Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6 into for-linus
[linux-2.6] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
97965478 18#include <linux/bounds.h>
1da177e4 19#include <asm/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
b2a0ac88 38#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
39#define MIGRATE_RECLAIMABLE 1
40#define MIGRATE_MOVABLE 2
64c5e135 41#define MIGRATE_RESERVE 3
a5d76b54
KH
42#define MIGRATE_ISOLATE 4 /* can't allocate from here */
43#define MIGRATE_TYPES 5
b2a0ac88
MG
44
45#define for_each_migratetype_order(order, type) \
46 for (order = 0; order < MAX_ORDER; order++) \
47 for (type = 0; type < MIGRATE_TYPES; type++)
48
467c996c
MG
49extern int page_group_by_mobility_disabled;
50
51static inline int get_pageblock_migratetype(struct page *page)
52{
53 if (unlikely(page_group_by_mobility_disabled))
54 return MIGRATE_UNMOVABLE;
55
56 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
57}
58
1da177e4 59struct free_area {
b2a0ac88 60 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
61 unsigned long nr_free;
62};
63
64struct pglist_data;
65
66/*
67 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
68 * So add a wild amount of padding here to ensure that they fall into separate
69 * cachelines. There are very few zone structures in the machine, so space
70 * consumption is not a concern here.
71 */
72#if defined(CONFIG_SMP)
73struct zone_padding {
74 char x[0];
22fc6ecc 75} ____cacheline_internodealigned_in_smp;
1da177e4
LT
76#define ZONE_PADDING(name) struct zone_padding name;
77#else
78#define ZONE_PADDING(name)
79#endif
80
2244b95a 81enum zone_stat_item {
51ed4491 82 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 83 NR_FREE_PAGES,
c8785385
CL
84 NR_INACTIVE,
85 NR_ACTIVE,
f3dbd344
CL
86 NR_ANON_PAGES, /* Mapped anonymous pages */
87 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 88 only modified from process context */
347ce434 89 NR_FILE_PAGES,
b1e7a8fd 90 NR_FILE_DIRTY,
ce866b34 91 NR_WRITEBACK,
51ed4491
CL
92 /* Second 128 byte cacheline */
93 NR_SLAB_RECLAIMABLE,
94 NR_SLAB_UNRECLAIMABLE,
95 NR_PAGETABLE, /* used for pagetables */
fd39fc85 96 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 97 NR_BOUNCE,
e129b5c2 98 NR_VMSCAN_WRITE,
fc3ba692 99 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
ca889e6c
CL
100#ifdef CONFIG_NUMA
101 NUMA_HIT, /* allocated in intended node */
102 NUMA_MISS, /* allocated in non intended node */
103 NUMA_FOREIGN, /* was intended here, hit elsewhere */
104 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
105 NUMA_LOCAL, /* allocation from local node */
106 NUMA_OTHER, /* allocation from other node */
107#endif
2244b95a
CL
108 NR_VM_ZONE_STAT_ITEMS };
109
1da177e4
LT
110struct per_cpu_pages {
111 int count; /* number of pages in the list */
1da177e4
LT
112 int high; /* high watermark, emptying needed */
113 int batch; /* chunk size for buddy add/remove */
114 struct list_head list; /* the list of pages */
115};
116
117struct per_cpu_pageset {
3dfa5721 118 struct per_cpu_pages pcp;
4037d452
CL
119#ifdef CONFIG_NUMA
120 s8 expire;
121#endif
2244b95a 122#ifdef CONFIG_SMP
df9ecaba 123 s8 stat_threshold;
2244b95a
CL
124 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
125#endif
1da177e4
LT
126} ____cacheline_aligned_in_smp;
127
e7c8d5c9
CL
128#ifdef CONFIG_NUMA
129#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
130#else
131#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
132#endif
133
97965478
CL
134#endif /* !__GENERATING_BOUNDS.H */
135
2f1b6248 136enum zone_type {
4b51d669 137#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
138 /*
139 * ZONE_DMA is used when there are devices that are not able
140 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
141 * carve out the portion of memory that is needed for these devices.
