truncate timespec to a granularity
1da177e4 275 * @t: Timespec
8ba8e95e 276 * @gran: Granularity in ns.
1da177e4 277 *
8ba8e95e 278 * Truncate a timespec to a granularity. gran must be smaller than a second.
1da177e4
LT
279 * Always rounds down.
280 *
281 * This function should be only used for timestamps returned by
282 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
3eb05676 283 * it doesn't handle the better resolution of the latter.
1da177e4
LT
284 */
285struct timespec timespec_trunc(struct timespec t, unsigned gran)
286{
287 /*
288 * Division is pretty slow so avoid it for common cases.
289 * Currently current_kernel_time() never returns better than
290 * jiffies resolution. Exploit that.
291 */
292 if (gran <= jiffies_to_usecs(1) * 1000) {
293 /* nothing */
294 } else if (gran == 1000000000) {
295 t.tv_nsec = 0;
296 } else {
297 t.tv_nsec -= t.tv_nsec % gran;
298 }
299 return t;
300}
301EXPORT_SYMBOL(timespec_trunc);
302
cf3c769b 303#ifndef CONFIG_GENERIC_TIME
1da177e4
LT
304/*
305 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
306 * and therefore only yields usec accuracy
307 */
308void getnstimeofday(struct timespec *tv)
309{
310 struct timeval x;
311
312 do_gettimeofday(&x);
313 tv->tv_sec = x.tv_sec;
314 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
315}
c6ecf7ed 316EXPORT_SYMBOL_GPL(getnstimeofday);
1da177e4
LT
317#endif
318
753be622
TG
319/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
320 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
321 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
322 *
323 * [For the Julian calendar (which was used in Russia before 1917,
324 * Britain & colonies before 1752, anywhere else before 1582,
325 * and is still in use by some communities) leave out the
326 * -year/100+year/400 terms, and add 10.]
327 *
328 * This algorithm was first published by Gauss (I think).
329 *
330 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
3eb05676 331 * machines where long is 32-bit! (However, as time_t is signed, we
753be622
TG
332 * will already get problems at other places on 2038-01-19 03:14:08)
333 */
334unsigned long
f4818900
IM
335mktime(const unsigned int year0, const unsigned int mon0,
336 const unsigned int day, const unsigned int hour,
337 const unsigned int min, const unsigned int sec)
753be622 338{
f4818900
IM
339 unsigned int mon = mon0, year = year0;
340
341 /* 1..12 -> 11,12,1..10 */
342 if (0 >= (int) (mon -= 2)) {
343 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
344 year -= 1;
345 }
346
347 return ((((unsigned long)
348 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
349 year*365 - 719499
350 )*24 + hour /* now have hours */
351 )*60 + min /* now have minutes */
352 )*60 + sec; /* finally seconds */
353}
354
199e7056
AM
355EXPORT_SYMBOL(mktime);
356
753be622
TG
357/**
358 * set_normalized_timespec - set timespec sec and nsec parts and normalize
359 *
360 * @ts: pointer to timespec variable to be set
361 * @sec: seconds to set
362 * @nsec: nanoseconds to set
363 *
364 * Set seconds and nanoseconds field of a timespec variable and
365 * normalize to the timespec storage format
366 *
367 * Note: The tv_nsec part is always in the range of
bdc80787 368 * 0 <= tv_nsec < NSEC_PER_SEC
753be622
TG
369 * For negative values only the tv_sec field is negative !
370 */
f4818900 371void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
753be622
TG
372{
373 while (nsec >= NSEC_PER_SEC) {
374 nsec -= NSEC_PER_SEC;
375 ++sec;
376 }
377 while (nsec < 0) {
378 nsec += NSEC_PER_SEC;
379 --sec;
380 }
381 ts->tv_sec = sec;
382 ts->tv_nsec = nsec;
383}
7c3f944e 384EXPORT_SYMBOL(set_normalized_timespec);
753be622 385
f8f46da3
TG
386/**
387 * ns_to_timespec - Convert nanoseconds to timespec
388 * @nsec: the nanoseconds value to be converted
389 *
390 * Returns the timespec representation of the nsec parameter.
