Merge branch 'linus' into timers/hrtimers
[linux-2.6] / drivers / rtc / rtc-ds1305.c
CommitLineData
53e84b67
DB
1/*
2 * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
3 *
4 * Copyright (C) 2008 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 */
11#include <linux/kernel.h>
12#include <linux/init.h>
13#include <linux/bcd.h>
14#include <linux/rtc.h>
15#include <linux/workqueue.h>
16
17#include <linux/spi/spi.h>
18#include <linux/spi/ds1305.h>
19
20
21/*
22 * Registers ... mask DS1305_WRITE into register address to write,
23 * otherwise you're reading it. All non-bitmask values are BCD.
24 */
25#define DS1305_WRITE 0x80
26
27
28/* RTC date/time ... the main special cases are that we:
29 * - Need fancy "hours" encoding in 12hour mode
30 * - Don't rely on the "day-of-week" field (or tm_wday)
31 * - Are a 21st-century clock (2000 <= year < 2100)
32 */
33#define DS1305_RTC_LEN 7 /* bytes for RTC regs */
34
35#define DS1305_SEC 0x00 /* register addresses */
36#define DS1305_MIN 0x01
37#define DS1305_HOUR 0x02
38# define DS1305_HR_12 0x40 /* set == 12 hr mode */
39# define DS1305_HR_PM 0x20 /* set == PM (12hr mode) */
40#define DS1305_WDAY 0x03
41#define DS1305_MDAY 0x04
42#define DS1305_MON 0x05
43#define DS1305_YEAR 0x06
44
45
46/* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
47 * DS1305_ALM_DISABLE disables a match field (some combos are bad).
48 *
49 * NOTE that since we don't use WDAY, we limit ourselves to alarms
50 * only one day into the future (vs potentially up to a week).
51 *
52 * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
53 * don't currently support them. We'd either need to do it only when
54 * no alarm is pending (not the standard model), or to use the second
55 * alarm (implying that this is a DS1305 not DS1306, *and* that either
56 * it's wired up a second IRQ we know, or that INTCN is set)
57 */
58#define DS1305_ALM_LEN 4 /* bytes for ALM regs */
59#define DS1305_ALM_DISABLE 0x80
60
61#define DS1305_ALM0(r) (0x07 + (r)) /* register addresses */
62#define DS1305_ALM1(r) (0x0b + (r))
63
64
65/* three control registers */
66#define DS1305_CONTROL_LEN 3 /* bytes of control regs */
67
68#define DS1305_CONTROL 0x0f /* register addresses */
69# define DS1305_nEOSC 0x80 /* low enables oscillator */
70# define DS1305_WP 0x40 /* write protect */
71# define DS1305_INTCN 0x04 /* clear == only int0 used */
72# define DS1306_1HZ 0x04 /* enable 1Hz output */
73# define DS1305_AEI1 0x02 /* enable ALM1 IRQ */
74# define DS1305_AEI0 0x01 /* enable ALM0 IRQ */
75#define DS1305_STATUS 0x10
76/* status has just AEIx bits, mirrored as IRQFx */
77#define DS1305_TRICKLE 0x11
78/* trickle bits are defined in <linux/spi/ds1305.h> */
79
80/* a bunch of NVRAM */
81#define DS1305_NVRAM_LEN 96 /* bytes of NVRAM */
82
83#define DS1305_NVRAM 0x20 /* register addresses */
84
85
86struct ds1305 {
87 struct spi_device *spi;
88 struct rtc_device *rtc;
89
90 struct work_struct work;
91
92 unsigned long flags;
93#define FLAG_EXITING 0
94
95 bool hr12;
96 u8 ctrl[DS1305_CONTROL_LEN];
97};
98
99
100/*----------------------------------------------------------------------*/
101
102/*
103 * Utilities ... tolerate 12-hour AM/PM notation in case of non-Linux
104 * software (like a bootloader) which may require it.