142 * The range is arch specific.
143 *
144 * Some examples
145 *
146 * Architecture Limit
147 * ---------------------------
148 * parisc, ia64, sparc <4G
149 * s390 <2G
2f1b6248
CL
150 * arm Various
151 * alpha Unlimited or 0-16MB.
152 *
153 * i386, x86_64 and multiple other arches
154 * <16M.
155 */
156 ZONE_DMA,
4b51d669 157#endif
fb0e7942 158#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
159 /*
160 * x86_64 needs two ZONE_DMAs because it supports devices that are
161 * only able to do DMA to the lower 16M but also 32 bit devices that
162 * can only do DMA areas below 4G.
163 */
164 ZONE_DMA32,
fb0e7942 165#endif
2f1b6248
CL
166 /*
167 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
168 * performed on pages in ZONE_NORMAL if the DMA devices support
169 * transfers to all addressable memory.
170 */
171 ZONE_NORMAL,
e53ef38d 172#ifdef CONFIG_HIGHMEM
2f1b6248
CL
173 /*
174 * A memory area that is only addressable by the kernel through
175 * mapping portions into its own address space. This is for example
176 * used by i386 to allow the kernel to address the memory beyond
177 * 900MB. The kernel will set up special mappings (page
178 * table entries on i386) for each page that the kernel needs to
179 * access.
180 */
181 ZONE_HIGHMEM,
e53ef38d 182#endif
2a1e274a 183 ZONE_MOVABLE,
97965478 184 __MAX_NR_ZONES
2f1b6248 185};
1da177e4 186
97965478
CL
187#ifndef __GENERATING_BOUNDS_H
188
1da177e4
LT
189/*
190 * When a memory allocation must conform to specific limitations (such
191 * as being suitable for DMA) the caller will pass in hints to the
192 * allocator in the gfp_mask, in the zone modifier bits. These bits
193 * are used to select a priority ordered list of memory zones which
19655d34 194 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 195 */
fb0e7942 196
97965478 197#if MAX_NR_ZONES < 2
4b51d669 198#define ZONES_SHIFT 0
97965478 199#elif MAX_NR_ZONES <= 2
19655d34 200#define ZONES_SHIFT 1
97965478 201#elif MAX_NR_ZONES <= 4
19655d34 202#define ZONES_SHIFT 2
4b51d669
CL
203#else
204#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 205#endif
1da177e4 206
1da177e4
LT
207struct zone {
208 /* Fields commonly accessed by the page allocator */
1da177e4
LT
209 unsigned long pages_min, pages_low, pages_high;
210 /*
211 * We don't know if the memory that we're going to allocate will be freeable
212 * or/and it will be released eventually, so to avoid totally wasting several
213 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
214 * to run OOM on the lower zones despite there's tons of freeable ram
215 * on the higher zones). This array is recalculated at runtime if the
216 * sysctl_lowmem_reserve_ratio sysctl changes.
217 */
218 unsigned long lowmem_reserve[MAX_NR_ZONES];
219
e7c8d5c9 220#ifdef CONFIG_NUMA
d5f541ed 221 int node;
9614634f
CL
222 /*
223 * zone reclaim becomes active if more unmapped pages exist.
