mISDN: timerdev: use __user for mISDN_read's buffer argument
[linux-2.6] / drivers / isdn / mISDN / dsp_dtmf.c
CommitLineData
960366cf
KK
1/*
2 * DTMF decoder.
3 *
4 * Copyright by Andreas Eversberg (jolly@eversberg.eu)
5 * based on different decoders such as ISDN4Linux
6 *
7 * This software may be used and distributed according to the terms
8 * of the GNU General Public License, incorporated herein by reference.
9 *
10 */
11
12#include <linux/mISDNif.h>
13#include <linux/mISDNdsp.h>
14#include "core.h"
15#include "dsp.h"
16
17#define NCOEFF 8 /* number of frequencies to be analyzed */
18
19/* For DTMF recognition:
20 * 2 * cos(2 * PI * k / N) precalculated for all k
21 */
22static u64 cos2pik[NCOEFF] =
23{
24 /* k << 15 (source: hfc-4s/8s documentation (www.colognechip.de)) */
25 55960, 53912, 51402, 48438, 38146, 32650, 26170, 18630
26};
27
28/* digit matrix */
29static char dtmf_matrix[4][4] =
30{
31 {'1', '2', '3', 'A'},
32 {'4', '5', '6', 'B'},
33 {'7', '8', '9', 'C'},
34 {'*', '0', '#', 'D'}
35};
36
37/* dtmf detection using goertzel algorithm
38 * init function
39 */
40void dsp_dtmf_goertzel_init(struct dsp *dsp)
41{
42 dsp->dtmf.size = 0;
43 dsp->dtmf.lastwhat = '\0';
44 dsp->dtmf.lastdigit = '\0';
45 dsp->dtmf.count = 0;
46}
47
48/* check for hardware or software features
49 */
50void dsp_dtmf_hardware(struct dsp *dsp)
51{
52 int hardware = 1;
53
54 if (!dsp->features.hfc_dtmf)
55 hardware = 0;
56
57 /* check for volume change */
58 if (dsp->tx_volume) {
59 if (dsp_debug & DEBUG_DSP_DTMF)
60 printk(KERN_DEBUG "%s dsp %s cannot do hardware DTMF, "
61 "because tx_volume is changed\n",
62 __func__, dsp->name);
63 hardware = 0;
64 }
65 if (dsp->rx_volume) {
66 if (dsp_debug & DEBUG_DSP_DTMF)
67 printk(KERN_DEBUG "%s dsp %s cannot do hardware DTMF, "
68 "because rx_volume is changed\n",
69 __func__, dsp->name);
70 hardware = 0;
71 }
72 /* check if encryption is enabled */
73 if (dsp->bf_enable) {
74 if (dsp_debug & DEBUG_DSP_DTMF)
75 printk(KERN_DEBUG "%s dsp %s cannot do hardware DTMF, "
76 "because encryption is enabled\n",
77 __func__, dsp->name);
78 hardware = 0;
79 }
80 /* check if pipeline exists */
81 if (dsp->pipeline.inuse) {
82 if (dsp_debug & DEBUG_DSP_DTMF)
83 printk(KERN_DEBUG "%s dsp %s cannot do hardware DTMF, "
84 "because pipeline exists.\n",
85 __func__, dsp->name);
86 hardware = 0;
87 }
88
89 dsp->dtmf.hardware = hardware;
90 dsp->dtmf.software = !hardware;
91}
92
93
94/*************************************************************
95 * calculate the coefficients of the given sample and decode *
96 *************************************************************/
97
98/* the given sample is decoded. if the sample is not long enough for a
99 * complete frame, the decoding is finished and continued with the next
100 * call of this function.
101 *
102 * the algorithm is very good for detection with a minimum of errors. i
103 * tested it allot. it even works with very short tones (40ms). the only
104 * disadvantage is, that it doesn't work good with different volumes of both
105 * tones. this will happen, if accoustically coupled dialers are used.
106 * it sometimes detects tones during speach, which is normal for decoders.
107 * use sequences to given commands during calls.
108 *
109 * dtmf - points to a structure of the current dtmf state
110 * spl and len - the sample
111 * fmt - 0 = alaw, 1 = ulaw, 2 = coefficients from HFC DTMF hw-decoder
112 */
113
114u8
115*dsp_dtmf_goertzel_decode(struct dsp *dsp, u8 *data, int len, int fmt)
116{
117 u8 what;
118 int size;
119 signed short *buf;
120 s32 sk, sk1, sk2;
121 int k, n, i;
122 s32 *hfccoeff;
123 s32 result[NCOEFF], tresh, treshl;
124 int lowgroup, highgroup;
125 s64 cos2pik_;
126
127 dsp->dtmf.digits[0] = '\0';
128
129 /* Note: The function will loop until the buffer has not enough samples
130 * left to decode a full frame.
