Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | #ifndef _LINUX_MMZONE_H |
2 | #define _LINUX_MMZONE_H | |
3 | ||
1da177e4 | 4 | #ifndef __ASSEMBLY__ |
97965478 | 5 | #ifndef __GENERATING_BOUNDS_H |
1da177e4 | 6 | |
1da177e4 LT |
7 | #include <linux/spinlock.h> |
8 | #include <linux/list.h> | |
9 | #include <linux/wait.h> | |
e815af95 | 10 | #include <linux/bitops.h> |
1da177e4 LT |
11 | #include <linux/cache.h> |
12 | #include <linux/threads.h> | |
13 | #include <linux/numa.h> | |
14 | #include <linux/init.h> | |
bdc8cb98 | 15 | #include <linux/seqlock.h> |
8357f869 | 16 | #include <linux/nodemask.h> |
835c134e | 17 | #include <linux/pageblock-flags.h> |
97965478 | 18 | #include <linux/bounds.h> |
1da177e4 | 19 | #include <asm/atomic.h> |
93ff66bf | 20 | #include <asm/page.h> |
1da177e4 LT |
21 | |
22 | /* Free memory management - zoned buddy allocator. */ | |
23 | #ifndef CONFIG_FORCE_MAX_ZONEORDER | |
24 | #define MAX_ORDER 11 | |
25 | #else | |
26 | #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER | |
27 | #endif | |
e984bb43 | 28 | #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) |
1da177e4 | 29 | |
5ad333eb AW |
30 | /* |
31 | * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed | |
32 | * costly to service. That is between allocation orders which should | |
33 | * coelesce naturally under reasonable reclaim pressure and those which | |
34 | * will not. | |
35 | */ | |
36 | #define PAGE_ALLOC_COSTLY_ORDER 3 | |
37 | ||
b2a0ac88 | 38 | #define MIGRATE_UNMOVABLE 0 |
e12ba74d MG |
39 | #define MIGRATE_RECLAIMABLE 1 |
40 | #define MIGRATE_MOVABLE 2 | |
64c5e135 | 41 | #define MIGRATE_RESERVE 3 |
a5d76b54 KH |
42 | #define MIGRATE_ISOLATE 4 /* can't allocate from here */ |
43 | #define MIGRATE_TYPES 5 | |
b2a0ac88 MG |
44 | |
45 | #define for_each_migratetype_order(order, type) \ | |
46 | for (order = 0; order < MAX_ORDER; order++) \ | |
47 | for (type = 0; type < MIGRATE_TYPES; type++) | |
48 | ||
467c996c MG |
49 | extern int page_group_by_mobility_disabled; |
50 | ||
51 | static inline int get_pageblock_migratetype(struct page *page) | |
52 | { | |
53 | if (unlikely(page_group_by_mobility_disabled)) | |
54 | return MIGRATE_UNMOVABLE; | |
55 | ||
56 | return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); | |
57 | } | |
58 | ||
1da177e4 | 59 | struct free_area { |
b2a0ac88 | 60 | struct list_head free_list[MIGRATE_TYPES]; |
1da177e4 LT |
61 | unsigned long nr_free; |
62 | }; | |
63 | ||
64 | struct pglist_data; | |
65 | ||
66 | /* | |
67 | * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. | |
68 | * So add a wild amount of padding here to ensure that they fall into separate | |
69 | * cachelines. There are very few zone structures in the machine, so space | |
70 | * consumption is not a concern here. | |
71 | */ | |
72 | #if defined(CONFIG_SMP) | |
73 | struct zone_padding { | |
74 | char x[0]; | |
22fc6ecc | 75 | } ____cacheline_internodealigned_in_smp; |
1da177e4 LT |
76 | #define ZONE_PADDING(name) struct zone_padding name; |
77 | #else | |
78 | #define ZONE_PADDING(name) | |
79 | #endif | |
80 | ||
2244b95a | 81 | enum zone_stat_item { |
51ed4491 | 82 | /* First 128 byte cacheline (assuming 64 bit words) */ |
d23ad423 | 83 | NR_FREE_PAGES, |
c8785385 CL |
84 | NR_INACTIVE, |
85 | NR_ACTIVE, | |
f3dbd344 CL |
86 | NR_ANON_PAGES, /* Mapped anonymous pages */ |
87 | NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. | |
65ba55f5 | 88 | only modified from process context */ |
347ce434 | 89 | NR_FILE_PAGES, |
b1e7a8fd | 90 | NR_FILE_DIRTY, |
ce866b34 | 91 | NR_WRITEBACK, |
51ed4491 CL |
92 | /* Second 128 byte cacheline */ |
93 | NR_SLAB_RECLAIMABLE, | |
94 | NR_SLAB_UNRECLAIMABLE, | |
95 | NR_PAGETABLE, /* used for pagetables */ | |
fd39fc85 | 96 | NR_UNSTABLE_NFS, /* NFS unstable pages */ |
d2c5e30c | 97 | NR_BOUNCE, |
e129b5c2 | 98 | NR_VMSCAN_WRITE, |
fc3ba692 | 99 | NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ |
ca889e6c CL |
100 | #ifdef CONFIG_NUMA |
101 | NUMA_HIT, /* allocated in intended node */ | |
102 | NUMA_MISS, /* allocated in non intended node */ | |
103 | NUMA_FOREIGN, /* was intended here, hit elsewhere */ | |
104 | NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ | |
105 | NUMA_LOCAL, /* allocation from local node */ | |
106 | NUMA_OTHER, /* allocation from other node */ | |
107 | #endif | |
2244b95a CL |
108 | NR_VM_ZONE_STAT_ITEMS }; |
109 | ||
1da177e4 LT |
110 | struct per_cpu_pages { |
111 | int count; /* number of pages in the list */ | |
1da177e4 LT |
112 | int high; /* high watermark, emptying needed */ |
113 | int batch; /* chunk size for buddy add/remove */ | |
114 | struct list_head list; /* the list of pages */ | |
115 | }; | |
116 | ||
117 | struct per_cpu_pageset { | |
3dfa5721 | 118 | struct per_cpu_pages pcp; |
4037d452 CL |
119 | #ifdef CONFIG_NUMA |
120 | s8 expire; | |
121 | #endif | |
2244b95a | 122 | #ifdef CONFIG_SMP |
df9ecaba | 123 | s8 stat_threshold; |
2244b95a CL |
124 | s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; |
125 | #endif | |
1da177e4 LT |
126 | } ____cacheline_aligned_in_smp; |
127 | ||
e7c8d5c9 CL |
128 | #ifdef CONFIG_NUMA |
129 | #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) | |
130 | #else | |
131 | #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) | |
132 | #endif | |
133 | ||
97965478 CL |
134 | #endif /* !__GENERATING_BOUNDS.H */ |