224 */
8417bba4 225 unsigned long min_unmapped_pages;
0ff38490 226 unsigned long min_slab_pages;
e7c8d5c9
CL
227 struct per_cpu_pageset *pageset[NR_CPUS];
228#else
1da177e4 229 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 230#endif
1da177e4
LT
231 /*
232 * free areas of different sizes
233 */
234 spinlock_t lock;
bdc8cb98
DH
235#ifdef CONFIG_MEMORY_HOTPLUG
236 /* see spanned/present_pages for more description */
237 seqlock_t span_seqlock;
238#endif
1da177e4
LT
239 struct free_area free_area[MAX_ORDER];
240
835c134e
MG
241#ifndef CONFIG_SPARSEMEM
242 /*
d9c23400 243 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
244 * In SPARSEMEM, this map is stored in struct mem_section
245 */
246 unsigned long *pageblock_flags;
247#endif /* CONFIG_SPARSEMEM */
248
1da177e4
LT
249
250 ZONE_PADDING(_pad1_)
251
252 /* Fields commonly accessed by the page reclaim scanner */
253 spinlock_t lru_lock;
254 struct list_head active_list;
255 struct list_head inactive_list;
256 unsigned long nr_scan_active;
257 unsigned long nr_scan_inactive;
1da177e4 258 unsigned long pages_scanned; /* since last reclaim */
e815af95 259 unsigned long flags; /* zone flags, see below */
753ee728 260
2244b95a
CL
261 /* Zone statistics */
262 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 263
1da177e4
LT
264 /*
265 * prev_priority holds the scanning priority for this zone. It is
266 * defined as the scanning priority at which we achieved our reclaim
267 * target at the previous try_to_free_pages() or balance_pgdat()
268 * invokation.
269 *
270 * We use prev_priority as a measure of how much stress page reclaim is
271 * under - it drives the swappiness decision: whether to unmap mapped
272 * pages.
273 *
3bb1a852 274 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
275 * it is expected to average out OK.
276 */
1da177e4
LT
277 int prev_priority;
278
279
280 ZONE_PADDING(_pad2_)
281 /* Rarely used or read-mostly fields */
282
283 /*
284 * wait_table -- the array holding the hash table
02b694de 285 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
286 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
287 *
288 * The purpose of all these is to keep track of the people
289 * waiting for a page to become available and make them
290 * runnable again when possible. The trouble is that this
291 * consumes a lot of space, especially when so few things
292 * wait on pages at a given time. So instead of using
293 * per-page waitqueues, we use a waitqueue hash table.
294 *
295 * The bucket discipline is to sleep on the same queue when
296 * colliding and wake all in that wait queue when removing.
297 * When something wakes, it must check to be sure its page is
298 * truly available, a la thundering herd. The cost of a
299 * collision is great, but given the expected load of the
300 * table, they should be so rare as to be outweighed by the
301 * benefits from the saved space.
302 *
303 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
304 * primary users of these fields, and in mm/page_alloc.c
305 * free_area_init_core() performs the initialization of them.
306 */
307 wait_queue_head_t * wait_table;
02b694de 308 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
309 unsigned long wait_table_bits;
310
311 /*
312 * Discontig memory support fields.
313 */
314 struct pglist_data *zone_pgdat;
1da177e4
LT
315 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
316 unsigned long zone_start_pfn;
317
bdc8cb98
DH
318 /*
319 * zone_start_pfn, spanned_pages and present_pages are all
320 * protected by span_seqlock. It is a seqlock because it has
321 * to be read outside of zone->lock, and it is done in the main
322 * allocator path. But, it is written quite infrequently.
323 *
324 * The lock is declared along with zone->lock because it is
325 * frequently read in proximity to zone->lock. It's good to
326 * give them a chance of being in the same cacheline.
327 */
1da177e4
LT
328 unsigned long spanned_pages; /* total size, including holes */
329 unsigned long present_pages; /* amount of memory (excluding holes) */
330
331 /*
332 * rarely used fields:
333 */
15ad7cdc 334 const char *name;
22fc6ecc 335} ____cacheline_internodealigned_in_smp;
1da177e4 336
e815af95
DR
337typedef enum {
338 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
339 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 340 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
e815af95
DR
341} zone_flags_t;
342
343static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
344{
345 set_bit(flag, &zone->flags);
346}
d773ed6b
DR
347
348static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
349{
350 return test_and_set_bit(flag, &zone->flags);
351}
352
e815af95
DR
353static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
354{
355 clear_bit(flag, &zone->flags);
356}
357
358static inline int zone_is_all_unreclaimable(const struct zone *zone)
359{
360 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
361}
d773ed6b 362
e815af95
DR
363static inline int zone_is_reclaim_locked(const struct zone *zone)
364{
365 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
366}
d773ed6b 367
098d7f12
DR
368static inline int zone_is_oom_locked(const struct zone *zone)
369{
370 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
371}
e815af95 372
1da177e4
LT
373/*
374 * The "priority" of VM scanning is how much of the queues we will scan in one
375 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
376 * queues ("queue_length >> 12") during an aging round.