105 */
106
107static unsigned bcd2hour(u8 bcd)
108{
109 if (bcd & DS1305_HR_12) {
110 unsigned hour = 0;
111
112 bcd &= ~DS1305_HR_12;
113 if (bcd & DS1305_HR_PM) {
114 hour = 12;
115 bcd &= ~DS1305_HR_PM;
116 }
fe20ba70 117 hour += bcd2bin(bcd);
53e84b67
DB
118 return hour - 1;
119 }
fe20ba70 120 return bcd2bin(bcd);
53e84b67
DB
121}
122
123static u8 hour2bcd(bool hr12, int hour)
124{
125 if (hr12) {
126 hour++;
127 if (hour <= 12)
fe20ba70 128 return DS1305_HR_12 | bin2bcd(hour);
53e84b67 129 hour -= 12;
fe20ba70 130 return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
53e84b67 131 }
fe20ba70 132 return bin2bcd(hour);
53e84b67
DB
133}
134
135/*----------------------------------------------------------------------*/
136
137/*
138 * Interface to RTC framework
139 */
140
141#ifdef CONFIG_RTC_INTF_DEV
142
143/*
144 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
145 */
146static int ds1305_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
147{
148 struct ds1305 *ds1305 = dev_get_drvdata(dev);
149 u8 buf[2];
150 int status = -ENOIOCTLCMD;
151
152 buf[0] = DS1305_WRITE | DS1305_CONTROL;
153 buf[1] = ds1305->ctrl[0];
154
155 switch (cmd) {
156 case RTC_AIE_OFF:
157 status = 0;
158 if (!(buf[1] & DS1305_AEI0))
159 goto done;
160 buf[1] &= ~DS1305_AEI0;
161 break;
162
163 case RTC_AIE_ON:
164 status = 0;
165 if (ds1305->ctrl[0] & DS1305_AEI0)
166 goto done;
167 buf[1] |= DS1305_AEI0;
168 break;
169 }
170 if (status == 0) {
171 status = spi_write_then_read(ds1305->spi, buf, sizeof buf,
172 NULL, 0);
173 if (status >= 0)
174 ds1305->ctrl[0] = buf[1];
175 }
176
177done:
178 return status;
179}
180
181#else
182#define ds1305_ioctl NULL
183#endif
184
185/*
186 * Get/set of date and time is pretty normal.
187 */
188
189static int ds1305_get_time(struct device *dev, struct rtc_time *time)
190{
191 struct ds1305 *ds1305 = dev_get_drvdata(dev);
192 u8 addr = DS1305_SEC;
193 u8 buf[DS1305_RTC_LEN];
194 int status;
195
196 /* Use write-then-read to get all the date/time registers
197 * since dma from stack is nonportable
198 */
199 status = spi_write_then_read(ds1305->spi, &addr, sizeof addr,
200 buf, sizeof buf);
201 if (status < 0)
202 return status;
203
204 dev_vdbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
205 "read", buf[0], buf[1], buf[2], buf[3],
206 buf[4], buf[5], buf[6]);
207
208 /* Decode the registers */
fe20ba70
AB
209 time->tm_sec = bcd2bin(buf[DS1305_SEC]);
210 time->tm_min = bcd2bin(buf[DS1305_MIN]);
53e84b67
DB
211 time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
212 time->tm_wday = buf[DS1305_WDAY] - 1;
fe20ba70
AB
213 time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
214 time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
215 time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
53e84b67
DB
216
217 dev_vdbg(dev, "%s secs=%d, mins=%d, "
218 "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
219 "read", time->tm_sec, time->tm_min,
220 time->tm_hour, time->tm_mday,
221 time->tm_mon, time->tm_year, time->tm_wday);
222
223 /* Time may not be set */
224 return rtc_valid_tm(time);
225}
226
227static int ds1305_set_time(struct device *dev, struct rtc_time *time)
228{
229 struct ds1305 *ds1305 = dev_get_drvdata(dev);
230 u8 buf[1 + DS1305_RTC_LEN];
231 u8 *bp = buf;
232
233 dev_vdbg(dev, "%s secs=%d, mins=%d, "
234 "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
235 "write", time->tm_sec, time->tm_min,
236 time->tm_hour, time->tm_mday,
237 time->tm_mon, time->tm_year, time->tm_wday);
238
239 /* Write registers starting at the first time/date address. */
240 *bp++ = DS1305_WRITE | DS1305_SEC;
241
fe20ba70
AB
242 *bp++ = bin2bcd(time->tm_sec);
243 *bp++ = bin2bcd(time->tm_min);
53e84b67
DB
244 *bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
245 *bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
fe20ba70
AB
246 *bp++ = bin2bcd(time->tm_mday);
247 *bp++ = bin2bcd(time->tm_mon + 1);
248 *bp++ = bin2bcd(time->tm_year - 100);
53e84b67
DB
249
250 dev_dbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
251 "write", buf[1], buf[2], buf[3],
252 buf[4], buf[5], buf[6], buf[7]);
253
254 /* use write-then-read since dma from stack is nonportable */
255 return spi_write_then_read(ds1305->spi, buf, sizeof buf,
256 NULL, 0);
257}
258
259/*
260 * Get/set of alarm is a bit funky:
261 *
262 * - First there's the inherent raciness of getting the (partitioned)
263 * status of an alarm that could trigger while we're reading parts
264 * of that status.