391 */
df869b63 392struct timespec ns_to_timespec(const s64 nsec)
f8f46da3
TG
393{
394 struct timespec ts;
f8bd2258 395 s32 rem;
f8f46da3 396
88fc3897
GA
397 if (!nsec)
398 return (struct timespec) {0, 0};
399
f8bd2258
RZ
400 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
401 if (unlikely(rem < 0)) {
402 ts.tv_sec--;
403 rem += NSEC_PER_SEC;
404 }
405 ts.tv_nsec = rem;
f8f46da3
TG
406
407 return ts;
408}
85795d64 409EXPORT_SYMBOL(ns_to_timespec);
f8f46da3
TG
410
411/**
412 * ns_to_timeval - Convert nanoseconds to timeval
413 * @nsec: the nanoseconds value to be converted
414 *
415 * Returns the timeval representation of the nsec parameter.
416 */
df869b63 417struct timeval ns_to_timeval(const s64 nsec)
f8f46da3
TG
418{
419 struct timespec ts = ns_to_timespec(nsec);
420 struct timeval tv;
421
422 tv.tv_sec = ts.tv_sec;
423 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
424
425 return tv;
426}
b7aa0bf7 427EXPORT_SYMBOL(ns_to_timeval);
f8f46da3 428
41cf5445
IM
429/*
430 * When we convert to jiffies then we interpret incoming values
431 * the following way:
432 *
433 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
434 *
435 * - 'too large' values [that would result in larger than
436 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
437 *
438 * - all other values are converted to jiffies by either multiplying
439 * the input value by a factor or dividing it with a factor
440 *
441 * We must also be careful about 32-bit overflows.
442 */
8b9365d7
IM
443unsigned long msecs_to_jiffies(const unsigned int m)
444{
41cf5445
IM
445 /*
446 * Negative value, means infinite timeout:
447 */
448 if ((int)m < 0)
8b9365d7 449 return MAX_JIFFY_OFFSET;
41cf5445 450
8b9365d7 451#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
41cf5445
IM
452 /*
453 * HZ is equal to or smaller than 1000, and 1000 is a nice
454 * round multiple of HZ, divide with the factor between them,
455 * but round upwards:
456 */
8b9365d7
IM
457 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
458#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
41cf5445
IM
459 /*
460 * HZ is larger than 1000, and HZ is a nice round multiple of
461 * 1000 - simply multiply with the factor between them.
462 *
463 * But first make sure the multiplication result cannot
464 * overflow:
465 */
466 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
467 return MAX_JIFFY_OFFSET;
468
8b9365d7
IM
469 return m * (HZ / MSEC_PER_SEC);
470#else
41cf5445
IM
471 /*
472 * Generic case - multiply, round and divide. But first
473 * check that if we are doing a net multiplication, that
bdc80787 474 * we wouldn't overflow:
41cf5445
IM
475 */
476 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
477 return MAX_JIFFY_OFFSET;
478
b9095fd8 479 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
bdc80787 480 >> MSEC_TO_HZ_SHR32;
8b9365d7
IM
481#endif
482}
483EXPORT_SYMBOL(msecs_to_jiffies);
484
485unsigned long usecs_to_jiffies(const unsigned int u)
486{
487 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
488 return MAX_JIFFY_OFFSET;
489#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
490 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
491#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
492 return u * (HZ / USEC_PER_SEC);
493#else
b9095fd8 494 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
bdc80787 495 >> USEC_TO_HZ_SHR32;
8b9365d7
IM
496#endif
497}
498EXPORT_SYMBOL(usecs_to_jiffies);
499
500/*
501 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
502 * that a remainder subtract here would not do the right thing as the
503 * resolution values don't fall on second boundries. I.e. the line:
504 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
505 *
506 * Rather, we just shift the bits off the right.
507 *
508 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
509 * value to a scaled second value.
510 */
511unsigned long
512timespec_to_jiffies(const struct timespec *value)
513{
514 unsigned long sec = value->tv_sec;
515 long nsec = value->tv_nsec + TICK_NSEC - 1;
516
517 if (sec >= MAX_SEC_IN_JIFFIES){
518 sec = MAX_SEC_IN_JIFFIES;
519 nsec = 0;
520 }
521 return (((u64)sec * SEC_CONVERSION) +
522 (((u64)nsec * NSEC_CONVERSION) >>
523 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
524
525}
526EXPORT_SYMBOL(timespec_to_jiffies);
527
528void
529jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
530{
531 /*
532 * Convert jiffies to nanoseconds and separate with
533 * one divide.
534 */
f8bd2258
RZ
535 u32 rem;
536 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
537 NSEC_PER_SEC, &rem);
538 value->tv_nsec = rem;
8b9365d7
IM
539}
540EXPORT_SYMBOL(jiffies_to_timespec);
541
542/* Same for "timeval"
543 *
544 * Well, almost. The problem here is that the real system resolution is
545 * in nanoseconds and the value being converted is in micro seconds.
