DM9000: Fix delays used by EEPROM read and write
[linux-2.6] / drivers / net / tokenring / madgemc.c
CommitLineData
1da177e4
LT
1/*
2 * madgemc.c: Driver for the Madge Smart 16/4 MC16 MCA token ring card.
3 *
4 * Written 2000 by Adam Fritzler
5 *
6 * This software may be used and distributed according to the terms
7 * of the GNU General Public License, incorporated herein by reference.
8 *
9 * This driver module supports the following cards:
10 * - Madge Smart 16/4 Ringnode MC16
11 * - Madge Smart 16/4 Ringnode MC32 (??)
12 *
13 * Maintainer(s):
726a6459 14 * AF Adam Fritzler
1da177e4
LT
15 *
16 * Modification History:
17 * 16-Jan-00 AF Created
18 *
19 */
20static const char version[] = "madgemc.c: v0.91 23/01/2000 by Adam Fritzler\n";
21
22#include <linux/module.h>
84c3ea01 23#include <linux/mca.h>
1da177e4
LT
24#include <linux/kernel.h>
25#include <linux/errno.h>
1da177e4
LT
26#include <linux/init.h>
27#include <linux/netdevice.h>
28#include <linux/trdevice.h>
29
30#include <asm/system.h>
31#include <asm/io.h>
32#include <asm/irq.h>
33
34#include "tms380tr.h"
35#include "madgemc.h" /* Madge-specific constants */
36
37#define MADGEMC_IO_EXTENT 32
38#define MADGEMC_SIF_OFFSET 0x08
39
84c3ea01 40struct card_info {
1da177e4
LT
41 /*
42 * These are read from the BIA ROM.
43 */
44 unsigned int manid;
45 unsigned int cardtype;
46 unsigned int cardrev;
47 unsigned int ramsize;
48
49 /*
50 * These are read from the MCA POS registers.
51 */
52 unsigned int burstmode:2;
53 unsigned int fairness:1; /* 0 = Fair, 1 = Unfair */
54 unsigned int arblevel:4;
55 unsigned int ringspeed:2; /* 0 = 4mb, 1 = 16, 2 = Auto/none */
56 unsigned int cabletype:1; /* 0 = RJ45, 1 = DB9 */
1da177e4 57};
1da177e4
LT
58
59static int madgemc_open(struct net_device *dev);
60static int madgemc_close(struct net_device *dev);
61static int madgemc_chipset_init(struct net_device *dev);
84c3ea01 62static void madgemc_read_rom(struct net_device *dev, struct card_info *card);
1da177e4
LT
63static unsigned short madgemc_setnselout_pins(struct net_device *dev);
64static void madgemc_setcabletype(struct net_device *dev, int type);
65
66static int madgemc_mcaproc(char *buf, int slot, void *d);
67
68static void madgemc_setregpage(struct net_device *dev, int page);
69static void madgemc_setsifsel(struct net_device *dev, int val);
70static void madgemc_setint(struct net_device *dev, int val);
71
7d12e780 72static irqreturn_t madgemc_interrupt(int irq, void *dev_id);
1da177e4
LT
73
74/*
75 * These work around paging, however they don't guarentee you're on the
76 * right page.
77 */
78#define SIFREADB(reg) (inb(dev->base_addr + ((reg<0x8)?reg:reg-0x8)))
79#define SIFWRITEB(val, reg) (outb(val, dev->base_addr + ((reg<0x8)?reg:reg-0x8)))
80#define SIFREADW(reg) (inw(dev->base_addr + ((reg<0x8)?reg:reg-0x8)))
81#define SIFWRITEW(val, reg) (outw(val, dev->base_addr + ((reg<0x8)?reg:reg-0x8)))
82
83/*
84 * Read a byte-length value from the register.
