Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * 2002-10-18 written by Jim Houston jim.houston@ccur.com | |
3 | * Copyright (C) 2002 by Concurrent Computer Corporation | |
4 | * Distributed under the GNU GPL license version 2. | |
5 | * | |
6 | * Modified by George Anzinger to reuse immediately and to use | |
7 | * find bit instructions. Also removed _irq on spinlocks. | |
8 | * | |
e15ae2dd | 9 | * Small id to pointer translation service. |
1da177e4 | 10 | * |
e15ae2dd | 11 | * It uses a radix tree like structure as a sparse array indexed |
1da177e4 | 12 | * by the id to obtain the pointer. The bitmap makes allocating |
e15ae2dd | 13 | * a new id quick. |
1da177e4 LT |
14 | * |
15 | * You call it to allocate an id (an int) an associate with that id a | |
16 | * pointer or what ever, we treat it as a (void *). You can pass this | |
17 | * id to a user for him to pass back at a later time. You then pass | |
18 | * that id to this code and it returns your pointer. | |
19 | ||
e15ae2dd | 20 | * You can release ids at any time. When all ids are released, most of |
1da177e4 | 21 | * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we |
e15ae2dd | 22 | * don't need to go to the memory "store" during an id allocate, just |
1da177e4 LT |
23 | * so you don't need to be too concerned about locking and conflicts |
24 | * with the slab allocator. | |
25 | */ | |
26 | ||
27 | #ifndef TEST // to test in user space... | |
28 | #include <linux/slab.h> | |
29 | #include <linux/init.h> | |
30 | #include <linux/module.h> | |
31 | #endif | |
5806f07c | 32 | #include <linux/err.h> |
1da177e4 LT |
33 | #include <linux/string.h> |
34 | #include <linux/idr.h> | |
35 | ||
e18b890b | 36 | static struct kmem_cache *idr_layer_cache; |
1da177e4 LT |
37 | |
38 | static struct idr_layer *alloc_layer(struct idr *idp) | |
39 | { | |
40 | struct idr_layer *p; | |
c259cc28 | 41 | unsigned long flags; |
1da177e4 | 42 | |
c259cc28 | 43 | spin_lock_irqsave(&idp->lock, flags); |
1da177e4 LT |
44 | if ((p = idp->id_free)) { |
45 | idp->id_free = p->ary[0]; | |
46 | idp->id_free_cnt--; | |
47 | p->ary[0] = NULL; | |
48 | } | |
c259cc28 | 49 | spin_unlock_irqrestore(&idp->lock, flags); |
1da177e4 LT |
50 | return(p); |
51 | } | |
52 | ||
1eec0056 SR |
53 | /* only called when idp->lock is held */ |
54 | static void __free_layer(struct idr *idp, struct idr_layer *p) | |
55 | { | |
56 | p->ary[0] = idp->id_free; | |
57 | idp->id_free = p; | |
58 | idp->id_free_cnt++; | |
59 | } | |
60 | ||
1da177e4 LT |
61 | static void free_layer(struct idr *idp, struct idr_layer *p) |
62 | { | |
c259cc28 RD |
63 | unsigned long flags; |
64 | ||
1da177e4 LT |
65 | /* |
66 | * Depends on the return element being zeroed. | |
67 | */ | |
c259cc28 | 68 | spin_lock_irqsave(&idp->lock, flags); |
1eec0056 | 69 | __free_layer(idp, p); |
c259cc28 | 70 | spin_unlock_irqrestore(&idp->lock, flags); |
1da177e4 LT |
71 | } |
72 | ||
73 | /** | |
74 | * idr_pre_get - reserver resources for idr allocation | |
75 | * @idp: idr handle | |
76 | * @gfp_mask: memory allocation flags | |
77 | * | |
78 | * This function should be called prior to locking and calling the | |