265 *
266 * - Second there's its limited range (we could increase it a bit by
267 * relying on WDAY), which means it will easily roll over.
268 *
269 * - Third there's the choice of two alarms and alarm signals.
270 * Here we use ALM0 and expect that nINT0 (open drain) is used;
271 * that's the only real option for DS1306 runtime alarms, and is
272 * natural on DS1305.
273 *
274 * - Fourth, there's also ALM1, and a second interrupt signal:
275 * + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
276 * + On DS1306 ALM1 only uses INT1 (an active high pulse)
277 * and it won't work when VCC1 is active.
278 *
279 * So to be most general, we should probably set both alarms to the
280 * same value, letting ALM1 be the wakeup event source on DS1306
281 * and handling several wiring options on DS1305.
282 *
283 * - Fifth, we support the polled mode (as well as possible; why not?)
284 * even when no interrupt line is wired to an IRQ.
285 */
286
287/*
288 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
289 */
290static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
291{
292 struct ds1305 *ds1305 = dev_get_drvdata(dev);
293 struct spi_device *spi = ds1305->spi;
294 u8 addr;
295 int status;
296 u8 buf[DS1305_ALM_LEN];
297
298 /* Refresh control register cache BEFORE reading ALM0 registers,
299 * since reading alarm registers acks any pending IRQ. That
300 * makes returning "pending" status a bit of a lie, but that bit
301 * of EFI status is at best fragile anyway (given IRQ handlers).
302 */
303 addr = DS1305_CONTROL;
304 status = spi_write_then_read(spi, &addr, sizeof addr,
305 ds1305->ctrl, sizeof ds1305->ctrl);
306 if (status < 0)
307 return status;
308
309 alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
310 alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
311
312 /* get and check ALM0 registers */
313 addr = DS1305_ALM0(DS1305_SEC);
314 status = spi_write_then_read(spi, &addr, sizeof addr,
315 buf, sizeof buf);
316 if (status < 0)
317 return status;
318
319 dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
320 "alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
321 buf[DS1305_HOUR], buf[DS1305_WDAY]);
322
323 if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
324 || (DS1305_ALM_DISABLE & buf[DS1305_MIN])
325 || (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
326 return -EIO;
327
328 /* Stuff these values into alm->time and let RTC framework code
329 * fill in the rest ... and also handle rollover to tomorrow when
330 * that's needed.