85 */
86static unsigned short madgemc_sifreadb(struct net_device *dev, unsigned short reg)
87{
88 unsigned short ret;
89 if (reg<0x8)
90 ret = SIFREADB(reg);
91 else {
92 madgemc_setregpage(dev, 1);
93 ret = SIFREADB(reg);
94 madgemc_setregpage(dev, 0);
95 }
96 return ret;
97}
98
99/*
100 * Write a byte-length value to a register.
101 */
102static void madgemc_sifwriteb(struct net_device *dev, unsigned short val, unsigned short reg)
103{
104 if (reg<0x8)
105 SIFWRITEB(val, reg);
106 else {
107 madgemc_setregpage(dev, 1);
108 SIFWRITEB(val, reg);
109 madgemc_setregpage(dev, 0);
110 }
111 return;
112}
113
114/*
115 * Read a word-length value from a register
116 */
117static unsigned short madgemc_sifreadw(struct net_device *dev, unsigned short reg)
118{
119 unsigned short ret;
120 if (reg<0x8)
121 ret = SIFREADW(reg);
122 else {
123 madgemc_setregpage(dev, 1);
124 ret = SIFREADW(reg);
125 madgemc_setregpage(dev, 0);
126 }
127 return ret;
128}
129
130/*
131 * Write a word-length value to a register.
132 */
133static void madgemc_sifwritew(struct net_device *dev, unsigned short val, unsigned short reg)
134{
135 if (reg<0x8)
136 SIFWRITEW(val, reg);
137 else {
138 madgemc_setregpage(dev, 1);
139 SIFWRITEW(val, reg);
140 madgemc_setregpage(dev, 0);
141 }
142 return;
143}
144
145
146
84c3ea01 147static int __devinit madgemc_probe(struct device *device)
1da177e4
LT
148{
149 static int versionprinted;
150 struct net_device *dev;
151 struct net_local *tp;
84c3ea01
JF
152 struct card_info *card;
153 struct mca_device *mdev = to_mca_device(device);
0795af57
JP
154 int ret = 0;
155 DECLARE_MAC_BUF(mac);
84c3ea01
JF
156
157 if (versionprinted++ == 0)
158 printk("%s", version);
159
160 if(mca_device_claimed(mdev))
161 return -EBUSY;
162 mca_device_set_claim(mdev, 1);
163
164 dev = alloc_trdev(sizeof(struct net_local));
165 if (!dev) {
166 printk("madgemc: unable to allocate dev space\n");
167 mca_device_set_claim(mdev, 0);
168 ret = -ENOMEM;
169 goto getout;
170 }
1da177e4 171
84c3ea01 172 dev->dma = 0;
1da177e4 173
84c3ea01
JF
174 card = kmalloc(sizeof(struct card_info), GFP_KERNEL);
175 if (card==NULL) {
176 printk("madgemc: unable to allocate card struct\n");
177 ret = -ENOMEM;
178 goto getout1;
179 }
180
181 /*
182 * Parse configuration information. This all comes
183 * directly from the publicly available @002d.ADF.
184 * Get it from Madge or your local ADF library.