79 | * following function. It preallocates enough memory to satisfy | |
80 | * the worst possible allocation. | |
81 | * | |
82 | * If the system is REALLY out of memory this function returns 0, | |
83 | * otherwise 1. | |
84 | */ | |
fd4f2df2 | 85 | int idr_pre_get(struct idr *idp, gfp_t gfp_mask) |
1da177e4 LT |
86 | { |
87 | while (idp->id_free_cnt < IDR_FREE_MAX) { | |
88 | struct idr_layer *new; | |
89 | new = kmem_cache_alloc(idr_layer_cache, gfp_mask); | |
e15ae2dd | 90 | if (new == NULL) |
1da177e4 LT |
91 | return (0); |
92 | free_layer(idp, new); | |
93 | } | |
94 | return 1; | |
95 | } | |
96 | EXPORT_SYMBOL(idr_pre_get); | |
97 | ||
98 | static int sub_alloc(struct idr *idp, void *ptr, int *starting_id) | |
99 | { | |
100 | int n, m, sh; | |
101 | struct idr_layer *p, *new; | |
102 | struct idr_layer *pa[MAX_LEVEL]; | |
103 | int l, id; | |
104 | long bm; | |
105 | ||
106 | id = *starting_id; | |
107 | p = idp->top; | |
108 | l = idp->layers; | |
109 | pa[l--] = NULL; | |
110 | while (1) { | |
111 | /* | |
112 | * We run around this while until we reach the leaf node... | |
113 | */ | |
114 | n = (id >> (IDR_BITS*l)) & IDR_MASK; | |
115 | bm = ~p->bitmap; | |
116 | m = find_next_bit(&bm, IDR_SIZE, n); | |
117 | if (m == IDR_SIZE) { | |
118 | /* no space available go back to previous layer. */ | |
119 | l++; | |
e15ae2dd | 120 | id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1; |
1da177e4 LT |
121 | if (!(p = pa[l])) { |
122 | *starting_id = id; | |
123 | return -2; | |
124 | } | |
125 | continue; | |
126 | } | |
127 | if (m != n) { | |
128 | sh = IDR_BITS*l; | |
129 | id = ((id >> sh) ^ n ^ m) << sh; | |
130 | } | |
131 | if ((id >= MAX_ID_BIT) || (id < 0)) | |
132 | return -3; | |
133 | if (l == 0) | |
134 | break; | |
135 | /* | |
136 | * Create the layer below if it is missing. | |
137 | */ | |
138 | if (!p->ary[m]) { | |
139 | if (!(new = alloc_layer(idp))) | |
140 | return -1; | |
141 | p->ary[m] = new; | |
142 | p->count++; | |
143 | } | |
144 | pa[l--] = p; | |
145 | p = p->ary[m]; | |
146 | } | |
147 | /* | |
148 | * We have reached the leaf node, plant the | |
149 | * users pointer and return the raw id. | |
150 | */ | |
151 | p->ary[m] = (struct idr_layer *)ptr; | |
152 | __set_bit(m, &p->bitmap); | |
153 | p->count++; | |
154 | /* | |
155 | * If this layer is full mark the bit in the layer above | |
156 | * to show that this part of the radix tree is full. | |
157 | * This may complete the layer above and require walking | |
158 | * up the radix tree. | |
159 | */ | |
160 | n = id; | |
161 | while (p->bitmap == IDR_FULL) { | |
162 | if (!(p = pa[++l])) | |
163 | break; | |
164 | n = n >> IDR_BITS; | |
165 | __set_bit((n & IDR_MASK), &p->bitmap); | |
166 | } | |
167 | return(id); | |
168 | } | |
169 | ||
170 | static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id) | |
171 | { | |
172 | struct idr_layer *p, *new; | |
173 | int layers, v, id; | |
c259cc28 | 174 | unsigned long flags; |
e15ae2dd | 175 | |
1da177e4 LT |
176 | id = starting_id; |
177 | build_up: | |
178 | p = idp->top; | |
179 | layers = idp->layers; | |
180 | if (unlikely(!p)) { | |
181 | if (!(p = alloc_layer(idp))) | |