377 */
378#define DEF_PRIORITY 12
379
9276b1bc
PJ
380/* Maximum number of zones on a zonelist */
381#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
382
383#ifdef CONFIG_NUMA
523b9458
CL
384
385/*
386 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
387 * allocations to a single node for GFP_THISNODE.
388 *
54a6eb5c
MG
389 * [0] : Zonelist with fallback
390 * [1] : No fallback (GFP_THISNODE)
523b9458 391 */
54a6eb5c 392#define MAX_ZONELISTS 2
523b9458
CL
393
394
9276b1bc
PJ
395/*
396 * We cache key information from each zonelist for smaller cache
397 * footprint when scanning for free pages in get_page_from_freelist().
398 *
399 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
400 * up short of free memory since the last time (last_fullzone_zap)
401 * we zero'd fullzones.
402 * 2) The array z_to_n[] maps each zone in the zonelist to its node
403 * id, so that we can efficiently evaluate whether that node is
404 * set in the current tasks mems_allowed.
405 *
406 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
407 * indexed by a zones offset in the zonelist zones[] array.
408 *
409 * The get_page_from_freelist() routine does two scans. During the
410 * first scan, we skip zones whose corresponding bit in 'fullzones'
411 * is set or whose corresponding node in current->mems_allowed (which
412 * comes from cpusets) is not set. During the second scan, we bypass
413 * this zonelist_cache, to ensure we look methodically at each zone.
414 *
415 * Once per second, we zero out (zap) fullzones, forcing us to
416 * reconsider nodes that might have regained more free memory.
417 * The field last_full_zap is the time we last zapped fullzones.
418 *
419 * This mechanism reduces the amount of time we waste repeatedly
420 * reexaming zones for free memory when they just came up low on
421 * memory momentarilly ago.
422 *
423 * The zonelist_cache struct members logically belong in struct
424 * zonelist. However, the mempolicy zonelists constructed for
425 * MPOL_BIND are intentionally variable length (and usually much
426 * shorter). A general purpose mechanism for handling structs with
427 * multiple variable length members is more mechanism than we want
428 * here. We resort to some special case hackery instead.
429 *
430 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
431 * part because they are shorter), so we put the fixed length stuff
432 * at the front of the zonelist struct, ending in a variable length
433 * zones[], as is needed by MPOL_BIND.
434 *
435 * Then we put the optional zonelist cache on the end of the zonelist
436 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
437 * the fixed length portion at the front of the struct. This pointer
438 * both enables us to find the zonelist cache, and in the case of
439 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
440 * to know that the zonelist cache is not there.
441 *
442 * The end result is that struct zonelists come in two flavors:
443 * 1) The full, fixed length version, shown below, and
444 * 2) The custom zonelists for MPOL_BIND.
445 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
446 *
447 * Even though there may be multiple CPU cores on a node modifying
448 * fullzones or last_full_zap in the same zonelist_cache at the same
449 * time, we don't lock it. This is just hint data - if it is wrong now
450 * and then, the allocator will still function, perhaps a bit slower.
451 */
452
453
454struct zonelist_cache {
9276b1bc 455 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 456 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
457 unsigned long last_full_zap; /* when last zap'd (jiffies) */
458};
459#else
54a6eb5c 460#define MAX_ZONELISTS 1
9276b1bc
PJ
461struct zonelist_cache;
462#endif
463
dd1a239f
MG
464/*
465 * This struct contains information about a zone in a zonelist. It is stored
466 * here to avoid dereferences into large structures and lookups of tables
467 */
468struct zoneref {
469 struct zone *zone; /* Pointer to actual zone */
470 int zone_idx; /* zone_idx(zoneref->zone) */
471};
472
1da177e4
LT
473/*
474 * One allocation request operates on a zonelist. A zonelist
475 * is a list of zones, the first one is the 'goal' of the
476 * allocation, the other zones are fallback zones, in decreasing
477 * priority.