546 * Also for some machines (those that use HZ = 1024, in-particular),
547 * there is a LARGE error in the tick size in microseconds.
548
549 * The solution we use is to do the rounding AFTER we convert the
550 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
551 * Instruction wise, this should cost only an additional add with carry
552 * instruction above the way it was done above.
553 */
554unsigned long
555timeval_to_jiffies(const struct timeval *value)
556{
557 unsigned long sec = value->tv_sec;
558 long usec = value->tv_usec;
559
560 if (sec >= MAX_SEC_IN_JIFFIES){
561 sec = MAX_SEC_IN_JIFFIES;
562 usec = 0;
563 }
564 return (((u64)sec * SEC_CONVERSION) +
565 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
566 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
567}
456a09dc 568EXPORT_SYMBOL(timeval_to_jiffies);
8b9365d7
IM
569
570void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
571{
572 /*
573 * Convert jiffies to nanoseconds and separate with
574 * one divide.
575 */
f8bd2258 576 u32 rem;
8b9365d7 577
f8bd2258
RZ
578 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
579 NSEC_PER_SEC, &rem);
580 value->tv_usec = rem / NSEC_PER_USEC;
8b9365d7 581}
456a09dc 582EXPORT_SYMBOL(jiffies_to_timeval);
8b9365d7
IM
583
584/*
585 * Convert jiffies/jiffies_64 to clock_t and back.
586 */
587clock_t jiffies_to_clock_t(long x)
588{
589#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a
DF
590# if HZ < USER_HZ
591 return x * (USER_HZ / HZ);
592# else
8b9365d7 593 return x / (HZ / USER_HZ);
6ffc787a 594# endif
8b9365d7 595#else
71abb3af 596 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
8b9365d7
IM
597#endif
598}
599EXPORT_SYMBOL(jiffies_to_clock_t);
600
601unsigned long clock_t_to_jiffies(unsigned long x)
602{
603#if (HZ % USER_HZ)==0
604 if (x >= ~0UL / (HZ / USER_HZ))
605 return ~0UL;
606 return x * (HZ / USER_HZ);
607#else
8b9365d7
IM
608 /* Don't worry about loss of precision here .. */
609 if (x >= ~0UL / HZ * USER_HZ)
610 return ~0UL;
611
612 /* .. but do try to contain it here */
71abb3af 613 return div_u64((u64)x * HZ, USER_HZ);
8b9365d7
IM
614#endif
615}
616EXPORT_SYMBOL(clock_t_to_jiffies);
617
618u64 jiffies_64_to_clock_t(u64 x)
619{
620#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a 621# if HZ < USER_HZ
71abb3af 622 x = div_u64(x * USER_HZ, HZ);
ec03d707 623# elif HZ > USER_HZ
71abb3af 624 x = div_u64(x, HZ / USER_HZ);
ec03d707
AM
625# else
626 /* Nothing to do */
6ffc787a 627# endif
8b9365d7
IM
628#else
629 /*
630 * There are better ways that don't overflow early,
631 * but even this doesn't overflow in hundreds of years
632 * in 64 bits, so..
633 */
71abb3af 634 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
8b9365d7
IM
635#endif
636 return x;
637}
8b9365d7
IM
638EXPORT_SYMBOL(jiffies_64_to_clock_t);
639
640u64 nsec_to_clock_t(u64 x)
641{
642#if (NSEC_PER_SEC % USER_HZ) == 0
71abb3af 643 return div_u64(x, NSEC_PER_SEC / USER_HZ);
8b9365d7 644#elif (USER_HZ % 512) == 0
71abb3af 645 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
8b9365d7
IM
646#else
647 /*
648 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
649 * overflow after 64.99 years.
650 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
651 */
71abb3af 652 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
8b9365d7 653#endif
8b9365d7
IM
654}
655
1da177e4
LT
656#if (BITS_PER_LONG < 64)
657u64 get_jiffies_64(void)
658{
659 unsigned long seq;
660 u64 ret;
661
662 do {
663 seq = read_seqbegin(&xtime_lock);
664 ret = jiffies_64;
665 } while (read_seqretry(&xtime_lock, seq));
666 return ret;
667}
1da177e4
LT
668EXPORT_SYMBOL(get_jiffies_64);
669#endif
670
671EXPORT_SYMBOL(jiffies);