331 */
fe20ba70
AB
332 alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
333 alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
53e84b67
DB
334 alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
335 alm->time.tm_mday = -1;
336 alm->time.tm_mon = -1;
337 alm->time.tm_year = -1;
338 /* next three fields are unused by Linux */
339 alm->time.tm_wday = -1;
340 alm->time.tm_mday = -1;
341 alm->time.tm_isdst = -1;
342
343 return 0;
344}
345
346/*
347 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
348 */
349static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
350{
351 struct ds1305 *ds1305 = dev_get_drvdata(dev);
352 struct spi_device *spi = ds1305->spi;
353 unsigned long now, later;
354 struct rtc_time tm;
355 int status;
356 u8 buf[1 + DS1305_ALM_LEN];
357
358 /* convert desired alarm to time_t */
359 status = rtc_tm_to_time(&alm->time, &later);
360 if (status < 0)
361 return status;
362
363 /* Read current time as time_t */
364 status = ds1305_get_time(dev, &tm);
365 if (status < 0)
366 return status;
367 status = rtc_tm_to_time(&tm, &now);
368 if (status < 0)
369 return status;
370
371 /* make sure alarm fires within the next 24 hours */
372 if (later <= now)
373 return -EINVAL;
374 if ((later - now) > 24 * 60 * 60)
375 return -EDOM;
376
377 /* disable alarm if needed */
378 if (ds1305->ctrl[0] & DS1305_AEI0) {
379 ds1305->ctrl[0] &= ~DS1305_AEI0;
380
381 buf[0] = DS1305_WRITE | DS1305_CONTROL;
382 buf[1] = ds1305->ctrl[0];
383 status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
384 if (status < 0)
385 return status;
386 }
387
388 /* write alarm */
389 buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
fe20ba70
AB
390 buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
391 buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
53e84b67
DB
392 buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
393 buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
394
395 dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
396 "alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
397 buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
398
399 status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
400 if (status < 0)
401 return status;
402
403 /* enable alarm if requested */
404 if (alm->enabled) {
405 ds1305->ctrl[0] |= DS1305_AEI0;
406
407 buf[0] = DS1305_WRITE | DS1305_CONTROL;
408 buf[1] = ds1305->ctrl[0];
409 status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
410 }
411
412 return status;
413}
414
415#ifdef CONFIG_PROC_FS
416
417static int ds1305_proc(struct device *dev, struct seq_file *seq)
418{
419 struct ds1305 *ds1305 = dev_get_drvdata(dev);
420 char *diodes = "no";
421 char *resistors = "";
422
423 /* ctrl[2] is treated as read-only; no locking needed */
424 if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
425 switch (ds1305->ctrl[2] & 0x0c) {
426 case DS1305_TRICKLE_DS2:
427 diodes = "2 diodes, ";
428 break;
429 case DS1305_TRICKLE_DS1:
430 diodes = "1 diode, ";
431 break;
432 default:
433 goto done;
434 }
435 switch (ds1305->ctrl[2] & 0x03) {
436 case DS1305_TRICKLE_2K:
437 resistors = "2k Ohm";
438 break;
439 case DS1305_TRICKLE_4K:
440 resistors = "4k Ohm";
441 break;
442 case DS1305_TRICKLE_8K:
443 resistors = "8k Ohm";
444 break;
445 default:
446 diodes = "no";
447 break;
448 }
449 }
450
451done:
452 return seq_printf(seq,
453 "trickle_charge\t: %s%s\n",
454 diodes, resistors);
455}
456
457#else
458#define ds1305_proc NULL
459#endif
460
461static const struct rtc_class_ops ds1305_ops = {
462 .ioctl = ds1305_ioctl,
463 .read_time = ds1305_get_time,
464 .set_time = ds1305_set_time,
465 .read_alarm = ds1305_get_alarm,
466 .set_alarm = ds1305_set_alarm,
467 .proc = ds1305_proc,
468};
469
470static void ds1305_work(struct work_struct *work)
471{
472 struct ds1305 *ds1305 = container_of(work, struct ds1305, work);
473 struct mutex *lock = &ds1305->rtc->ops_lock;
474 struct spi_device *spi = ds1305->spi;
475 u8 buf[3];
476 int status;
477
478 /* lock to protect ds1305->ctrl */
479 mutex_lock(lock);
480
481 /* Disable the IRQ, and clear its status ... for now, we "know"
482 * that if more than one alarm is active, they're in sync.
483 * Note that reading ALM data registers also clears IRQ status.
