nfs41: free slot
[linux-2.6] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
16f7e0fe 27#include <linux/capability.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/writeback.h>
34#include <linux/hash.h>
35#include <linux/suspend.h>
36#include <linux/buffer_head.h>
55e829af 37#include <linux/task_io_accounting_ops.h>
1da177e4
LT
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
fb1c8f93 43#include <linux/bit_spinlock.h>
1da177e4
LT
44
45static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
1da177e4
LT
46
47#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49inline void
50init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51{
52 bh->b_end_io = handler;
53 bh->b_private = private;
54}
55
56static int sync_buffer(void *word)
57{
58 struct block_device *bd;
59 struct buffer_head *bh
60 = container_of(word, struct buffer_head, b_state);
61
62 smp_mb();
63 bd = bh->b_bdev;
64 if (bd)
65 blk_run_address_space(bd->bd_inode->i_mapping);
66 io_schedule();
67 return 0;
68}
69
fc9b52cd 70void __lock_buffer(struct buffer_head *bh)
1da177e4
LT
71{
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 TASK_UNINTERRUPTIBLE);
74}
75EXPORT_SYMBOL(__lock_buffer);
76
fc9b52cd 77void unlock_buffer(struct buffer_head *bh)
1da177e4 78{
51b07fc3 79 clear_bit_unlock(BH_Lock, &bh->b_state);
1da177e4
LT
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
82}
83
84/*
85 * Block until a buffer comes unlocked. This doesn't stop it
86 * from becoming locked again - you have to lock it yourself
87 * if you want to preserve its state.
88 */
89void __wait_on_buffer(struct buffer_head * bh)
90{
91 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
92}
93
94static void
95__clear_page_buffers(struct page *page)
96{
97 ClearPagePrivate(page);
4c21e2f2 98 set_page_private(page, 0);
1da177e4
LT
99 page_cache_release(page);
100}
101
08bafc03
KM
102
103static int quiet_error(struct buffer_head *bh)
104{
105 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
106 return 0;
107 return 1;
108}
109
110
1da177e4
LT
111static void buffer_io_error(struct buffer_head *bh)
112{
113 char b[BDEVNAME_SIZE];
1da177e4
LT
114 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
115 bdevname(bh->b_bdev, b),
116 (unsigned long long)bh->b_blocknr);
117}
118
119/*
68671f35
DM
120 * End-of-IO handler helper function which does not touch the bh after
121 * unlocking it.
122 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
123 * a race there is benign: unlock_buffer() only use the bh's address for
124 * hashing after unlocking the buffer, so it doesn't actually touch the bh
125 * itself.
1da177e4 126 */
68671f35 127static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
128{
129 if (uptodate) {
130 set_buffer_uptodate(bh);
131 } else {
132 /* This happens, due to failed READA attempts. */
133 clear_buffer_uptodate(bh);
134 }
135 unlock_buffer(bh);
68671f35
DM
136}
137
138/*
139 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
140 * unlock the buffer. This is what ll_rw_block uses too.
141 */
142void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
143{
144 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
145 put_bh(bh);
146}
147
148void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
149{
150 char b[BDEVNAME_SIZE];
151
152 if (uptodate) {
153 set_buffer_uptodate(bh);
154 } else {
08bafc03 155 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
1da177e4
LT
156 buffer_io_error(bh);
157 printk(KERN_WARNING "lost page write due to "
158 "I/O error on %s\n",
159 bdevname(bh->b_bdev, b));
160 }
161 set_buffer_write_io_error(bh);
162 clear_buffer_uptodate(bh);
163 }
164 unlock_buffer(bh);
165 put_bh(bh);
166}
167
1da177e4
LT
168/*
169 * Various filesystems appear to want __find_get_block to be non-blocking.
170 * But it's the page lock which protects the buffers. To get around this,
171 * we get exclusion from try_to_free_buffers with the blockdev mapping's
172 * private_lock.
173 *
174 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
175 * may be quite high. This code could TryLock the page, and if that
176 * succeeds, there is no need to take private_lock. (But if
177 * private_lock is contended then so is mapping->tree_lock).