135 | ||
2f1b6248 | 136 | enum zone_type { |
4b51d669 | 137 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 CL |
138 | /* |
139 | * ZONE_DMA is used when there are devices that are not able | |
140 | * to do DMA to all of addressable memory (ZONE_NORMAL). Then we | |
141 | * carve out the portion of memory that is needed for these devices. | |
142 | * The range is arch specific. | |
143 | * | |
144 | * Some examples | |
145 | * | |
146 | * Architecture Limit | |
147 | * --------------------------- | |
148 | * parisc, ia64, sparc <4G | |
149 | * s390 <2G | |
2f1b6248 CL |
150 | * arm Various |
151 | * alpha Unlimited or 0-16MB. | |
152 | * | |
153 | * i386, x86_64 and multiple other arches | |
154 | * <16M. | |
155 | */ | |
156 | ZONE_DMA, | |
4b51d669 | 157 | #endif |
fb0e7942 | 158 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 CL |
159 | /* |
160 | * x86_64 needs two ZONE_DMAs because it supports devices that are | |
161 | * only able to do DMA to the lower 16M but also 32 bit devices that | |
162 | * can only do DMA areas below 4G. | |
163 | */ | |
164 | ZONE_DMA32, | |
fb0e7942 | 165 | #endif |
2f1b6248 CL |
166 | /* |
167 | * Normal addressable memory is in ZONE_NORMAL. DMA operations can be | |
168 | * performed on pages in ZONE_NORMAL if the DMA devices support | |
169 | * transfers to all addressable memory. | |
170 | */ | |
171 | ZONE_NORMAL, | |
e53ef38d | 172 | #ifdef CONFIG_HIGHMEM |
2f1b6248 CL |
173 | /* |
174 | * A memory area that is only addressable by the kernel through | |
175 | * mapping portions into its own address space. This is for example | |
176 | * used by i386 to allow the kernel to address the memory beyond | |
177 | * 900MB. The kernel will set up special mappings (page | |
178 | * table entries on i386) for each page that the kernel needs to | |
179 | * access. | |
180 | */ | |
181 | ZONE_HIGHMEM, | |
e53ef38d | 182 | #endif |
2a1e274a | 183 | ZONE_MOVABLE, |
97965478 | 184 | __MAX_NR_ZONES |
2f1b6248 | 185 | }; |
1da177e4 | 186 | |
97965478 CL |
187 | #ifndef __GENERATING_BOUNDS_H |
188 | ||
1da177e4 LT |
189 | /* |
190 | * When a memory allocation must conform to specific limitations (such | |
191 | * as being suitable for DMA) the caller will pass in hints to the | |
192 | * allocator in the gfp_mask, in the zone modifier bits. These bits | |
193 | * are used to select a priority ordered list of memory zones which | |
19655d34 | 194 | * match the requested limits. See gfp_zone() in include/linux/gfp.h |
1da177e4 | 195 | */ |
fb0e7942 | 196 | |
97965478 | 197 | #if MAX_NR_ZONES < 2 |
4b51d669 | 198 | #define ZONES_SHIFT 0 |
97965478 | 199 | #elif MAX_NR_ZONES <= 2 |
19655d34 | 200 | #define ZONES_SHIFT 1 |
97965478 | 201 | #elif MAX_NR_ZONES <= 4 |
19655d34 | 202 | #define ZONES_SHIFT 2 |
4b51d669 CL |
203 | #else |
204 | #error ZONES_SHIFT -- too many zones configured adjust calculation | |
fb0e7942 | 205 | #endif |
1da177e4 | 206 | |
1da177e4 LT |
207 | struct zone { |
208 | /* Fields commonly accessed by the page allocator */ | |
1da177e4 LT |
209 | unsigned long pages_min, pages_low, pages_high; |
210 | /* | |
211 | * We don't know if the memory that we're going to allocate will be freeable | |
212 | * or/and it will be released eventually, so to avoid totally wasting several | |
213 | * GB of ram we must reserve some of the lower zone memory (otherwise we risk | |
214 | * to run OOM on the lower zones despite there's tons of freeable ram | |
215 | * on the higher zones). This array is recalculated at runtime if the | |
216 | * sysctl_lowmem_reserve_ratio sysctl changes. | |
217 | */ | |
218 | unsigned long lowmem_reserve[MAX_NR_ZONES]; | |
219 | ||
e7c8d5c9 | 220 | #ifdef CONFIG_NUMA |
d5f541ed | 221 | int node; |
9614634f CL |
222 | /* |
223 | * zone reclaim becomes active if more unmapped pages exist. | |
224 | */ | |
8417bba4 | 225 | unsigned long min_unmapped_pages; |
0ff38490 | 226 | unsigned long min_slab_pages; |
e7c8d5c9 CL |
227 | struct per_cpu_pageset *pageset[NR_CPUS]; |
228 | #else | |
1da177e4 | 229 | struct per_cpu_pageset pageset[NR_CPUS]; |
e7c8d5c9 | 230 | #endif |
1da177e4 LT |
231 | /* |
232 | * free areas of different sizes | |
233 | */ | |
234 | spinlock_t lock; | |
bdc8cb98 DH |
235 | #ifdef CONFIG_MEMORY_HOTPLUG |
236 | /* see spanned/present_pages for more description */ | |
237 | seqlock_t span_seqlock; | |
238 | #endif | |
1da177e4 LT |
239 | struct free_area free_area[MAX_ORDER]; |
240 | ||
835c134e MG |
241 | #ifndef CONFIG_SPARSEMEM |
242 | /* | |
d9c23400 | 243 | * Flags for a pageblock_nr_pages block. See pageblock-flags.h. |
835c134e MG |
244 | * In SPARSEMEM, this map is stored in struct mem_section |
245 | */ | |
246 | unsigned long *pageblock_flags; | |
247 | #endif /* CONFIG_SPARSEMEM */ | |
248 | ||
1da177e4 LT |
249 | |
250 | ZONE_PADDING(_pad1_) | |
251 | ||
252 | /* Fields commonly accessed by the page reclaim scanner */ | |
253 | spinlock_t lru_lock; | |
254 | struct list_head active_list; | |
255 | struct list_head inactive_list; | |
256 | unsigned long nr_scan_active; | |
257 | unsigned long nr_scan_inactive; | |
1da177e4 | 258 | unsigned long pages_scanned; /* since last reclaim */ |
e815af95 | 259 | unsigned long flags; /* zone flags, see below */ |
753ee728 | 260 | |
2244b95a CL |
261 | /* Zone statistics */ |
262 | atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; | |