185 */
186
187 /*
188 * Base address
189 */
190 dev->base_addr = 0x0a20 +
191 ((mdev->pos[2] & MC16_POS2_ADDR2)?0x0400:0) +
192 ((mdev->pos[0] & MC16_POS0_ADDR1)?0x1000:0) +
193 ((mdev->pos[3] & MC16_POS3_ADDR3)?0x2000:0);
194
195 /*
196 * Interrupt line
197 */
198 switch(mdev->pos[0] >> 6) { /* upper two bits */
1da177e4
LT
199 case 0x1: dev->irq = 3; break;
200 case 0x2: dev->irq = 9; break; /* IRQ 2 = IRQ 9 */
201 case 0x3: dev->irq = 10; break;
202 default: dev->irq = 0; break;
84c3ea01 203 }
1da177e4 204
84c3ea01
JF
205 if (dev->irq == 0) {
206 printk("%s: invalid IRQ\n", dev->name);
207 ret = -EBUSY;
208 goto getout2;
209 }
1da177e4 210
84c3ea01
JF
211 if (!request_region(dev->base_addr, MADGEMC_IO_EXTENT,
212 "madgemc")) {
213 printk(KERN_INFO "madgemc: unable to setup Smart MC in slot %d because of I/O base conflict at 0x%04lx\n", mdev->slot, dev->base_addr);
1da177e4 214 dev->base_addr += MADGEMC_SIF_OFFSET;
84c3ea01
JF
215 ret = -EBUSY;
216 goto getout2;
217 }
218 dev->base_addr += MADGEMC_SIF_OFFSET;
219
220 /*
221 * Arbitration Level
222 */
223 card->arblevel = ((mdev->pos[0] >> 1) & 0x7) + 8;
224
225 /*
226 * Burst mode and Fairness
227 */
228 card->burstmode = ((mdev->pos[2] >> 6) & 0x3);
229 card->fairness = ((mdev->pos[2] >> 4) & 0x1);
230
231 /*
232 * Ring Speed
233 */
234 if ((mdev->pos[1] >> 2)&0x1)
235 card->ringspeed = 2; /* not selected */
236 else if ((mdev->pos[2] >> 5) & 0x1)
237 card->ringspeed = 1; /* 16Mb */
238 else
239 card->ringspeed = 0; /* 4Mb */
240
241 /*
242 * Cable type
243 */
244 if ((mdev->pos[1] >> 6)&0x1)
245 card->cabletype = 1; /* STP/DB9 */
246 else
247 card->cabletype = 0; /* UTP/RJ-45 */
248
249
250 /*
251 * ROM Info. This requires us to actually twiddle
252 * bits on the card, so we must ensure above that
253 * the base address is free of conflict (request_region above).
254 */
255 madgemc_read_rom(dev, card);
1da177e4 256
84c3ea01
JF
257 if (card->manid != 0x4d) { /* something went wrong */
258 printk(KERN_INFO "%s: Madge MC ROM read failed (unknown manufacturer ID %02x)\n", dev->name, card->manid);
259 goto getout3;
260 }
1da177e4 261
84c3ea01
JF
262 if ((card->cardtype != 0x08) && (card->cardtype != 0x0d)) {
263 printk(KERN_INFO "%s: Madge MC ROM read failed (unknown card ID %02x)\n", dev->name, card->cardtype);
264 ret = -EIO;
265 goto getout3;
266 }
1da177e4 267
84c3ea01
JF
268 /* All cards except Rev 0 and 1 MC16's have 256kb of RAM */
269 if ((card->cardtype == 0x08) && (card->cardrev <= 0x01))
270 card->ramsize = 128;
271 else
272 card->ramsize = 256;
273
274 printk("%s: %s Rev %d at 0x%04lx IRQ %d\n",
275 dev->name,
276 (card->cardtype == 0x08)?MADGEMC16_CARDNAME:
277 MADGEMC32_CARDNAME, card->cardrev,
278 dev->base_addr, dev->irq);
279
280 if (card->cardtype == 0x0d)
281 printk("%s: Warning: MC32 support is experimental and highly untested\n", dev->name);
282
283 if (card->ringspeed==2) { /* Unknown */
284 printk("%s: Warning: Ring speed not set in POS -- Please run the reference disk and set it!\n", dev->name);
285 card->ringspeed = 1; /* default to 16mb */
286 }
1da177e4 287
84c3ea01 288 printk("%s: RAM Size: %dKB\n", dev->name, card->ramsize);
1da177e4 289
84c3ea01
JF
290 printk("%s: Ring Speed: %dMb/sec on %s\n", dev->name,
291 (card->ringspeed)?16:4,
292 card->cabletype?"STP/DB9":"UTP/RJ-45");
293 printk("%s: Arbitration Level: %d\n", dev->name,
294 card->arblevel);
1da177e4 295
84c3ea01
JF
296 printk("%s: Burst Mode: ", dev->name);
297 switch(card->burstmode) {
1da177e4
LT
298 case 0: printk("Cycle steal"); break;
299 case 1: printk("Limited burst"); break;
300 case 2: printk("Delayed release"); break;
301 case 3: printk("Immediate release"); break;
84c3ea01
JF
302 }
303 printk(" (%s)\n", (card->fairness)?"Unfair":"Fair");
1da177e4 304
1da177e4 305
84c3ea01
JF
306 /*
307 * Enable SIF before we assign the interrupt handler,
308 * just in case we get spurious interrupts that need
309 * handling.