178 */
179static struct buffer_head *
385fd4c5 180__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
181{
182 struct inode *bd_inode = bdev->bd_inode;
183 struct address_space *bd_mapping = bd_inode->i_mapping;
184 struct buffer_head *ret = NULL;
185 pgoff_t index;
186 struct buffer_head *bh;
187 struct buffer_head *head;
188 struct page *page;
189 int all_mapped = 1;
190
191 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
192 page = find_get_page(bd_mapping, index);
193 if (!page)
194 goto out;
195
196 spin_lock(&bd_mapping->private_lock);
197 if (!page_has_buffers(page))
198 goto out_unlock;
199 head = page_buffers(page);
200 bh = head;
201 do {
97f76d3d
NK
202 if (!buffer_mapped(bh))
203 all_mapped = 0;
204 else if (bh->b_blocknr == block) {
1da177e4
LT
205 ret = bh;
206 get_bh(bh);
207 goto out_unlock;
208 }
1da177e4
LT
209 bh = bh->b_this_page;
210 } while (bh != head);
211
212 /* we might be here because some of the buffers on this page are
213 * not mapped. This is due to various races between
214 * file io on the block device and getblk. It gets dealt with
215 * elsewhere, don't buffer_error if we had some unmapped buffers
216 */
217 if (all_mapped) {
218 printk("__find_get_block_slow() failed. "
219 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
220 (unsigned long long)block,
221 (unsigned long long)bh->b_blocknr);
222 printk("b_state=0x%08lx, b_size=%zu\n",
223 bh->b_state, bh->b_size);
1da177e4
LT
224 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
225 }
226out_unlock:
227 spin_unlock(&bd_mapping->private_lock);
228 page_cache_release(page);
229out:
230 return ret;
231}
232
233/* If invalidate_buffers() will trash dirty buffers, it means some kind
234 of fs corruption is going on. Trashing dirty data always imply losing
235 information that was supposed to be just stored on the physical layer
236 by the user.
237
238 Thus invalidate_buffers in general usage is not allwowed to trash
239 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
240 be preserved. These buffers are simply skipped.
241
242 We also skip buffers which are still in use. For example this can
243 happen if a userspace program is reading the block device.
244
245 NOTE: In the case where the user removed a removable-media-disk even if
246 there's still dirty data not synced on disk (due a bug in the device driver
247 or due an error of the user), by not destroying the dirty buffers we could
248 generate corruption also on the next media inserted, thus a parameter is
249 necessary to handle this case in the most safe way possible (trying
250 to not corrupt also the new disk inserted with the data belonging to
251 the old now corrupted disk). Also for the ramdisk the natural thing
252 to do in order to release the ramdisk memory is to destroy dirty buffers.
253
254 These are two special cases. Normal usage imply the device driver
255 to issue a sync on the device (without waiting I/O completion) and
256 then an invalidate_buffers call that doesn't trash dirty buffers.
257
258 For handling cache coherency with the blkdev pagecache the 'update' case
259 is been introduced. It is needed to re-read from disk any pinned
260 buffer. NOTE: re-reading from disk is destructive so we can do it only
261 when we assume nobody is changing the buffercache under our I/O and when
262 we think the disk contains more recent information than the buffercache.
263 The update == 1 pass marks the buffers we need to update, the update == 2
264 pass does the actual I/O. */
f98393a6 265void invalidate_bdev(struct block_device *bdev)
1da177e4 266{
0e1dfc66
AM
267 struct address_space *mapping = bdev->bd_inode->i_mapping;
268
269 if (mapping->nrpages == 0)
270 return;
271
1da177e4 272 invalidate_bh_lrus();
fc0ecff6 273 invalidate_mapping_pages(mapping, 0, -1);
1da177e4
LT
274}
275
276/*
277 * Kick pdflush then try to free up some ZONE_NORMAL memory.
278 */
279static void free_more_memory(void)
280{
19770b32 281 struct zone *zone;
0e88460d 282 int nid;
1da177e4 283
687a21ce 284 wakeup_pdflush(1024);
1da177e4
LT
285 yield();
286
0e88460d 287 for_each_online_node(nid) {
19770b32
MG
288 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
289 gfp_zone(GFP_NOFS), NULL,
290 &zone);
291 if (zone)
54a6eb5c 292 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
327c0e96 293 GFP_NOFS, NULL);
1da177e4
LT
294 }
295}
296
297/*
298 * I/O completion handler for block_read_full_page() - pages
299 * which come unlocked at the end of I/O.