484 */
485 ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
486 ds1305->ctrl[1] = 0;
487
488 buf[0] = DS1305_WRITE | DS1305_CONTROL;
489 buf[1] = ds1305->ctrl[0];
490 buf[2] = 0;
491
492 status = spi_write_then_read(spi, buf, sizeof buf,
493 NULL, 0);
494 if (status < 0)
495 dev_dbg(&spi->dev, "clear irq --> %d\n", status);
496
497 mutex_unlock(lock);
498
499 if (!test_bit(FLAG_EXITING, &ds1305->flags))
500 enable_irq(spi->irq);
501
502 /* rtc_update_irq() requires an IRQ-disabled context */
503 local_irq_disable();
504 rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
505 local_irq_enable();
506}
507
508/*
509 * This "real" IRQ handler hands off to a workqueue mostly to allow
510 * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
511 * I/O requests in IRQ context (to clear the IRQ status).
512 */
513static irqreturn_t ds1305_irq(int irq, void *p)
514{
515 struct ds1305 *ds1305 = p;
516
517 disable_irq(irq);
518 schedule_work(&ds1305->work);
519 return IRQ_HANDLED;
520}
521
522/*----------------------------------------------------------------------*/
523
524/*
525 * Interface for NVRAM
526 */
527
528static void msg_init(struct spi_message *m, struct spi_transfer *x,
529 u8 *addr, size_t count, char *tx, char *rx)
530{
531 spi_message_init(m);
532 memset(x, 0, 2 * sizeof(*x));
533
534 x->tx_buf = addr;
535 x->len = 1;
536 spi_message_add_tail(x, m);
537
538 x++;
539
540 x->tx_buf = tx;
541 x->rx_buf = rx;
542 x->len = count;
543 spi_message_add_tail(x, m);
544}
545
546static ssize_t
547ds1305_nvram_read(struct kobject *kobj, struct bin_attribute *attr,
548 char *buf, loff_t off, size_t count)
549{
550 struct spi_device *spi;
551 u8 addr;
552 struct spi_message m;
553 struct spi_transfer x[2];
554 int status;
555
556 spi = container_of(kobj, struct spi_device, dev.kobj);
557
558 if (unlikely(off >= DS1305_NVRAM_LEN))
559 return 0;
560 if (count >= DS1305_NVRAM_LEN)
561 count = DS1305_NVRAM_LEN;
562 if ((off + count) > DS1305_NVRAM_LEN)
563 count = DS1305_NVRAM_LEN - off;
564 if (unlikely(!count))
565 return count;
566
567 addr = DS1305_NVRAM + off;
568 msg_init(&m, x, &addr, count, NULL, buf);
569
570 status = spi_sync(spi, &m);
571 if (status < 0)
572 dev_err(&spi->dev, "nvram %s error %d\n", "read", status);
573 return (status < 0) ? status : count;
574}
575
576static ssize_t
577ds1305_nvram_write(struct kobject *kobj, struct bin_attribute *attr,
578 char *buf, loff_t off, size_t count)
579{
580 struct spi_device *spi;
581 u8 addr;
582 struct spi_message m;
583 struct spi_transfer x[2];
584 int status;
585
586 spi = container_of(kobj, struct spi_device, dev.kobj);
587
588 if (unlikely(off >= DS1305_NVRAM_LEN))
589 return -EFBIG;
590 if (count >= DS1305_NVRAM_LEN)
591 count = DS1305_NVRAM_LEN;
592 if ((off + count) > DS1305_NVRAM_LEN)
593 count = DS1305_NVRAM_LEN - off;
594 if (unlikely(!count))
595 return count;
596
597 addr = (DS1305_WRITE | DS1305_NVRAM) + off;
598 msg_init(&m, x, &addr, count, buf, NULL);
599
600 status = spi_sync(spi, &m);
601 if (status < 0)
602 dev_err(&spi->dev, "nvram %s error %d\n", "write", status);
603 return (status < 0) ? status : count;
604}
605
606static struct bin_attribute nvram = {
607 .attr.name = "nvram",
608 .attr.mode = S_IRUGO | S_IWUSR,
53e84b67
DB
609 .read = ds1305_nvram_read,
610 .write = ds1305_nvram_write,
611 .size = DS1305_NVRAM_LEN,
612};
613
614/*----------------------------------------------------------------------*/
615
616/*
617 * Interface to SPI stack
618 */
619
620static int __devinit ds1305_probe(struct spi_device *spi)
621{
622 struct ds1305 *ds1305;
623 struct rtc_device *rtc;
624 int status;
625 u8 addr, value;
626 struct ds1305_platform_data *pdata = spi->dev.platform_data;
627 bool write_ctrl = false;
628
629 /* Sanity check board setup data. This may be hooked up
630 * in 3wire mode, but we don't care. Note that unless
631 * there's an inverter in place, this needs SPI_CS_HIGH!