478 *
9276b1bc
PJ
479 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
480 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
481 * *
482 * To speed the reading of the zonelist, the zonerefs contain the zone index
483 * of the entry being read. Helper functions to access information given
484 * a struct zoneref are
485 *
486 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
487 * zonelist_zone_idx() - Return the index of the zone for an entry
488 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
489 */
490struct zonelist {
9276b1bc 491 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 492 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
493#ifdef CONFIG_NUMA
494 struct zonelist_cache zlcache; // optional ...
495#endif
1da177e4
LT
496};
497
c713216d
MG
498#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
499struct node_active_region {
500 unsigned long start_pfn;
501 unsigned long end_pfn;
502 int nid;
503};
504#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 505
5b99cd0e
HC
506#ifndef CONFIG_DISCONTIGMEM
507/* The array of struct pages - for discontigmem use pgdat->lmem_map */
508extern struct page *mem_map;
509#endif
510
1da177e4
LT
511/*
512 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
513 * (mostly NUMA machines?) to denote a higher-level memory zone than the
514 * zone denotes.
515 *
516 * On NUMA machines, each NUMA node would have a pg_data_t to describe
517 * it's memory layout.
518 *
519 * Memory statistics and page replacement data structures are maintained on a
520 * per-zone basis.
521 */
522struct bootmem_data;
523typedef struct pglist_data {
524 struct zone node_zones[MAX_NR_ZONES];
523b9458 525 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 526 int nr_zones;
d41dee36 527#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4 528 struct page *node_mem_map;
d41dee36 529#endif
1da177e4 530 struct bootmem_data *bdata;
208d54e5
DH
531#ifdef CONFIG_MEMORY_HOTPLUG
532 /*
533 * Must be held any time you expect node_start_pfn, node_present_pages
534 * or node_spanned_pages stay constant. Holding this will also
535 * guarantee that any pfn_valid() stays that way.
536 *
537 * Nests above zone->lock and zone->size_seqlock.
538 */
539 spinlock_t node_size_lock;
540#endif
1da177e4
LT
541 unsigned long node_start_pfn;
542 unsigned long node_present_pages; /* total number of physical pages */
543 unsigned long node_spanned_pages; /* total size of physical page
544 range, including holes */
545 int node_id;
1da177e4
LT
546 wait_queue_head_t kswapd_wait;
547 struct task_struct *kswapd;
548 int kswapd_max_order;
549} pg_data_t;
550
551#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
552#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 553#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 554#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
555#else
556#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
557#endif
408fde81 558#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 559
208d54e5
DH
560#include <linux/memory_hotplug.h>
561
1da177e4
LT
562void get_zone_counts(unsigned long *active, unsigned long *inactive,
563 unsigned long *free);
564void build_all_zonelists(void);
565void wakeup_kswapd(struct zone *zone, int order);
566int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 567 int classzone_idx, int alloc_flags);
a2f3aa02
DH
568enum memmap_context {
569 MEMMAP_EARLY,
570 MEMMAP_HOTPLUG,
571};
718127cc 572extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
573 unsigned long size,
574 enum memmap_context context);
718127cc 575
1da177e4
LT
576#ifdef CONFIG_HAVE_MEMORY_PRESENT
577void memory_present(int nid, unsigned long start, unsigned long end);
578#else
579static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
580#endif
581
582#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
583unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
584#endif
585
586/*
587 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
588 */
589#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
590
f3fe6512
CK
591static inline int populated_zone(struct zone *zone)
592{
593 return (!!zone->present_pages);
594}
595
2a1e274a
MG
596extern int movable_zone;
597
598static inline int zone_movable_is_highmem(void)
599{
600#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
601 return movable_zone == ZONE_HIGHMEM;
602#else
603 return 0;
604#endif
605}
606
2f1b6248 607static inline int is_highmem_idx(enum zone_type idx)
1da177e4 608{
e53ef38d 609#ifdef CONFIG_HIGHMEM
2a1e274a
MG
610 return (idx == ZONE_HIGHMEM ||
611 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
612#else
613 return 0;
614#endif
1da177e4
LT
615}
616
2f1b6248 617static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
618{
619 return (idx == ZONE_NORMAL);