300 */
301static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
302{
1da177e4 303 unsigned long flags;
a3972203 304 struct buffer_head *first;
1da177e4
LT
305 struct buffer_head *tmp;
306 struct page *page;
307 int page_uptodate = 1;
308
309 BUG_ON(!buffer_async_read(bh));
310
311 page = bh->b_page;
312 if (uptodate) {
313 set_buffer_uptodate(bh);
314 } else {
315 clear_buffer_uptodate(bh);
08bafc03 316 if (!quiet_error(bh))
1da177e4
LT
317 buffer_io_error(bh);
318 SetPageError(page);
319 }
320
321 /*
322 * Be _very_ careful from here on. Bad things can happen if
323 * two buffer heads end IO at almost the same time and both
324 * decide that the page is now completely done.
325 */
a3972203
NP
326 first = page_buffers(page);
327 local_irq_save(flags);
328 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
329 clear_buffer_async_read(bh);
330 unlock_buffer(bh);
331 tmp = bh;
332 do {
333 if (!buffer_uptodate(tmp))
334 page_uptodate = 0;
335 if (buffer_async_read(tmp)) {
336 BUG_ON(!buffer_locked(tmp));
337 goto still_busy;
338 }
339 tmp = tmp->b_this_page;
340 } while (tmp != bh);
a3972203
NP
341 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
342 local_irq_restore(flags);
1da177e4
LT
343
344 /*
345 * If none of the buffers had errors and they are all
346 * uptodate then we can set the page uptodate.
347 */
348 if (page_uptodate && !PageError(page))
349 SetPageUptodate(page);
350 unlock_page(page);
351 return;
352
353still_busy:
a3972203
NP
354 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
355 local_irq_restore(flags);
1da177e4
LT
356 return;
357}
358
359/*
360 * Completion handler for block_write_full_page() - pages which are unlocked
361 * during I/O, and which have PageWriteback cleared upon I/O completion.
362 */
35c80d5f 363void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4
LT
364{
365 char b[BDEVNAME_SIZE];
1da177e4 366 unsigned long flags;
a3972203 367 struct buffer_head *first;
1da177e4
LT
368 struct buffer_head *tmp;
369 struct page *page;
370
371 BUG_ON(!buffer_async_write(bh));
372
373 page = bh->b_page;
374 if (uptodate) {
375 set_buffer_uptodate(bh);
376 } else {
08bafc03 377 if (!quiet_error(bh)) {
1da177e4
LT
378 buffer_io_error(bh);
379 printk(KERN_WARNING "lost page write due to "
380 "I/O error on %s\n",
381 bdevname(bh->b_bdev, b));
382 }
383 set_bit(AS_EIO, &page->mapping->flags);
58ff407b 384 set_buffer_write_io_error(bh);
1da177e4
LT
385 clear_buffer_uptodate(bh);
386 SetPageError(page);
387 }
388
a3972203
NP
389 first = page_buffers(page);
390 local_irq_save(flags);
391 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
392
1da177e4
LT
393 clear_buffer_async_write(bh);
394 unlock_buffer(bh);
395 tmp = bh->b_this_page;
396 while (tmp != bh) {
397 if (buffer_async_write(tmp)) {
398 BUG_ON(!buffer_locked(tmp));
399 goto still_busy;
400 }
401 tmp = tmp->b_this_page;
402 }
a3972203
NP
403 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
404 local_irq_restore(flags);
1da177e4
LT
405 end_page_writeback(page);
406 return;
407
408still_busy:
a3972203
NP
409 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
410 local_irq_restore(flags);
1da177e4
LT
411 return;
412}
413
414/*
415 * If a page's buffers are under async readin (end_buffer_async_read
416 * completion) then there is a possibility that another thread of
417 * control could lock one of the buffers after it has completed
418 * but while some of the other buffers have not completed. This
419 * locked buffer would confuse end_buffer_async_read() into not unlocking
420 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
421 * that this buffer is not under async I/O.