632 */
633 if ((spi->bits_per_word && spi->bits_per_word != 8)
634 || (spi->max_speed_hz > 2000000)
635 || !(spi->mode & SPI_CPHA))
636 return -EINVAL;
637
638 /* set up driver data */
639 ds1305 = kzalloc(sizeof *ds1305, GFP_KERNEL);
640 if (!ds1305)
641 return -ENOMEM;
642 ds1305->spi = spi;
643 spi_set_drvdata(spi, ds1305);
644
645 /* read and cache control registers */
646 addr = DS1305_CONTROL;
647 status = spi_write_then_read(spi, &addr, sizeof addr,
648 ds1305->ctrl, sizeof ds1305->ctrl);
649 if (status < 0) {
650 dev_dbg(&spi->dev, "can't %s, %d\n",
651 "read", status);
652 goto fail0;
653 }
654
655 dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n",
656 "read", ds1305->ctrl[0],
657 ds1305->ctrl[1], ds1305->ctrl[2]);
658
659 /* Sanity check register values ... partially compensating for the
660 * fact that SPI has no device handshake. A pullup on MISO would
661 * make these tests fail; but not all systems will have one. If
662 * some register is neither 0x00 nor 0xff, a chip is likely there.
663 */
664 if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
665 dev_dbg(&spi->dev, "RTC chip is not present\n");
666 status = -ENODEV;
667 goto fail0;
668 }
669 if (ds1305->ctrl[2] == 0)
670 dev_dbg(&spi->dev, "chip may not be present\n");
671
672 /* enable writes if needed ... if we were paranoid it would
673 * make sense to enable them only when absolutely necessary.
674 */
675 if (ds1305->ctrl[0] & DS1305_WP) {
676 u8 buf[2];
677
678 ds1305->ctrl[0] &= ~DS1305_WP;
679
680 buf[0] = DS1305_WRITE | DS1305_CONTROL;
681 buf[1] = ds1305->ctrl[0];
682 status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
683
684 dev_dbg(&spi->dev, "clear WP --> %d\n", status);
685 if (status < 0)
686 goto fail0;
687 }
688
689 /* on DS1305, maybe start oscillator; like most low power
690 * oscillators, it may take a second to stabilize
691 */
692 if (ds1305->ctrl[0] & DS1305_nEOSC) {
693 ds1305->ctrl[0] &= ~DS1305_nEOSC;
694 write_ctrl = true;
695 dev_warn(&spi->dev, "SET TIME!\n");
696 }
697
698 /* ack any pending IRQs */
699 if (ds1305->ctrl[1]) {
700 ds1305->ctrl[1] = 0;
701 write_ctrl = true;
702 }
703
704 /* this may need one-time (re)init */
705 if (pdata) {
706 /* maybe enable trickle charge */
707 if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
708 ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
709 | pdata->trickle;
710 write_ctrl = true;
711 }
712
713 /* on DS1306, configure 1 Hz signal */
714 if (pdata->is_ds1306) {
715 if (pdata->en_1hz) {
716 if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
717 ds1305->ctrl[0] |= DS1306_1HZ;
718 write_ctrl = true;
719 }
720 } else {
721 if (ds1305->ctrl[0] & DS1306_1HZ) {
722 ds1305->ctrl[0] &= ~DS1306_1HZ;
723 write_ctrl = true;
724 }
725 }
726 }
727 }
728
729 if (write_ctrl) {
730 u8 buf[4];
731
732 buf[0] = DS1305_WRITE | DS1305_CONTROL;
733 buf[1] = ds1305->ctrl[0];
734 buf[2] = ds1305->ctrl[1];
735 buf[3] = ds1305->ctrl[2];
736 status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