310 */
311 outb(0, dev->base_addr + MC_CONTROL_REG0); /* sanity */
312 madgemc_setsifsel(dev, 1);
1fb9df5d 313 if (request_irq(dev->irq, madgemc_interrupt, IRQF_SHARED,
84c3ea01
JF
314 "madgemc", dev)) {
315 ret = -EBUSY;
316 goto getout3;
1da177e4
LT
317 }
318
84c3ea01
JF
319 madgemc_chipset_init(dev); /* enables interrupts! */
320 madgemc_setcabletype(dev, card->cabletype);
321
322 /* Setup MCA structures */
323 mca_device_set_name(mdev, (card->cardtype == 0x08)?MADGEMC16_CARDNAME:MADGEMC32_CARDNAME);
324 mca_set_adapter_procfn(mdev->slot, madgemc_mcaproc, dev);
325
0795af57
JP
326 printk("%s: Ring Station Address: %s\n",
327 dev->name, print_mac(mac, dev->dev_addr));
84c3ea01
JF
328
329 if (tmsdev_init(dev, device)) {
330 printk("%s: unable to get memory for dev->priv.\n",
331 dev->name);
332 ret = -ENOMEM;
333 goto getout4;
334 }
335 tp = netdev_priv(dev);
336
337 /*
338 * The MC16 is physically a 32bit card. However, Madge
339 * insists on calling it 16bit, so I'll assume here that
340 * they know what they're talking about. Cut off DMA
341 * at 16mb.
342 */
343 tp->setnselout = madgemc_setnselout_pins;
344 tp->sifwriteb = madgemc_sifwriteb;
345 tp->sifreadb = madgemc_sifreadb;
346 tp->sifwritew = madgemc_sifwritew;
347 tp->sifreadw = madgemc_sifreadw;
348 tp->DataRate = (card->ringspeed)?SPEED_16:SPEED_4;
349
350 memcpy(tp->ProductID, "Madge MCA 16/4 ", PROD_ID_SIZE + 1);
351
352 dev->open = madgemc_open;
353 dev->stop = madgemc_close;
354
355 tp->tmspriv = card;
356 dev_set_drvdata(device, dev);
357
358 if (register_netdev(dev) == 0)
1da177e4 359 return 0;
84c3ea01
JF
360
361 dev_set_drvdata(device, NULL);
362 ret = -ENOMEM;
363getout4:
364 free_irq(dev->irq, dev);
365getout3:
366 release_region(dev->base_addr-MADGEMC_SIF_OFFSET,
367 MADGEMC_IO_EXTENT);
368getout2:
369 kfree(card);
370getout1:
371 free_netdev(dev);
372getout:
373 mca_device_set_claim(mdev, 0);
374 return ret;
1da177e4
LT
375}
376
377/*
378 * Handle interrupts generated by the card
379 *
380 * The MicroChannel Madge cards need slightly more handling
381 * after an interrupt than other TMS380 cards do.
382 *
383 * First we must make sure it was this card that generated the
384 * interrupt (since interrupt sharing is allowed). Then,
385 * because we're using level-triggered interrupts (as is
386 * standard on MCA), we must toggle the interrupt line
387 * on the card in order to claim and acknowledge the interrupt.
388 * Once that is done, the interrupt should be handlable in
389 * the normal tms380tr_interrupt() routine.