620}
9328b8fa 621
1da177e4
LT
622/**
623 * is_highmem - helper function to quickly check if a struct zone is a
624 * highmem zone or not. This is an attempt to keep references
625 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
626 * @zone - pointer to struct zone variable
627 */
628static inline int is_highmem(struct zone *zone)
629{
e53ef38d 630#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
631 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
632 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
633 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
634 zone_movable_is_highmem());
e53ef38d
CL
635#else
636 return 0;
637#endif
1da177e4
LT
638}
639
640static inline int is_normal(struct zone *zone)
641{
642 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
643}
644
9328b8fa
NP
645static inline int is_dma32(struct zone *zone)
646{
fb0e7942 647#ifdef CONFIG_ZONE_DMA32
9328b8fa 648 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
649#else
650 return 0;
651#endif
9328b8fa
NP
652}
653
654static inline int is_dma(struct zone *zone)
655{
4b51d669 656#ifdef CONFIG_ZONE_DMA
9328b8fa 657 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
658#else
659 return 0;
660#endif
9328b8fa
NP
661}
662
1da177e4
LT
663/* These two functions are used to setup the per zone pages min values */
664struct ctl_table;
665struct file;
666int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
667 void __user *, size_t *, loff_t *);
668extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
669int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
670 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
671int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
672 void __user *, size_t *, loff_t *);
9614634f
CL
673int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
674 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
675int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
676 struct file *, void __user *, size_t *, loff_t *);
1da177e4 677
f0c0b2b8
KH
678extern int numa_zonelist_order_handler(struct ctl_table *, int,
679 struct file *, void __user *, size_t *, loff_t *);
680extern char numa_zonelist_order[];
681#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
682
1da177e4
LT
683#include <linux/topology.h>
684/* Returns the number of the current Node. */
69d81fcd 685#ifndef numa_node_id
39c715b7 686#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
69d81fcd 687#endif
1da177e4 688
93b7504e 689#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
690
691extern struct pglist_data contig_page_data;
692#define NODE_DATA(nid) (&contig_page_data)
693#define NODE_MEM_MAP(nid) mem_map
1da177e4 694
93b7504e 695#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
696
697#include <asm/mmzone.h>
698
93b7504e 699#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 700
95144c78
KH
701extern struct pglist_data *first_online_pgdat(void);
702extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
703extern struct zone *next_zone(struct zone *zone);
8357f869
KH
704
705/**
706 * for_each_pgdat - helper macro to iterate over all nodes
707 * @pgdat - pointer to a pg_data_t variable
708 */
709#define for_each_online_pgdat(pgdat) \
710 for (pgdat = first_online_pgdat(); \
711 pgdat; \
712 pgdat = next_online_pgdat(pgdat))
8357f869
KH
713/**
714 * for_each_zone - helper macro to iterate over all memory zones
715 * @zone - pointer to struct zone variable
716 *
717 * The user only needs to declare the zone variable, for_each_zone
718 * fills it in.
719 */
720#define for_each_zone(zone) \
721 for (zone = (first_online_pgdat())->node_zones; \
722 zone; \
723 zone = next_zone(zone))
724
dd1a239f
MG
725static inline struct zone *zonelist_zone(struct zoneref *zoneref)
726{
727 return zoneref->zone;
728}
729
730static inline int zonelist_zone_idx(struct zoneref *zoneref)
731{
732 return zoneref->zone_idx;
733}
734
735static inline int zonelist_node_idx(struct zoneref *zoneref)
736{
737#ifdef CONFIG_NUMA
738 /* zone_to_nid not available in this context */
739 return zoneref->zone->node;
740#else
741 return 0;
742#endif /* CONFIG_NUMA */
743}
744
19770b32
MG
745/**
746 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
747 * @z - The cursor used as a starting point for the search
748 * @highest_zoneidx - The zone index of the highest zone to return
749 * @nodes - An optional nodemask to filter the zonelist with
750 * @zone - The first suitable zone found is returned via this parameter
751 *
752 * This function returns the next zone at or below a given zone index that is
753 * within the allowed nodemask using a cursor as the starting point for the
754 * search. The zoneref returned is a cursor that is used as the next starting
755 * point for future calls to next_zones_zonelist().