9eeff239 | 263 | |
1da177e4 LT |
264 | /* |
265 | * prev_priority holds the scanning priority for this zone. It is | |
266 | * defined as the scanning priority at which we achieved our reclaim | |
267 | * target at the previous try_to_free_pages() or balance_pgdat() | |
268 | * invokation. | |
269 | * | |
270 | * We use prev_priority as a measure of how much stress page reclaim is | |
271 | * under - it drives the swappiness decision: whether to unmap mapped | |
272 | * pages. | |
273 | * | |
3bb1a852 | 274 | * Access to both this field is quite racy even on uniprocessor. But |
1da177e4 LT |
275 | * it is expected to average out OK. |
276 | */ | |
1da177e4 LT |
277 | int prev_priority; |
278 | ||
279 | ||
280 | ZONE_PADDING(_pad2_) | |
281 | /* Rarely used or read-mostly fields */ | |
282 | ||
283 | /* | |
284 | * wait_table -- the array holding the hash table | |
02b694de | 285 | * wait_table_hash_nr_entries -- the size of the hash table array |
1da177e4 LT |
286 | * wait_table_bits -- wait_table_size == (1 << wait_table_bits) |
287 | * | |
288 | * The purpose of all these is to keep track of the people | |
289 | * waiting for a page to become available and make them | |
290 | * runnable again when possible. The trouble is that this | |
291 | * consumes a lot of space, especially when so few things | |
292 | * wait on pages at a given time. So instead of using | |
293 | * per-page waitqueues, we use a waitqueue hash table. | |
294 | * | |
295 | * The bucket discipline is to sleep on the same queue when | |
296 | * colliding and wake all in that wait queue when removing. | |
297 | * When something wakes, it must check to be sure its page is | |
298 | * truly available, a la thundering herd. The cost of a | |
299 | * collision is great, but given the expected load of the | |
300 | * table, they should be so rare as to be outweighed by the | |
301 | * benefits from the saved space. | |
302 | * | |
303 | * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the | |
304 | * primary users of these fields, and in mm/page_alloc.c | |
305 | * free_area_init_core() performs the initialization of them. | |
306 | */ | |
307 | wait_queue_head_t * wait_table; | |
02b694de | 308 | unsigned long wait_table_hash_nr_entries; |
1da177e4 LT |
309 | unsigned long wait_table_bits; |
310 | ||
311 | /* | |
312 | * Discontig memory support fields. | |
313 | */ | |
314 | struct pglist_data *zone_pgdat; | |
1da177e4 LT |
315 | /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ |
316 | unsigned long zone_start_pfn; | |
317 | ||
bdc8cb98 DH |
318 | /* |
319 | * zone_start_pfn, spanned_pages and present_pages are all | |
320 | * protected by span_seqlock. It is a seqlock because it has | |
321 | * to be read outside of zone->lock, and it is done in the main | |
322 | * allocator path. But, it is written quite infrequently. | |
323 | * | |
324 | * The lock is declared along with zone->lock because it is | |
325 | * frequently read in proximity to zone->lock. It's good to | |
326 | * give them a chance of being in the same cacheline. | |
327 | */ | |
1da177e4 LT |
328 | unsigned long spanned_pages; /* total size, including holes */ |
329 | unsigned long present_pages; /* amount of memory (excluding holes) */ | |
330 | ||
331 | /* | |
332 | * rarely used fields: | |
333 | */ | |
15ad7cdc | 334 | const char *name; |
22fc6ecc | 335 | } ____cacheline_internodealigned_in_smp; |
1da177e4 | 336 | |
e815af95 DR |
337 | typedef enum { |
338 | ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */ | |
339 | ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ | |
098d7f12 | 340 | ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ |
e815af95 DR |
341 | } zone_flags_t; |
342 | ||
343 | static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) | |
344 | { | |
345 | set_bit(flag, &zone->flags); | |
346 | } | |
d773ed6b DR |
347 | |
348 | static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) | |
349 | { | |
350 | return test_and_set_bit(flag, &zone->flags); | |
351 | } | |
352 | ||
e815af95 DR |
353 | static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) |
354 | { | |
355 | clear_bit(flag, &zone->flags); | |
356 | } | |
357 | ||
358 | static inline int zone_is_all_unreclaimable(const struct zone *zone) | |
359 | { | |
360 | return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags); | |
361 | } | |
d773ed6b | 362 | |
e815af95 DR |
363 | static inline int zone_is_reclaim_locked(const struct zone *zone) |
364 | { | |
365 | return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); | |
366 | } | |
d773ed6b | 367 | |
098d7f12 DR |
368 | static inline int zone_is_oom_locked(const struct zone *zone) |
369 | { | |
370 | return test_bit(ZONE_OOM_LOCKED, &zone->flags); | |
371 | } | |
e815af95 | 372 | |
1da177e4 LT |
373 | /* |
374 | * The "priority" of VM scanning is how much of the queues we will scan in one | |
375 | * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the | |
376 | * queues ("queue_length >> 12") during an aging round. | |
377 | */ | |
378 | #define DEF_PRIORITY 12 | |
379 | ||
9276b1bc PJ |
380 | /* Maximum number of zones on a zonelist */ |
381 | #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) | |
382 | ||
383 | #ifdef CONFIG_NUMA | |
523b9458 CL |
384 | |
385 | /* | |
386 | * The NUMA zonelists are doubled becausse we need zonelists that restrict the | |