182 | return -1; | |
183 | layers = 1; | |
184 | } | |
185 | /* | |
186 | * Add a new layer to the top of the tree if the requested | |
187 | * id is larger than the currently allocated space. | |
188 | */ | |
589777ea | 189 | while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) { |
1da177e4 LT |
190 | layers++; |
191 | if (!p->count) | |
192 | continue; | |
193 | if (!(new = alloc_layer(idp))) { | |
194 | /* | |
195 | * The allocation failed. If we built part of | |
196 | * the structure tear it down. | |
197 | */ | |
c259cc28 | 198 | spin_lock_irqsave(&idp->lock, flags); |
1da177e4 LT |
199 | for (new = p; p && p != idp->top; new = p) { |
200 | p = p->ary[0]; | |
201 | new->ary[0] = NULL; | |
202 | new->bitmap = new->count = 0; | |
1eec0056 | 203 | __free_layer(idp, new); |
1da177e4 | 204 | } |
c259cc28 | 205 | spin_unlock_irqrestore(&idp->lock, flags); |
1da177e4 LT |
206 | return -1; |
207 | } | |
208 | new->ary[0] = p; | |
209 | new->count = 1; | |
210 | if (p->bitmap == IDR_FULL) | |
211 | __set_bit(0, &new->bitmap); | |
212 | p = new; | |
213 | } | |
214 | idp->top = p; | |
215 | idp->layers = layers; | |
216 | v = sub_alloc(idp, ptr, &id); | |
217 | if (v == -2) | |
218 | goto build_up; | |
219 | return(v); | |
220 | } | |
221 | ||
222 | /** | |
7c657f2f | 223 | * idr_get_new_above - allocate new idr entry above or equal to a start id |
1da177e4 LT |
224 | * @idp: idr handle |
225 | * @ptr: pointer you want associated with the ide | |
226 | * @start_id: id to start search at | |
227 | * @id: pointer to the allocated handle | |
228 | * | |
229 | * This is the allocate id function. It should be called with any | |
230 | * required locks. | |
231 | * | |
232 | * If memory is required, it will return -EAGAIN, you should unlock | |
233 | * and go back to the idr_pre_get() call. If the idr is full, it will | |
234 | * return -ENOSPC. | |
235 | * | |
236 | * @id returns a value in the range 0 ... 0x7fffffff | |
237 | */ | |
238 | int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id) | |
239 | { | |
240 | int rv; | |
e15ae2dd | 241 | |
1da177e4 LT |
242 | rv = idr_get_new_above_int(idp, ptr, starting_id); |
243 | /* | |
244 | * This is a cheap hack until the IDR code can be fixed to | |
245 | * return proper error values. | |
246 | */ | |
247 | if (rv < 0) { | |
248 | if (rv == -1) | |
249 | return -EAGAIN; | |
250 | else /* Will be -3 */ | |
251 | return -ENOSPC; | |
252 | } | |
253 | *id = rv; | |
254 | return 0; | |
255 | } | |
256 | EXPORT_SYMBOL(idr_get_new_above); | |
257 | ||
258 | /** | |
259 | * idr_get_new - allocate new idr entry | |
260 | * @idp: idr handle | |
261 | * @ptr: pointer you want associated with the ide | |
262 | * @id: pointer to the allocated handle | |
263 | * | |
264 | * This is the allocate id function. It should be called with any | |
265 | * required locks. | |
266 | * | |
267 | * If memory is required, it will return -EAGAIN, you should unlock | |
268 | * and go back to the idr_pre_get() call. If the idr is full, it will | |
269 | * return -ENOSPC. | |
270 | * | |
271 | * @id returns a value in the range 0 ... 0x7fffffff | |
272 | */ | |