390 *
391 * There's two ways we can check to see if the interrupt is ours,
392 * both with their own disadvantages...
393 *
394 * 1) Read in the SIFSTS register from the TMS controller. This
395 * is guarenteed to be accurate, however, there's a fairly
396 * large performance penalty for doing so: the Madge chips
397 * must request the register from the Eagle, the Eagle must
398 * read them from its internal bus, and then take the route
399 * back out again, for a 16bit read.
400 *
401 * 2) Use the MC_CONTROL_REG0_SINTR bit from the Madge ASICs.
402 * The major disadvantage here is that the accuracy of the
403 * bit is in question. However, it cuts out the extra read
404 * cycles it takes to read the Eagle's SIF, as its only an
405 * 8bit read, and theoretically the Madge bit is directly
406 * connected to the interrupt latch coming out of the Eagle
407 * hardware (that statement is not verified).
408 *
409 * I can't determine which of these methods has the best win. For now,
410 * we make a compromise. Use the Madge way for the first interrupt,
411 * which should be the fast-path, and then once we hit the first
412 * interrupt, keep on trying using the SIF method until we've
413 * exhausted all contiguous interrupts.
414 *
415 */
7d12e780 416static irqreturn_t madgemc_interrupt(int irq, void *dev_id)
1da177e4
LT
417{
418 int pending,reg1;
419 struct net_device *dev;
420
421 if (!dev_id) {
422 printk("madgemc_interrupt: was not passed a dev_id!\n");
423 return IRQ_NONE;
424 }
425
426 dev = (struct net_device *)dev_id;
427
428 /* Make sure its really us. -- the Madge way */
429 pending = inb(dev->base_addr + MC_CONTROL_REG0);
430 if (!(pending & MC_CONTROL_REG0_SINTR))
431 return IRQ_NONE; /* not our interrupt */
432
433 /*
434 * Since we're level-triggered, we may miss the rising edge
435 * of the next interrupt while we're off handling this one,
436 * so keep checking until the SIF verifies that it has nothing
437 * left for us to do.
438 */
439 pending = STS_SYSTEM_IRQ;
440 do {
441 if (pending & STS_SYSTEM_IRQ) {
442
443 /* Toggle the interrupt to reset the latch on card */
444 reg1 = inb(dev->base_addr + MC_CONTROL_REG1);
445 outb(reg1 ^ MC_CONTROL_REG1_SINTEN,
446 dev->base_addr + MC_CONTROL_REG1);
447 outb(reg1, dev->base_addr + MC_CONTROL_REG1);
448
449 /* Continue handling as normal */
7d12e780 450 tms380tr_interrupt(irq, dev_id);
1da177e4
LT
451
452 pending = SIFREADW(SIFSTS); /* restart - the SIF way */
453
454 } else
455 return IRQ_HANDLED;
456 } while (1);
457
458 return IRQ_HANDLED; /* not reachable */
459}
460
461/*
462 * Set the card to the prefered ring speed.
463 *
464 * Unlike newer cards, the MC16/32 have their speed selection
465 * circuit connected to the Madge ASICs and not to the TMS380
466 * NSELOUT pins. Set the ASIC bits correctly here, and return
467 * zero to leave the TMS NSELOUT bits unaffected.
468 *
469 */
470unsigned short madgemc_setnselout_pins(struct net_device *dev)
471{
472 unsigned char reg1;
473 struct net_local *tp = netdev_priv(dev);
474
475 reg1 = inb(dev->base_addr + MC_CONTROL_REG1);
476
477 if(tp->DataRate == SPEED_16)
478 reg1 |= MC_CONTROL_REG1_SPEED_SEL; /* add for 16mb */
479 else if (reg1 & MC_CONTROL_REG1_SPEED_SEL)
480 reg1 ^= MC_CONTROL_REG1_SPEED_SEL; /* remove for 4mb */
481 outb(reg1, dev->base_addr + MC_CONTROL_REG1);
482
483 return 0; /* no change */
484}
485
486/*
487 * Set the register page. This equates to the SRSX line
488 * on the TMS380Cx6.