737 if (status < 0) {
738 dev_dbg(&spi->dev, "can't %s, %d\n",
739 "write", status);
740 goto fail0;
741 }
742
743 dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n",
744 "write", ds1305->ctrl[0],
745 ds1305->ctrl[1], ds1305->ctrl[2]);
746 }
747
748 /* see if non-Linux software set up AM/PM mode */
749 addr = DS1305_HOUR;
750 status = spi_write_then_read(spi, &addr, sizeof addr,
751 &value, sizeof value);
752 if (status < 0) {
753 dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
754 goto fail0;
755 }
756
757 ds1305->hr12 = (DS1305_HR_12 & value) != 0;
758 if (ds1305->hr12)
759 dev_dbg(&spi->dev, "AM/PM\n");
760
761 /* register RTC ... from here on, ds1305->ctrl needs locking */
762 rtc = rtc_device_register("ds1305", &spi->dev,
763 &ds1305_ops, THIS_MODULE);
764 if (IS_ERR(rtc)) {
765 status = PTR_ERR(rtc);
766 dev_dbg(&spi->dev, "register rtc --> %d\n", status);
767 goto fail0;
768 }
769 ds1305->rtc = rtc;
770
771 /* Maybe set up alarm IRQ; be ready to handle it triggering right
772 * away. NOTE that we don't share this. The signal is active low,
773 * and we can't ack it before a SPI message delay. We temporarily
774 * disable the IRQ until it's acked, which lets us work with more
775 * IRQ trigger modes (not all IRQ controllers can do falling edge).
776 */
777 if (spi->irq) {
778 INIT_WORK(&ds1305->work, ds1305_work);
779 status = request_irq(spi->irq, ds1305_irq,
780 0, dev_name(&rtc->dev), ds1305);
781 if (status < 0) {
782 dev_dbg(&spi->dev, "request_irq %d --> %d\n",
783 spi->irq, status);
784 goto fail1;
785 }
786 }
787
788 /* export NVRAM */
789 status = sysfs_create_bin_file(&spi->dev.kobj, &nvram);
790 if (status < 0) {
791 dev_dbg(&spi->dev, "register nvram --> %d\n", status);
792 goto fail2;
793 }
794
795 return 0;
796
797fail2:
798 free_irq(spi->irq, ds1305);
799fail1:
800 rtc_device_unregister(rtc);
801fail0:
802 kfree(ds1305);
803 return status;
804}
805
806static int __devexit ds1305_remove(struct spi_device *spi)
807{
808 struct ds1305 *ds1305 = spi_get_drvdata(spi);
809
810 sysfs_remove_bin_file(&spi->dev.kobj, &nvram);
811
812 /* carefully shut down irq and workqueue, if present */
813 if (spi->irq) {
814 set_bit(FLAG_EXITING, &ds1305->flags);
815 free_irq(spi->irq, ds1305);
816 flush_scheduled_work();
817 }
818
819 rtc_device_unregister(ds1305->rtc);
820 spi_set_drvdata(spi, NULL);
821 kfree(ds1305);
822 return 0;
823}
824
825static struct spi_driver ds1305_driver = {
826 .driver.name = "rtc-ds1305",
827 .driver.owner = THIS_MODULE,
828 .probe = ds1305_probe,
829 .remove = __devexit_p(ds1305_remove),
830 /* REVISIT add suspend/resume */
831};
832
833static int __init ds1305_init(void)
834{
835 return spi_register_driver(&ds1305_driver);
836}
837module_init(ds1305_init);
838
839static void __exit ds1305_exit(void)
840{
841 spi_unregister_driver(&ds1305_driver);
842}
843module_exit(ds1305_exit);
844
845MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
846MODULE_LICENSE("GPL");