273 | int idr_get_new(struct idr *idp, void *ptr, int *id) | |
274 | { | |
275 | int rv; | |
e15ae2dd | 276 | |
1da177e4 LT |
277 | rv = idr_get_new_above_int(idp, ptr, 0); |
278 | /* | |
279 | * This is a cheap hack until the IDR code can be fixed to | |
280 | * return proper error values. | |
281 | */ | |
282 | if (rv < 0) { | |
283 | if (rv == -1) | |
284 | return -EAGAIN; | |
285 | else /* Will be -3 */ | |
286 | return -ENOSPC; | |
287 | } | |
288 | *id = rv; | |
289 | return 0; | |
290 | } | |
291 | EXPORT_SYMBOL(idr_get_new); | |
292 | ||
293 | static void idr_remove_warning(int id) | |
294 | { | |
295 | printk("idr_remove called for id=%d which is not allocated.\n", id); | |
296 | dump_stack(); | |
297 | } | |
298 | ||
299 | static void sub_remove(struct idr *idp, int shift, int id) | |
300 | { | |
301 | struct idr_layer *p = idp->top; | |
302 | struct idr_layer **pa[MAX_LEVEL]; | |
303 | struct idr_layer ***paa = &pa[0]; | |
304 | int n; | |
305 | ||
306 | *paa = NULL; | |
307 | *++paa = &idp->top; | |
308 | ||
309 | while ((shift > 0) && p) { | |
310 | n = (id >> shift) & IDR_MASK; | |
311 | __clear_bit(n, &p->bitmap); | |
312 | *++paa = &p->ary[n]; | |
313 | p = p->ary[n]; | |
314 | shift -= IDR_BITS; | |
315 | } | |
316 | n = id & IDR_MASK; | |
317 | if (likely(p != NULL && test_bit(n, &p->bitmap))){ | |
318 | __clear_bit(n, &p->bitmap); | |
319 | p->ary[n] = NULL; | |
320 | while(*paa && ! --((**paa)->count)){ | |
321 | free_layer(idp, **paa); | |
322 | **paa-- = NULL; | |
323 | } | |
e15ae2dd | 324 | if (!*paa) |
1da177e4 | 325 | idp->layers = 0; |
e15ae2dd | 326 | } else |
1da177e4 | 327 | idr_remove_warning(id); |
1da177e4 LT |
328 | } |
329 | ||
330 | /** | |
331 | * idr_remove - remove the given id and free it's slot | |
72fd4a35 RD |
332 | * @idp: idr handle |
333 | * @id: unique key | |
1da177e4 LT |
334 | */ |
335 | void idr_remove(struct idr *idp, int id) | |
336 | { | |
337 | struct idr_layer *p; | |
338 | ||
339 | /* Mask off upper bits we don't use for the search. */ | |
340 | id &= MAX_ID_MASK; | |
341 | ||
342 | sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); | |
e15ae2dd JJ |
343 | if (idp->top && idp->top->count == 1 && (idp->layers > 1) && |
344 | idp->top->ary[0]) { // We can drop a layer | |
1da177e4 LT |
345 | |
346 | p = idp->top->ary[0]; | |
347 | idp->top->bitmap = idp->top->count = 0; | |
348 | free_layer(idp, idp->top); | |
349 | idp->top = p; | |
350 | --idp->layers; | |
351 | } | |
352 | while (idp->id_free_cnt >= IDR_FREE_MAX) { | |
1da177e4 LT |
353 | p = alloc_layer(idp); |
354 | kmem_cache_free(idr_layer_cache, p); | |
355 | return; | |
356 | } | |
357 | } | |
358 | EXPORT_SYMBOL(idr_remove); | |
359 | ||
8d3b3591 AM |
360 | /** |
361 | * idr_destroy - release all cached layers within an idr tree | |
362 | * idp: idr handle | |
363 | */ | |
364 | void idr_destroy(struct idr *idp) | |
365 | { | |
366 | while (idp->id_free_cnt) { | |
367 | struct idr_layer *p = alloc_layer(idp); | |
368 | kmem_cache_free(idr_layer_cache, p); | |
369 | } | |
370 | } | |
371 | EXPORT_SYMBOL(idr_destroy); | |
372 | ||
1da177e4 LT |
373 | /** |
374 | * idr_find - return pointer for given id | |