387 | * allocations to a single node for GFP_THISNODE. | |
388 | * | |
54a6eb5c MG |
389 | * [0] : Zonelist with fallback |
390 | * [1] : No fallback (GFP_THISNODE) | |
523b9458 | 391 | */ |
54a6eb5c | 392 | #define MAX_ZONELISTS 2 |
523b9458 CL |
393 | |
394 | ||
9276b1bc PJ |
395 | /* |
396 | * We cache key information from each zonelist for smaller cache | |
397 | * footprint when scanning for free pages in get_page_from_freelist(). | |
398 | * | |
399 | * 1) The BITMAP fullzones tracks which zones in a zonelist have come | |
400 | * up short of free memory since the last time (last_fullzone_zap) | |
401 | * we zero'd fullzones. | |
402 | * 2) The array z_to_n[] maps each zone in the zonelist to its node | |
403 | * id, so that we can efficiently evaluate whether that node is | |
404 | * set in the current tasks mems_allowed. | |
405 | * | |
406 | * Both fullzones and z_to_n[] are one-to-one with the zonelist, | |
407 | * indexed by a zones offset in the zonelist zones[] array. | |
408 | * | |
409 | * The get_page_from_freelist() routine does two scans. During the | |
410 | * first scan, we skip zones whose corresponding bit in 'fullzones' | |
411 | * is set or whose corresponding node in current->mems_allowed (which | |
412 | * comes from cpusets) is not set. During the second scan, we bypass | |
413 | * this zonelist_cache, to ensure we look methodically at each zone. | |
414 | * | |
415 | * Once per second, we zero out (zap) fullzones, forcing us to | |
416 | * reconsider nodes that might have regained more free memory. | |
417 | * The field last_full_zap is the time we last zapped fullzones. | |
418 | * | |
419 | * This mechanism reduces the amount of time we waste repeatedly | |
420 | * reexaming zones for free memory when they just came up low on | |
421 | * memory momentarilly ago. | |
422 | * | |
423 | * The zonelist_cache struct members logically belong in struct | |
424 | * zonelist. However, the mempolicy zonelists constructed for | |
425 | * MPOL_BIND are intentionally variable length (and usually much | |
426 | * shorter). A general purpose mechanism for handling structs with | |
427 | * multiple variable length members is more mechanism than we want | |
428 | * here. We resort to some special case hackery instead. | |
429 | * | |
430 | * The MPOL_BIND zonelists don't need this zonelist_cache (in good | |
431 | * part because they are shorter), so we put the fixed length stuff | |
432 | * at the front of the zonelist struct, ending in a variable length | |
433 | * zones[], as is needed by MPOL_BIND. | |
434 | * | |
435 | * Then we put the optional zonelist cache on the end of the zonelist | |
436 | * struct. This optional stuff is found by a 'zlcache_ptr' pointer in | |
437 | * the fixed length portion at the front of the struct. This pointer | |
438 | * both enables us to find the zonelist cache, and in the case of | |
439 | * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) | |
440 | * to know that the zonelist cache is not there. | |
441 | * | |
442 | * The end result is that struct zonelists come in two flavors: | |
443 | * 1) The full, fixed length version, shown below, and | |
444 | * 2) The custom zonelists for MPOL_BIND. | |
445 | * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. | |
446 | * | |
447 | * Even though there may be multiple CPU cores on a node modifying | |
448 | * fullzones or last_full_zap in the same zonelist_cache at the same | |
449 | * time, we don't lock it. This is just hint data - if it is wrong now | |
450 | * and then, the allocator will still function, perhaps a bit slower. | |
451 | */ | |
452 | ||
453 | ||
454 | struct zonelist_cache { | |
9276b1bc | 455 | unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ |
7253f4ef | 456 | DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ |
9276b1bc PJ |
457 | unsigned long last_full_zap; /* when last zap'd (jiffies) */ |
458 | }; | |
459 | #else | |
54a6eb5c | 460 | #define MAX_ZONELISTS 1 |
9276b1bc PJ |
461 | struct zonelist_cache; |
462 | #endif | |
463 | ||
dd1a239f MG |
464 | /* |
465 | * This struct contains information about a zone in a zonelist. It is stored | |
466 | * here to avoid dereferences into large structures and lookups of tables | |
467 | */ | |
468 | struct zoneref { | |
469 | struct zone *zone; /* Pointer to actual zone */ | |
470 | int zone_idx; /* zone_idx(zoneref->zone) */ | |
471 | }; | |
472 | ||
1da177e4 LT |
473 | /* |
474 | * One allocation request operates on a zonelist. A zonelist | |
475 | * is a list of zones, the first one is the 'goal' of the | |
476 | * allocation, the other zones are fallback zones, in decreasing | |
477 | * priority. | |
478 | * | |
9276b1bc PJ |
479 | * If zlcache_ptr is not NULL, then it is just the address of zlcache, |
480 | * as explained above. If zlcache_ptr is NULL, there is no zlcache. | |
dd1a239f MG |
481 | * * |
482 | * To speed the reading of the zonelist, the zonerefs contain the zone index | |
483 | * of the entry being read. Helper functions to access information given | |
484 | * a struct zoneref are | |
485 | * | |
486 | * zonelist_zone() - Return the struct zone * for an entry in _zonerefs | |
487 | * zonelist_zone_idx() - Return the index of the zone for an entry | |
488 | * zonelist_node_idx() - Return the index of the node for an entry | |
1da177e4 LT |
489 | */ |