756 */
757struct zoneref *next_zones_zonelist(struct zoneref *z,
758 enum zone_type highest_zoneidx,
759 nodemask_t *nodes,
760 struct zone **zone);
dd1a239f 761
19770b32
MG
762/**
763 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
764 * @zonelist - The zonelist to search for a suitable zone
765 * @highest_zoneidx - The zone index of the highest zone to return
766 * @nodes - An optional nodemask to filter the zonelist with
767 * @zone - The first suitable zone found is returned via this parameter
768 *
769 * This function returns the first zone at or below a given zone index that is
770 * within the allowed nodemask. The zoneref returned is a cursor that can be
771 * used to iterate the zonelist with next_zones_zonelist. The cursor should
772 * not be used by the caller as it does not match the value of the zone
773 * returned.
774 */
dd1a239f 775static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
776 enum zone_type highest_zoneidx,
777 nodemask_t *nodes,
778 struct zone **zone)
54a6eb5c 779{
19770b32
MG
780 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
781 zone);
54a6eb5c
MG
782}
783
19770b32
MG
784/**
785 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
786 * @zone - The current zone in the iterator
787 * @z - The current pointer within zonelist->zones being iterated
788 * @zlist - The zonelist being iterated
789 * @highidx - The zone index of the highest zone to return
790 * @nodemask - Nodemask allowed by the allocator
791 *
792 * This iterator iterates though all zones at or below a given zone index and
793 * within a given nodemask
794 */
795#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
796 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
797 zone; \
798 z = next_zones_zonelist(z, highidx, nodemask, &zone)) \
54a6eb5c
MG
799
800/**
801 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
802 * @zone - The current zone in the iterator
803 * @z - The current pointer within zonelist->zones being iterated
804 * @zlist - The zonelist being iterated
805 * @highidx - The zone index of the highest zone to return
806 *
807 * This iterator iterates though all zones at or below a given zone index.
808 */
809#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 810 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 811
d41dee36
AW
812#ifdef CONFIG_SPARSEMEM
813#include <asm/sparsemem.h>
814#endif
815
c713216d
MG
816#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
817 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b4544568
AM
818static inline unsigned long early_pfn_to_nid(unsigned long pfn)
819{
820 return 0;
821}
b159d43f
AW
822#endif
823
2bdaf115
AW
824#ifdef CONFIG_FLATMEM
825#define pfn_to_nid(pfn) (0)
826#endif
827
d41dee36
AW
828#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
829#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
830
831#ifdef CONFIG_SPARSEMEM
832
833/*
834 * SECTION_SHIFT #bits space required to store a section #
835 *
836 * PA_SECTION_SHIFT physical address to/from section number
837 * PFN_SECTION_SHIFT pfn to/from section number
838 */
839#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
840
841#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
842#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
843
844#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
845
846#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
847#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
848
835c134e 849#define SECTION_BLOCKFLAGS_BITS \
d9c23400 850 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 851
d41dee36
AW
852#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
853#error Allocator MAX_ORDER exceeds SECTION_SIZE
854#endif
855
856struct page;
857struct mem_section {
29751f69
AW
858 /*
859 * This is, logically, a pointer to an array of struct
860 * pages. However, it is stored with some other magic.
861 * (see sparse.c::sparse_init_one_section())
862 *
30c253e6
AW
863 * Additionally during early boot we encode node id of
864 * the location of the section here to guide allocation.
865 * (see sparse.c::memory_present())
866 *
29751f69
AW
867 * Making it a UL at least makes someone do a cast
868 * before using it wrong.