375 | * @idp: idr handle | |
376 | * @id: lookup key | |
377 | * | |
378 | * Return the pointer given the id it has been registered with. A %NULL | |
379 | * return indicates that @id is not valid or you passed %NULL in | |
380 | * idr_get_new(). | |
381 | * | |
382 | * The caller must serialize idr_find() vs idr_get_new() and idr_remove(). | |
383 | */ | |
384 | void *idr_find(struct idr *idp, int id) | |
385 | { | |
386 | int n; | |
387 | struct idr_layer *p; | |
388 | ||
389 | n = idp->layers * IDR_BITS; | |
390 | p = idp->top; | |
391 | ||
392 | /* Mask off upper bits we don't use for the search. */ | |
393 | id &= MAX_ID_MASK; | |
394 | ||
395 | if (id >= (1 << n)) | |
396 | return NULL; | |
397 | ||
398 | while (n > 0 && p) { | |
399 | n -= IDR_BITS; | |
400 | p = p->ary[(id >> n) & IDR_MASK]; | |
401 | } | |
402 | return((void *)p); | |
403 | } | |
404 | EXPORT_SYMBOL(idr_find); | |
405 | ||
5806f07c JM |
406 | /** |
407 | * idr_replace - replace pointer for given id | |
408 | * @idp: idr handle | |
409 | * @ptr: pointer you want associated with the id | |
410 | * @id: lookup key | |
411 | * | |
412 | * Replace the pointer registered with an id and return the old value. | |
413 | * A -ENOENT return indicates that @id was not found. | |
414 | * A -EINVAL return indicates that @id was not within valid constraints. | |
415 | * | |
416 | * The caller must serialize vs idr_find(), idr_get_new(), and idr_remove(). | |
417 | */ | |
418 | void *idr_replace(struct idr *idp, void *ptr, int id) | |
419 | { | |
420 | int n; | |
421 | struct idr_layer *p, *old_p; | |
422 | ||
423 | n = idp->layers * IDR_BITS; | |
424 | p = idp->top; | |
425 | ||
426 | id &= MAX_ID_MASK; | |
427 | ||
428 | if (id >= (1 << n)) | |
429 | return ERR_PTR(-EINVAL); | |
430 | ||
431 | n -= IDR_BITS; | |
432 | while ((n > 0) && p) { | |
433 | p = p->ary[(id >> n) & IDR_MASK]; | |
434 | n -= IDR_BITS; | |
435 | } | |
436 | ||
437 | n = id & IDR_MASK; | |
438 | if (unlikely(p == NULL || !test_bit(n, &p->bitmap))) | |
439 | return ERR_PTR(-ENOENT); | |
440 | ||
441 | old_p = p->ary[n]; | |
442 | p->ary[n] = ptr; | |
443 | ||
444 | return old_p; | |
445 | } | |
446 | EXPORT_SYMBOL(idr_replace); | |
447 | ||
e18b890b | 448 | static void idr_cache_ctor(void * idr_layer, struct kmem_cache *idr_layer_cache, |
e15ae2dd | 449 | unsigned long flags) |
1da177e4 LT |
450 | { |
451 | memset(idr_layer, 0, sizeof(struct idr_layer)); | |
452 | } | |
453 | ||
454 | static int init_id_cache(void) | |
455 | { | |
456 | if (!idr_layer_cache) | |
e15ae2dd | 457 | idr_layer_cache = kmem_cache_create("idr_layer_cache", |
1da177e4 LT |
458 | sizeof(struct idr_layer), 0, 0, idr_cache_ctor, NULL); |
459 | return 0; | |
460 | } | |
461 | ||
462 | /** | |
463 | * idr_init - initialize idr handle | |
464 | * @idp: idr handle | |
465 | * | |
466 | * This function is use to set up the handle (@idp) that you will pass | |
467 | * to the rest of the functions. | |
468 | */ | |
469 | void idr_init(struct idr *idp) | |
470 | { | |
471 | init_id_cache(); | |
472 | memset(idp, 0, sizeof(struct idr)); | |
473 | spin_lock_init(&idp->lock); | |
474 | } | |
475 | EXPORT_SYMBOL(idr_init); |