490 | struct zonelist { | |
9276b1bc | 491 | struct zonelist_cache *zlcache_ptr; // NULL or &zlcache |
dd1a239f | 492 | struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; |
9276b1bc PJ |
493 | #ifdef CONFIG_NUMA |
494 | struct zonelist_cache zlcache; // optional ... | |
495 | #endif | |
1da177e4 LT |
496 | }; |
497 | ||
c713216d MG |
498 | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP |
499 | struct node_active_region { | |
500 | unsigned long start_pfn; | |
501 | unsigned long end_pfn; | |
502 | int nid; | |
503 | }; | |
504 | #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ | |
1da177e4 | 505 | |
5b99cd0e HC |
506 | #ifndef CONFIG_DISCONTIGMEM |
507 | /* The array of struct pages - for discontigmem use pgdat->lmem_map */ | |
508 | extern struct page *mem_map; | |
509 | #endif | |
510 | ||
1da177e4 LT |
511 | /* |
512 | * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM | |
513 | * (mostly NUMA machines?) to denote a higher-level memory zone than the | |
514 | * zone denotes. | |
515 | * | |
516 | * On NUMA machines, each NUMA node would have a pg_data_t to describe | |
517 | * it's memory layout. | |
518 | * | |
519 | * Memory statistics and page replacement data structures are maintained on a | |
520 | * per-zone basis. | |
521 | */ | |
522 | struct bootmem_data; | |
523 | typedef struct pglist_data { | |
524 | struct zone node_zones[MAX_NR_ZONES]; | |
523b9458 | 525 | struct zonelist node_zonelists[MAX_ZONELISTS]; |
1da177e4 | 526 | int nr_zones; |
d41dee36 | 527 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
1da177e4 | 528 | struct page *node_mem_map; |
d41dee36 | 529 | #endif |
1da177e4 | 530 | struct bootmem_data *bdata; |
208d54e5 DH |
531 | #ifdef CONFIG_MEMORY_HOTPLUG |
532 | /* | |
533 | * Must be held any time you expect node_start_pfn, node_present_pages | |
534 | * or node_spanned_pages stay constant. Holding this will also | |
535 | * guarantee that any pfn_valid() stays that way. | |
536 | * | |
537 | * Nests above zone->lock and zone->size_seqlock. | |
538 | */ | |
539 | spinlock_t node_size_lock; | |
540 | #endif | |
1da177e4 LT |
541 | unsigned long node_start_pfn; |
542 | unsigned long node_present_pages; /* total number of physical pages */ | |
543 | unsigned long node_spanned_pages; /* total size of physical page | |
544 | range, including holes */ | |
545 | int node_id; | |
1da177e4 LT |
546 | wait_queue_head_t kswapd_wait; |
547 | struct task_struct *kswapd; | |
548 | int kswapd_max_order; | |
549 | } pg_data_t; | |
550 | ||
551 | #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) | |
552 | #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) | |
d41dee36 | 553 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
408fde81 | 554 | #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) |
d41dee36 AW |
555 | #else |
556 | #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) | |
557 | #endif | |
408fde81 | 558 | #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) |
1da177e4 | 559 | |
208d54e5 DH |
560 | #include <linux/memory_hotplug.h> |
561 | ||
1da177e4 LT |
562 | void get_zone_counts(unsigned long *active, unsigned long *inactive, |
563 | unsigned long *free); | |
564 | void build_all_zonelists(void); | |
565 | void wakeup_kswapd(struct zone *zone, int order); | |
566 | int zone_watermark_ok(struct zone *z, int order, unsigned long mark, | |
7fb1d9fc | 567 | int classzone_idx, int alloc_flags); |
a2f3aa02 DH |
568 | enum memmap_context { |
569 | MEMMAP_EARLY, | |
570 | MEMMAP_HOTPLUG, | |
571 | }; | |
718127cc | 572 | extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, |
a2f3aa02 DH |
573 | unsigned long size, |
574 | enum memmap_context context); | |
718127cc | 575 | |
1da177e4 LT |
576 | #ifdef CONFIG_HAVE_MEMORY_PRESENT |
577 | void memory_present(int nid, unsigned long start, unsigned long end); | |
578 | #else | |
579 | static inline void memory_present(int nid, unsigned long start, unsigned long end) {} | |
580 | #endif | |
581 | ||
582 | #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE | |
583 | unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); | |
584 | #endif | |
585 | ||
586 | /* | |
587 | * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. | |
588 | */ | |
589 | #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) | |
590 | ||
f3fe6512 CK |
591 | static inline int populated_zone(struct zone *zone) |
592 | { | |
593 | return (!!zone->present_pages); | |
594 | } | |
595 | ||
2a1e274a MG |
596 | extern int movable_zone; |
597 | ||
598 | static inline int zone_movable_is_highmem(void) | |
599 | { | |
600 | #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) | |
601 | return movable_zone == ZONE_HIGHMEM; | |
602 | #else | |
603 | return 0; | |
604 | #endif | |
605 | } | |
606 | ||
2f1b6248 | 607 | static inline int is_highmem_idx(enum zone_type idx) |
1da177e4 | 608 | { |
e53ef38d | 609 | #ifdef CONFIG_HIGHMEM |
2a1e274a MG |
610 | return (idx == ZONE_HIGHMEM || |
611 | (idx == ZONE_MOVABLE && zone_movable_is_highmem())); | |
e53ef38d CL |
612 | #else |
613 | return 0; | |
614 | #endif | |
1da177e4 LT |
615 | } |
616 | ||
2f1b6248 | 617 | static inline int is_normal_idx(enum zone_type idx) |
1da177e4 LT |
618 | { |
619 | return (idx == ZONE_NORMAL); | |
620 | } | |
9328b8fa | 621 | |
1da177e4 LT |
622 | /** |
623 | * is_highmem - helper function to quickly check if a struct zone is a | |