869 */
870 unsigned long section_mem_map;
5c0e3066
MG
871
872 /* See declaration of similar field in struct zone */
873 unsigned long *pageblock_flags;
d41dee36
AW
874};
875
3e347261
BP
876#ifdef CONFIG_SPARSEMEM_EXTREME
877#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
878#else
879#define SECTIONS_PER_ROOT 1
880#endif
802f192e 881
3e347261
BP
882#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
883#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
884#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 885
3e347261
BP
886#ifdef CONFIG_SPARSEMEM_EXTREME
887extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 888#else
3e347261
BP
889extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
890#endif
d41dee36 891
29751f69
AW
892static inline struct mem_section *__nr_to_section(unsigned long nr)
893{
3e347261
BP
894 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
895 return NULL;
896 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 897}
4ca644d9 898extern int __section_nr(struct mem_section* ms);
04753278 899extern unsigned long usemap_size(void);
29751f69
AW
900
901/*
902 * We use the lower bits of the mem_map pointer to store
903 * a little bit of information. There should be at least
904 * 3 bits here due to 32-bit alignment.
905 */
906#define SECTION_MARKED_PRESENT (1UL<<0)
907#define SECTION_HAS_MEM_MAP (1UL<<1)
908#define SECTION_MAP_LAST_BIT (1UL<<2)
909#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 910#define SECTION_NID_SHIFT 2
29751f69
AW
911
912static inline struct page *__section_mem_map_addr(struct mem_section *section)
913{
914 unsigned long map = section->section_mem_map;
915 map &= SECTION_MAP_MASK;
916 return (struct page *)map;
917}
918
540557b9 919static inline int present_section(struct mem_section *section)
29751f69 920{
802f192e 921 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
922}
923
540557b9
AW
924static inline int present_section_nr(unsigned long nr)
925{
926 return present_section(__nr_to_section(nr));
927}
928
929static inline int valid_section(struct mem_section *section)
29751f69 930{
802f192e 931 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
932}
933
934static inline int valid_section_nr(unsigned long nr)
935{
936 return valid_section(__nr_to_section(nr));
937}
938
d41dee36
AW
939static inline struct mem_section *__pfn_to_section(unsigned long pfn)
940{
29751f69 941 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
942}
943
d41dee36
AW
944static inline int pfn_valid(unsigned long pfn)
945{
946 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
947 return 0;
29751f69 948 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
949}
950
540557b9
AW
951static inline int pfn_present(unsigned long pfn)
952{
953 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
954 return 0;
955 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
956}
957
d41dee36
AW
958/*
959 * These are _only_ used during initialisation, therefore they
960 * can use __initdata ... They could have names to indicate
961 * this restriction.
962 */
963#ifdef CONFIG_NUMA
161599ff
AW
964#define pfn_to_nid(pfn) \
965({ \
966 unsigned long __pfn_to_nid_pfn = (pfn); \
967 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
968})
2bdaf115
AW
969#else
970#define pfn_to_nid(pfn) (0)
d41dee36
AW
971#endif
972
d41dee36
AW
973#define early_pfn_valid(pfn) pfn_valid(pfn)
974void sparse_init(void);
975#else
976#define sparse_init() do {} while (0)
28ae55c9 977#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
978#endif /* CONFIG_SPARSEMEM */
979
75167957
AW
980#ifdef CONFIG_NODES_SPAN_OTHER_NODES
981#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
982#else
983#define early_pfn_in_nid(pfn, nid) (1)
984#endif
985
d41dee36
AW
986#ifndef early_pfn_valid
987#define early_pfn_valid(pfn) (1)
988#endif
989
990void memory_present(int nid, unsigned long start, unsigned long end);
991unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
992
14e07298
AW
993/*
994 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
995 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
996 * pfn_valid_within() should be used in this case; we optimise this away
997 * when we have no holes within a MAX_ORDER_NR_PAGES block.
998 */
999#ifdef CONFIG_HOLES_IN_ZONE
1000#define pfn_valid_within(pfn) pfn_valid(pfn)
1001#else
1002#define pfn_valid_within(pfn) (1)
1003#endif
1004
97965478 1005#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1006#endif /* !__ASSEMBLY__ */
1da177e4 1007#endif /* _LINUX_MMZONE_H */