131 */
132again:
133 /* convert samples */
134 size = dsp->dtmf.size;
135 buf = dsp->dtmf.buffer;
136 switch (fmt) {
137 case 0: /* alaw */
138 case 1: /* ulaw */
139 while (size < DSP_DTMF_NPOINTS && len) {
140 buf[size++] = dsp_audio_law_to_s32[*data++];
141 len--;
142 }
143 break;
144
145 case 2: /* HFC coefficients */
146 default:
147 if (len < 64) {
148 if (len > 0)
149 printk(KERN_ERR "%s: coefficients have invalid "
150 "size. (is=%d < must=%d)\n",
151 __func__, len, 64);
152 return dsp->dtmf.digits;
153 }
154 hfccoeff = (s32 *)data;
155 for (k = 0; k < NCOEFF; k++) {
156 sk2 = (*hfccoeff++)>>4;
157 sk = (*hfccoeff++)>>4;
158 if (sk > 32767 || sk < -32767 || sk2 > 32767
159 || sk2 < -32767)
160 printk(KERN_WARNING
161 "DTMF-Detection overflow\n");
162 /* compute |X(k)|**2 */
163 result[k] =
164 (sk * sk) -
165 (((cos2pik[k] * sk) >> 15) * sk2) +
166 (sk2 * sk2);
167 }
168 data += 64;
169 len -= 64;
170 goto coefficients;
171 break;
172 }
173 dsp->dtmf.size = size;
174
175 if (size < DSP_DTMF_NPOINTS)
176 return dsp->dtmf.digits;
177
178 dsp->dtmf.size = 0;
179
180 /* now we have a full buffer of signed long samples - we do goertzel */
181 for (k = 0; k < NCOEFF; k++) {
182 sk = 0;
183 sk1 = 0;
184 sk2 = 0;
185 buf = dsp->dtmf.buffer;
186 cos2pik_ = cos2pik[k];
187 for (n = 0; n < DSP_DTMF_NPOINTS; n++) {
188 sk = ((cos2pik_*sk1)>>15) - sk2 + (*buf++);
189 sk2 = sk1;
190 sk1 = sk;
191 }
192 sk >>= 8;
193 sk2 >>= 8;
194 if (sk > 32767 || sk < -32767 || sk2 > 32767 || sk2 < -32767)
195 printk(KERN_WARNING "DTMF-Detection overflow\n");
196 /* compute |X(k)|**2 */
197 result[k] =
198 (sk * sk) -
199 (((cos2pik[k] * sk) >> 15) * sk2) +
200 (sk2 * sk2);
201 }
202
203 /* our (squared) coefficients have been calculated, we need to process
204 * them.
205 */
206coefficients:
207 tresh = 0;
208 for (i = 0; i < NCOEFF; i++) {
209 if (result[i] < 0)
210 result[i] = 0;
211 if (result[i] > dsp->dtmf.treshold) {
212 if (result[i] > tresh)
213 tresh = result[i];
214 }
215 }
216
217 if (tresh == 0) {
218 what = 0;
219 goto storedigit;
220 }
221
222 if (dsp_debug & DEBUG_DSP_DTMFCOEFF)
223 printk(KERN_DEBUG "a %3d %3d %3d %3d %3d %3d %3d %3d"
224 " tr:%3d r %3d %3d %3d %3d %3d %3d %3d %3d\n",
225 result[0]/10000, result[1]/10000, result[2]/10000,
226 result[3]/10000, result[4]/10000, result[5]/10000,
227 result[6]/10000, result[7]/10000, tresh/10000,
228 result[0]/(tresh/100), result[1]/(tresh/100),
229 result[2]/(tresh/100), result[3]/(tresh/100),
230 result[4]/(tresh/100), result[5]/(tresh/100),
231 result[6]/(tresh/100), result[7]/(tresh/100));
232
233 /* calc digit (lowgroup/highgroup) */
234 lowgroup = -1;
235 highgroup = -1;
236 treshl = tresh >> 3; /* tones which are not on, must be below 9 dB */
237 tresh = tresh >> 2; /* touchtones must match within 6 dB */
238 for (i = 0; i < NCOEFF; i++) {
239 if (result[i] < treshl)
240 continue; /* ignore */
241 if (result[i] < tresh) {
242 lowgroup = -1;
243 highgroup = -1;
244 break; /* noise inbetween */
245 }
246 /* good level found. This is allowed only one time per group */
247 if (i < NCOEFF/2) {
248 /* lowgroup */
249 if (lowgroup >= 0) {
250 /* Bad. Another tone found. */
251 lowgroup = -1;
252 break;
253 } else
254 lowgroup = i;
255 } else {
256 /* higroup */
257 if (highgroup >= 0) {
258 /* Bad. Another tone found. */
259 highgroup = -1;
260 break;
261 } else
262 highgroup = i-(NCOEFF/2);
263 }
264 }
265
266 /* get digit or null */
267 what = 0;
268 if (lowgroup >= 0 && highgroup >= 0)
269 what = dtmf_matrix[lowgroup][highgroup];
270
271storedigit:
272 if (what && (dsp_debug & DEBUG_DSP_DTMF))
273 printk(KERN_DEBUG "DTMF what: %c\n", what);
274
275 if (dsp->dtmf.lastwhat != what)
276 dsp->dtmf.count = 0;
277
278 /* the tone (or no tone) must remain 3 times without change */
279 if (dsp->dtmf.count == 2) {
280 if (dsp->dtmf.lastdigit != what) {
281 dsp->dtmf.lastdigit = what;
282 if (what) {
283 if (dsp_debug & DEBUG_DSP_DTMF)
284 printk(KERN_DEBUG "DTMF digit: %c\n",
285 what);
286 if ((strlen(dsp->dtmf.digits)+1)
287 < sizeof(dsp->dtmf.digits)) {
288 dsp->dtmf.digits[strlen(
289 dsp->dtmf.digits)+1] = '\0';
290 dsp->dtmf.digits[strlen(
291 dsp->dtmf.digits)] = what;
292 }
293 }
294 }
295 } else
296 dsp->dtmf.count++;
297
298 dsp->dtmf.lastwhat = what;
299
300 goto again;
301}
302
303