624 | * highmem zone or not. This is an attempt to keep references | |
625 | * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. | |
626 | * @zone - pointer to struct zone variable | |
627 | */ | |
628 | static inline int is_highmem(struct zone *zone) | |
629 | { | |
e53ef38d | 630 | #ifdef CONFIG_HIGHMEM |
ddc81ed2 HH |
631 | int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; |
632 | return zone_off == ZONE_HIGHMEM * sizeof(*zone) || | |
633 | (zone_off == ZONE_MOVABLE * sizeof(*zone) && | |
634 | zone_movable_is_highmem()); | |
e53ef38d CL |
635 | #else |
636 | return 0; | |
637 | #endif | |
1da177e4 LT |
638 | } |
639 | ||
640 | static inline int is_normal(struct zone *zone) | |
641 | { | |
642 | return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; | |
643 | } | |
644 | ||
9328b8fa NP |
645 | static inline int is_dma32(struct zone *zone) |
646 | { | |
fb0e7942 | 647 | #ifdef CONFIG_ZONE_DMA32 |
9328b8fa | 648 | return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; |
fb0e7942 CL |
649 | #else |
650 | return 0; | |
651 | #endif | |
9328b8fa NP |
652 | } |
653 | ||
654 | static inline int is_dma(struct zone *zone) | |
655 | { | |
4b51d669 | 656 | #ifdef CONFIG_ZONE_DMA |
9328b8fa | 657 | return zone == zone->zone_pgdat->node_zones + ZONE_DMA; |
4b51d669 CL |
658 | #else |
659 | return 0; | |
660 | #endif | |
9328b8fa NP |
661 | } |
662 | ||
1da177e4 LT |
663 | /* These two functions are used to setup the per zone pages min values */ |
664 | struct ctl_table; | |
665 | struct file; | |
666 | int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, | |
667 | void __user *, size_t *, loff_t *); | |
668 | extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; | |
669 | int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, | |
670 | void __user *, size_t *, loff_t *); | |
8ad4b1fb RS |
671 | int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *, |
672 | void __user *, size_t *, loff_t *); | |
9614634f CL |
673 | int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, |
674 | struct file *, void __user *, size_t *, loff_t *); | |
0ff38490 CL |
675 | int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, |
676 | struct file *, void __user *, size_t *, loff_t *); | |
1da177e4 | 677 | |
f0c0b2b8 KH |
678 | extern int numa_zonelist_order_handler(struct ctl_table *, int, |
679 | struct file *, void __user *, size_t *, loff_t *); | |
680 | extern char numa_zonelist_order[]; | |
681 | #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ | |
682 | ||
1da177e4 LT |
683 | #include <linux/topology.h> |
684 | /* Returns the number of the current Node. */ | |
69d81fcd | 685 | #ifndef numa_node_id |
39c715b7 | 686 | #define numa_node_id() (cpu_to_node(raw_smp_processor_id())) |
69d81fcd | 687 | #endif |
1da177e4 | 688 | |
93b7504e | 689 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
690 | |
691 | extern struct pglist_data contig_page_data; | |
692 | #define NODE_DATA(nid) (&contig_page_data) | |
693 | #define NODE_MEM_MAP(nid) mem_map | |
1da177e4 | 694 | |
93b7504e | 695 | #else /* CONFIG_NEED_MULTIPLE_NODES */ |
1da177e4 LT |
696 | |
697 | #include <asm/mmzone.h> | |
698 | ||
93b7504e | 699 | #endif /* !CONFIG_NEED_MULTIPLE_NODES */ |
348f8b6c | 700 | |
95144c78 KH |
701 | extern struct pglist_data *first_online_pgdat(void); |
702 | extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); | |
703 | extern struct zone *next_zone(struct zone *zone); | |
8357f869 KH |
704 | |
705 | /** | |
706 | * for_each_pgdat - helper macro to iterate over all nodes | |
707 | * @pgdat - pointer to a pg_data_t variable | |
708 | */ | |
709 | #define for_each_online_pgdat(pgdat) \ | |
710 | for (pgdat = first_online_pgdat(); \ | |
711 | pgdat; \ | |
712 | pgdat = next_online_pgdat(pgdat)) | |
8357f869 KH |
713 | /** |
714 | * for_each_zone - helper macro to iterate over all memory zones | |
715 | * @zone - pointer to struct zone variable | |
716 | * | |
717 | * The user only needs to declare the zone variable, for_each_zone | |
718 | * fills it in. | |
719 | */ | |
720 | #define for_each_zone(zone) \ | |
721 | for (zone = (first_online_pgdat())->node_zones; \ | |
722 | zone; \ | |
723 | zone = next_zone(zone)) | |
724 | ||
dd1a239f MG |
725 | static inline struct zone *zonelist_zone(struct zoneref *zoneref) |
726 | { | |
727 | return zoneref->zone; | |
728 | } | |
729 | ||
730 | static inline int zonelist_zone_idx(struct zoneref *zoneref) | |
731 | { | |
732 | return zoneref->zone_idx; | |
733 | } | |
734 | ||
735 | static inline int zonelist_node_idx(struct zoneref *zoneref) | |
736 | { | |
737 | #ifdef CONFIG_NUMA | |
738 | /* zone_to_nid not available in this context */ | |
739 | return zoneref->zone->node; | |
740 | #else | |
741 | return 0; | |
742 | #endif /* CONFIG_NUMA */ | |
743 | } | |
744 | ||
19770b32 MG |
745 | /** |
746 | * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point | |
747 | * @z - The cursor used as a starting point for the search | |
748 | * @highest_zoneidx - The zone index of the highest zone to return | |
749 | * @nodes - An optional nodemask to filter the zonelist with | |
750 | * @zone - The first suitable zone found is returned via this parameter | |
751 | * | |
752 | * This function returns the next zone at or below a given zone index that is | |