489 *
490 * Register selection is normally done via three contiguous
491 * bits. However, some boards (such as the MC16/32) use only
492 * two bits, plus a separate bit in the glue chip. This
493 * sets the SRSX bit (the top bit). See page 4-17 in the
494 * Yellow Book for which registers are affected.
495 *
496 */
497static void madgemc_setregpage(struct net_device *dev, int page)
498{
499 static int reg1;
500
501 reg1 = inb(dev->base_addr + MC_CONTROL_REG1);
502 if ((page == 0) && (reg1 & MC_CONTROL_REG1_SRSX)) {
503 outb(reg1 ^ MC_CONTROL_REG1_SRSX,
504 dev->base_addr + MC_CONTROL_REG1);
505 }
506 else if (page == 1) {
507 outb(reg1 | MC_CONTROL_REG1_SRSX,
508 dev->base_addr + MC_CONTROL_REG1);
509 }
510 reg1 = inb(dev->base_addr + MC_CONTROL_REG1);
511
512 return;
513}
514
515/*
516 * The SIF registers are not mapped into register space by default
517 * Set this to 1 to map them, 0 to map the BIA ROM.
518 *
519 */
520static void madgemc_setsifsel(struct net_device *dev, int val)
521{
522 unsigned int reg0;
523
524 reg0 = inb(dev->base_addr + MC_CONTROL_REG0);
525 if ((val == 0) && (reg0 & MC_CONTROL_REG0_SIFSEL)) {
526 outb(reg0 ^ MC_CONTROL_REG0_SIFSEL,
527 dev->base_addr + MC_CONTROL_REG0);
528 } else if (val == 1) {
529 outb(reg0 | MC_CONTROL_REG0_SIFSEL,
530 dev->base_addr + MC_CONTROL_REG0);
531 }
532 reg0 = inb(dev->base_addr + MC_CONTROL_REG0);
533
534 return;
535}
536
537/*
538 * Enable SIF interrupts
539 *
540 * This does not enable interrupts in the SIF, but rather
541 * enables SIF interrupts to be passed onto the host.
542 *
543 */
544static void madgemc_setint(struct net_device *dev, int val)
545{
546 unsigned int reg1;
547
548 reg1 = inb(dev->base_addr + MC_CONTROL_REG1);
549 if ((val == 0) && (reg1 & MC_CONTROL_REG1_SINTEN)) {
550 outb(reg1 ^ MC_CONTROL_REG1_SINTEN,
551 dev->base_addr + MC_CONTROL_REG1);
552 } else if (val == 1) {
553 outb(reg1 | MC_CONTROL_REG1_SINTEN,
554 dev->base_addr + MC_CONTROL_REG1);
555 }
556
557 return;
558}
559
560/*
561 * Cable type is set via control register 7. Bit zero high
562 * for UTP, low for STP.
563 */
564static void madgemc_setcabletype(struct net_device *dev, int type)
565{
566 outb((type==0)?MC_CONTROL_REG7_CABLEUTP:MC_CONTROL_REG7_CABLESTP,
567 dev->base_addr + MC_CONTROL_REG7);
568}
569
570/*
571 * Enable the functions of the Madge chipset needed for
572 * full working order.
573 */
574static int madgemc_chipset_init(struct net_device *dev)
575{
576 outb(0, dev->base_addr + MC_CONTROL_REG1); /* pull SRESET low */
577 tms380tr_wait(100); /* wait for card to reset */
578
579 /* bring back into normal operating mode */
580 outb(MC_CONTROL_REG1_NSRESET, dev->base_addr + MC_CONTROL_REG1);
581
582 /* map SIF registers */
583 madgemc_setsifsel(dev, 1);
584
585 /* enable SIF interrupts */
586 madgemc_setint(dev, 1);
587
588 return 0;
589}
590
591/*
592 * Disable the board, and put back into power-up state.