753 | * within the allowed nodemask using a cursor as the starting point for the | |
754 | * search. The zoneref returned is a cursor that is used as the next starting | |
755 | * point for future calls to next_zones_zonelist(). | |
756 | */ | |
757 | struct zoneref *next_zones_zonelist(struct zoneref *z, | |
758 | enum zone_type highest_zoneidx, | |
759 | nodemask_t *nodes, | |
760 | struct zone **zone); | |
dd1a239f | 761 | |
19770b32 MG |
762 | /** |
763 | * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist | |
764 | * @zonelist - The zonelist to search for a suitable zone | |
765 | * @highest_zoneidx - The zone index of the highest zone to return | |
766 | * @nodes - An optional nodemask to filter the zonelist with | |
767 | * @zone - The first suitable zone found is returned via this parameter | |
768 | * | |
769 | * This function returns the first zone at or below a given zone index that is | |
770 | * within the allowed nodemask. The zoneref returned is a cursor that can be | |
771 | * used to iterate the zonelist with next_zones_zonelist. The cursor should | |
772 | * not be used by the caller as it does not match the value of the zone | |
773 | * returned. | |
774 | */ | |
dd1a239f | 775 | static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, |
19770b32 MG |
776 | enum zone_type highest_zoneidx, |
777 | nodemask_t *nodes, | |
778 | struct zone **zone) | |
54a6eb5c | 779 | { |
19770b32 MG |
780 | return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, |
781 | zone); | |
54a6eb5c MG |
782 | } |
783 | ||
19770b32 MG |
784 | /** |
785 | * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask | |
786 | * @zone - The current zone in the iterator | |
787 | * @z - The current pointer within zonelist->zones being iterated | |
788 | * @zlist - The zonelist being iterated | |
789 | * @highidx - The zone index of the highest zone to return | |
790 | * @nodemask - Nodemask allowed by the allocator | |
791 | * | |
792 | * This iterator iterates though all zones at or below a given zone index and | |
793 | * within a given nodemask | |
794 | */ | |
795 | #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ | |
796 | for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ | |
797 | zone; \ | |
798 | z = next_zones_zonelist(z, highidx, nodemask, &zone)) \ | |
54a6eb5c MG |
799 | |
800 | /** | |
801 | * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index | |
802 | * @zone - The current zone in the iterator | |
803 | * @z - The current pointer within zonelist->zones being iterated | |
804 | * @zlist - The zonelist being iterated | |
805 | * @highidx - The zone index of the highest zone to return | |
806 | * | |
807 | * This iterator iterates though all zones at or below a given zone index. | |
808 | */ | |
809 | #define for_each_zone_zonelist(zone, z, zlist, highidx) \ | |
19770b32 | 810 | for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) |
54a6eb5c | 811 | |
d41dee36 AW |
812 | #ifdef CONFIG_SPARSEMEM |
813 | #include <asm/sparsemem.h> | |
814 | #endif | |
815 | ||
c713216d MG |
816 | #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ |
817 | !defined(CONFIG_ARCH_POPULATES_NODE_MAP) | |
b4544568 AM |
818 | static inline unsigned long early_pfn_to_nid(unsigned long pfn) |
819 | { | |
820 | return 0; | |
821 | } | |
b159d43f AW |
822 | #endif |
823 | ||
2bdaf115 AW |
824 | #ifdef CONFIG_FLATMEM |
825 | #define pfn_to_nid(pfn) (0) | |
826 | #endif | |
827 | ||
d41dee36 AW |
828 | #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) |
829 | #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) | |
830 | ||
831 | #ifdef CONFIG_SPARSEMEM | |
832 | ||
833 | /* | |
834 | * SECTION_SHIFT #bits space required to store a section # | |
835 | * | |
836 | * PA_SECTION_SHIFT physical address to/from section number | |
837 | * PFN_SECTION_SHIFT pfn to/from section number | |
838 | */ | |
839 | #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) | |
840 | ||
841 | #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) | |
842 | #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) | |
843 | ||
844 | #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) | |
845 | ||
846 | #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) | |
847 | #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) | |
848 | ||
835c134e | 849 | #define SECTION_BLOCKFLAGS_BITS \ |
d9c23400 | 850 | ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) |
835c134e | 851 | |
d41dee36 AW |
852 | #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS |
853 | #error Allocator MAX_ORDER exceeds SECTION_SIZE | |
854 | #endif | |
855 | ||
856 | struct page; | |
857 | struct mem_section { | |
29751f69 AW |
858 | /* |
859 | * This is, logically, a pointer to an array of struct | |
860 | * pages. However, it is stored with some other magic. | |
861 | * (see sparse.c::sparse_init_one_section()) | |
862 | * | |
30c253e6 AW |
863 | * Additionally during early boot we encode node id of |
864 | * the location of the section here to guide allocation. | |
865 | * (see sparse.c::memory_present()) | |
866 | * | |
29751f69 AW |
867 | * Making it a UL at least makes someone do a cast |
868 | * before using it wrong. | |
869 | */ | |
870 | unsigned long section_mem_map; | |
5c0e3066 MG |
871 | |
872 | /* See declaration of similar field in struct zone */ | |
873 | unsigned long *pageblock_flags; | |
d41dee36 AW |
874 | }; |
875 | ||
3e347261 BP |
876 | #ifdef CONFIG_SPARSEMEM_EXTREME |
877 | #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) | |
878 | #else | |
879 | #define SECTIONS_PER_ROOT 1 | |
880 | #endif | |
802f192e | 881 | |
3e347261 BP |
882 | #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) |
883 | #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT) | |
884 | #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) | |
802f192e | 885 | |
3e347261 BP |
886 | #ifdef CONFIG_SPARSEMEM_EXTREME |
887 | extern struct mem_section *mem_section[NR_SECTION_ROOTS]; | |
802f192e | 888 | #else |
3e347261 BP |
889 | extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; |
890 | #endif | |
d41dee36 | 891 | |
29751f69 AW |
892 | static inline struct mem_section *__nr_to_section(unsigned long nr) |
893 | { | |
3e347261 BP |
894 | if (!mem_section[SECTION_NR_TO_ROOT(nr)]) |
895 | return NULL; | |
896 | return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; | |
29751f69 | 897 | } |
4ca644d9 | 898 | extern int __section_nr(struct mem_section* ms); |
04753278 | 899 | extern unsigned long usemap_size(void); |
29751f69 AW |
900 | |
901 | /* | |
902 | * We use the lower bits of the mem_map pointer to store | |
903 | * a little bit of information. There should be at least | |
904 | * 3 bits here due to 32-bit alignment. | |
905 | */ | |
906 | #define SECTION_MARKED_PRESENT (1UL<<0) | |
907 | #define SECTION_HAS_MEM_MAP (1UL<<1) | |
908 | #define SECTION_MAP_LAST_BIT (1UL<<2) | |
909 | #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) | |
30c253e6 | 910 | #define SECTION_NID_SHIFT 2 |
29751f69 AW |
911 | |
912 | static inline struct page *__section_mem_map_addr(struct mem_section *section) | |
913 | { | |
914 | unsigned long map = section->section_mem_map; | |
915 | map &= SECTION_MAP_MASK; | |
916 | return (struct page *)map; | |
917 | } | |
918 | ||
540557b9 | 919 | static inline int present_section(struct mem_section *section) |
29751f69 | 920 | { |
802f192e | 921 | return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); |
29751f69 AW |
922 | } |
923 | ||
540557b9 AW |
924 | static inline int present_section_nr(unsigned long nr) |
925 | { | |
926 | return present_section(__nr_to_section(nr)); | |
927 | } | |
928 | ||
929 | static inline int valid_section(struct mem_section *section) | |
29751f69 | 930 | { |
802f192e | 931 | return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); |
29751f69 AW |
932 | } |
933 | ||
934 | static inline int valid_section_nr(unsigned long nr) | |
935 | { | |
936 | return valid_section(__nr_to_section(nr)); | |
937 | } | |
938 | ||
d41dee36 AW |
939 | static inline struct mem_section *__pfn_to_section(unsigned long pfn) |
940 | { | |
29751f69 | 941 | return __nr_to_section(pfn_to_section_nr(pfn)); |
d41dee36 AW |
942 | } |
943 | ||
d41dee36 AW |
944 | static inline int pfn_valid(unsigned long pfn) |
945 | { | |
946 | if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) | |
947 | return 0; | |
29751f69 | 948 | return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); |
d41dee36 AW |
949 | } |
950 | ||
540557b9 AW |
951 | static inline int pfn_present(unsigned long pfn) |
952 | { | |
953 | if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) | |
954 | return 0; | |
955 | return present_section(__nr_to_section(pfn_to_section_nr(pfn))); | |
956 | } | |
957 | ||
d41dee36 AW |
958 | /* |
959 | * These are _only_ used during initialisation, therefore they | |
960 | * can use __initdata ... They could have names to indicate | |
961 | * this restriction. | |
962 | */ | |
963 | #ifdef CONFIG_NUMA | |
161599ff AW |
964 | #define pfn_to_nid(pfn) \ |
965 | ({ \ | |
966 | unsigned long __pfn_to_nid_pfn = (pfn); \ | |
967 | page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ | |
968 | }) | |
2bdaf115 AW |
969 | #else |
970 | #define pfn_to_nid(pfn) (0) | |
d41dee36 AW |
971 | #endif |
972 | ||
d41dee36 AW |
973 | #define early_pfn_valid(pfn) pfn_valid(pfn) |
974 | void sparse_init(void); | |
975 | #else | |
976 | #define sparse_init() do {} while (0) | |
28ae55c9 | 977 | #define sparse_index_init(_sec, _nid) do {} while (0) |
d41dee36 AW |
978 | #endif /* CONFIG_SPARSEMEM */ |
979 | ||
75167957 AW |
980 | #ifdef CONFIG_NODES_SPAN_OTHER_NODES |
981 | #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid)) | |
982 | #else | |
983 | #define early_pfn_in_nid(pfn, nid) (1) | |
984 | #endif | |
985 | ||
d41dee36 AW |
986 | #ifndef early_pfn_valid |
987 | #define early_pfn_valid(pfn) (1) | |
988 | #endif | |
989 | ||
990 | void memory_present(int nid, unsigned long start, unsigned long end); | |
991 | unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); | |
992 | ||
14e07298 AW |
993 | /* |
994 | * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we | |
995 | * need to check pfn validility within that MAX_ORDER_NR_PAGES block. | |
996 | * pfn_valid_within() should be used in this case; we optimise this away | |
997 | * when we have no holes within a MAX_ORDER_NR_PAGES block. | |
998 | */ | |
999 | #ifdef CONFIG_HOLES_IN_ZONE | |
1000 | #define pfn_valid_within(pfn) pfn_valid(pfn) | |
1001 | #else | |
1002 | #define pfn_valid_within(pfn) (1) | |
1003 | #endif | |
1004 | ||
97965478 | 1005 | #endif /* !__GENERATING_BOUNDS.H */ |
1da177e4 | 1006 | #endif /* !__ASSEMBLY__ */ |
1da177e4 | 1007 | #endif /* _LINUX_MMZONE_H */ |