593 */
de70b4c8 594static void madgemc_chipset_close(struct net_device *dev)
1da177e4
LT
595{
596 /* disable interrupts */
597 madgemc_setint(dev, 0);
598 /* unmap SIF registers */
599 madgemc_setsifsel(dev, 0);
600
601 return;
602}
603
604/*
605 * Read the card type (MC16 or MC32) from the card.
606 *
607 * The configuration registers are stored in two separate
608 * pages. Pages are flipped by clearing bit 3 of CONTROL_REG0 (PAGE)
609 * for page zero, or setting bit 3 for page one.
610 *
611 * Page zero contains the following data:
612 * Byte 0: Manufacturer ID (0x4D -- ASCII "M")
613 * Byte 1: Card type:
614 * 0x08 for MC16
615 * 0x0D for MC32
616 * Byte 2: Card revision
617 * Byte 3: Mirror of POS config register 0
618 * Byte 4: Mirror of POS 1
619 * Byte 5: Mirror of POS 2
620 *
621 * Page one contains the following data:
622 * Byte 0: Unused
623 * Byte 1-6: BIA, MSB to LSB.
624 *
625 * Note that to read the BIA, we must unmap the SIF registers
626 * by clearing bit 2 of CONTROL_REG0 (SIFSEL), as the data
627 * will reside in the same logical location. For this reason,
628 * _never_ read the BIA while the Eagle processor is running!
629 * The SIF will be completely inaccessible until the BIA operation
630 * is complete.
631 *
632 */
84c3ea01 633static void madgemc_read_rom(struct net_device *dev, struct card_info *card)
1da177e4
LT
634{
635 unsigned long ioaddr;
636 unsigned char reg0, reg1, tmpreg0, i;
637
84c3ea01 638 ioaddr = dev->base_addr;
1da177e4
LT
639
640 reg0 = inb(ioaddr + MC_CONTROL_REG0);
641 reg1 = inb(ioaddr + MC_CONTROL_REG1);
642
643 /* Switch to page zero and unmap SIF */
644 tmpreg0 = reg0 & ~(MC_CONTROL_REG0_PAGE + MC_CONTROL_REG0_SIFSEL);
645 outb(tmpreg0, ioaddr + MC_CONTROL_REG0);
646
647 card->manid = inb(ioaddr + MC_ROM_MANUFACTURERID);
648 card->cardtype = inb(ioaddr + MC_ROM_ADAPTERID);
649 card->cardrev = inb(ioaddr + MC_ROM_REVISION);
650
651 /* Switch to rom page one */
652 outb(tmpreg0 | MC_CONTROL_REG0_PAGE, ioaddr + MC_CONTROL_REG0);
653
654 /* Read BIA */
84c3ea01 655 dev->addr_len = 6;
1da177e4 656 for (i = 0; i < 6; i++)
84c3ea01 657 dev->dev_addr[i] = inb(ioaddr + MC_ROM_BIA_START + i);
1da177e4
LT
658
659 /* Restore original register values */
660 outb(reg0, ioaddr + MC_CONTROL_REG0);
661 outb(reg1, ioaddr + MC_CONTROL_REG1);
662
663 return;
664}
665
666static int madgemc_open(struct net_device *dev)
667{
668 /*
669 * Go ahead and reinitialize the chipset again, just to
670 * make sure we didn't get left in a bad state.
671 */
672 madgemc_chipset_init(dev);
673 tms380tr_open(dev);
674 return 0;
675}
676
677static int madgemc_close(struct net_device *dev)
678{
679 tms380tr_close(dev);
680 madgemc_chipset_close(dev);
681 return 0;
682}
683
684/*
685 * Give some details available from /proc/mca/slotX
686 */
687static int madgemc_mcaproc(char *buf, int slot, void *d)
688{
689 struct net_device *dev = (struct net_device *)d;
eda10531 690 struct net_local *tp = netdev_priv(dev);
84c3ea01 691 struct card_info *curcard = tp->tmspriv;
1da177e4 692 int len = 0;
0795af57 693 DECLARE_MAC_BUF(mac);
1da177e4 694
1da177e4
LT
695 len += sprintf(buf+len, "-------\n");
696 if (curcard) {
697 struct net_local *tp = netdev_priv(dev);
1da177e4
LT
698
699 len += sprintf(buf+len, "Card Revision: %d\n", curcard->cardrev);
700 len += sprintf(buf+len, "RAM Size: %dkb\n", curcard->ramsize);
701 len += sprintf(buf+len, "Cable type: %s\n", (curcard->cabletype)?"STP/DB9":"UTP/RJ-45");
702 len += sprintf(buf+len, "Configured ring speed: %dMb/sec\n", (curcard->ringspeed)?16:4);
703 len += sprintf(buf+len, "Running ring speed: %dMb/sec\n", (tp->DataRate==SPEED_16)?16:4);
704 len += sprintf(buf+len, "Device: %s\n", dev->name);
705 len += sprintf(buf+len, "IO Port: 0x%04lx\n", dev->base_addr);
706 len += sprintf(buf+len, "IRQ: %d\n", dev->irq);
707 len += sprintf(buf+len, "Arbitration Level: %d\n", curcard->arblevel);
708 len += sprintf(buf+len, "Burst Mode: ");
709 switch(curcard->burstmode) {
710 case 0: len += sprintf(buf+len, "Cycle steal"); break;
711 case 1: len += sprintf(buf+len, "Limited burst"); break;
712 case 2: len += sprintf(buf+len, "Delayed release"); break;
713 case 3: len += sprintf(buf+len, "Immediate release"); break;
714 }
715 len += sprintf(buf+len, " (%s)\n", (curcard->fairness)?"Unfair":"Fair");
716
0795af57
JP
717 len += sprintf(buf+len, "Ring Station Address: %s\n",
718 print_mac(mac, dev->dev_addr));
1da177e4
LT
719 } else
720 len += sprintf(buf+len, "Card not configured\n");
721
722 return len;
723}
724
84c3ea01 725static int __devexit madgemc_remove(struct device *device)
1da177e4 726{
84c3ea01
JF
727 struct net_device *dev = dev_get_drvdata(device);
728 struct net_local *tp;
729 struct card_info *card;
730
5d9428de 731 BUG_ON(!dev);
84c3ea01 732
eda10531 733 tp = netdev_priv(dev);
84c3ea01
JF
734 card = tp->tmspriv;
735 kfree(card);
736 tp->tmspriv = NULL;
737
738 unregister_netdev(dev);
739 release_region(dev->base_addr-MADGEMC_SIF_OFFSET, MADGEMC_IO_EXTENT);
740 free_irq(dev->irq, dev);
741 tmsdev_term(dev);
742 free_netdev(dev);
743 dev_set_drvdata(device, NULL);
744
745 return 0;
746}
747
748static short madgemc_adapter_ids[] __initdata = {
749 0x002d,
750 0x0000
751};
752
753static struct mca_driver madgemc_driver = {
754 .id_table = madgemc_adapter_ids,
755 .driver = {
756 .name = "madgemc",
757 .bus = &mca_bus_type,
758 .probe = madgemc_probe,
759 .remove = __devexit_p(madgemc_remove),
760 },
761};
762
763static int __init madgemc_init (void)
764{
765 return mca_register_driver (&madgemc_driver);
766}
767
768static void __exit madgemc_exit (void)
769{
770 mca_unregister_driver (&madgemc_driver);
1da177e4
LT
771}
772
84c3ea01 773module_init(madgemc_init);
1da177e4
LT
774module_exit(madgemc_exit);
775
776MODULE_LICENSE("GPL");
777