422 *
423 * The page comes unlocked when it has no locked buffer_async buffers
424 * left.
425 *
426 * PageLocked prevents anyone starting new async I/O reads any of
427 * the buffers.
428 *
429 * PageWriteback is used to prevent simultaneous writeout of the same
430 * page.
431 *
432 * PageLocked prevents anyone from starting writeback of a page which is
433 * under read I/O (PageWriteback is only ever set against a locked page).
434 */
435static void mark_buffer_async_read(struct buffer_head *bh)
436{
437 bh->b_end_io = end_buffer_async_read;
438 set_buffer_async_read(bh);
439}
440
35c80d5f
CM
441void mark_buffer_async_write_endio(struct buffer_head *bh,
442 bh_end_io_t *handler)
1da177e4 443{
35c80d5f 444 bh->b_end_io = handler;
1da177e4
LT
445 set_buffer_async_write(bh);
446}
35c80d5f
CM
447
448void mark_buffer_async_write(struct buffer_head *bh)
449{
450 mark_buffer_async_write_endio(bh, end_buffer_async_write);
451}
1da177e4
LT
452EXPORT_SYMBOL(mark_buffer_async_write);
453
454
455/*
456 * fs/buffer.c contains helper functions for buffer-backed address space's
457 * fsync functions. A common requirement for buffer-based filesystems is
458 * that certain data from the backing blockdev needs to be written out for
459 * a successful fsync(). For example, ext2 indirect blocks need to be
460 * written back and waited upon before fsync() returns.
461 *
462 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
463 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
464 * management of a list of dependent buffers at ->i_mapping->private_list.
465 *
466 * Locking is a little subtle: try_to_free_buffers() will remove buffers
467 * from their controlling inode's queue when they are being freed. But
468 * try_to_free_buffers() will be operating against the *blockdev* mapping
469 * at the time, not against the S_ISREG file which depends on those buffers.
470 * So the locking for private_list is via the private_lock in the address_space
471 * which backs the buffers. Which is different from the address_space
472 * against which the buffers are listed. So for a particular address_space,
473 * mapping->private_lock does *not* protect mapping->private_list! In fact,
474 * mapping->private_list will always be protected by the backing blockdev's
475 * ->private_lock.
476 *
477 * Which introduces a requirement: all buffers on an address_space's
478 * ->private_list must be from the same address_space: the blockdev's.
479 *
480 * address_spaces which do not place buffers at ->private_list via these
481 * utility functions are free to use private_lock and private_list for
482 * whatever they want. The only requirement is that list_empty(private_list)
483 * be true at clear_inode() time.
484 *
485 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
486 * filesystems should do that. invalidate_inode_buffers() should just go
487 * BUG_ON(!list_empty).
488 *
489 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
490 * take an address_space, not an inode. And it should be called
491 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
492 * queued up.
493 *
494 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
495 * list if it is already on a list. Because if the buffer is on a list,
496 * it *must* already be on the right one. If not, the filesystem is being
497 * silly. This will save a ton of locking. But first we have to ensure
498 * that buffers are taken *off* the old inode's list when they are freed
499 * (presumably in truncate). That requires careful auditing of all
500 * filesystems (do it inside bforget()). It could also be done by bringing
501 * b_inode back.
502 */
503
504/*
505 * The buffer's backing address_space's private_lock must be held
506 */
dbacefc9 507static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
508{
509 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
510 WARN_ON(!bh->b_assoc_map);
511 if (buffer_write_io_error(bh))
512 set_bit(AS_EIO, &bh->b_assoc_map->flags);
513 bh->b_assoc_map = NULL;
1da177e4
LT
514}
515
516int inode_has_buffers(struct inode *inode)
517{
518 return !list_empty(&inode->i_data.private_list);
519}
520
521/*
522 * osync is designed to support O_SYNC io. It waits synchronously for
523 * all already-submitted IO to complete, but does not queue any new
524 * writes to the disk.
525 *
526 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
527 * you dirty the buffers, and then use osync_inode_buffers to wait for
528 * completion. Any other dirty buffers which are not yet queued for
529 * write will not be flushed to disk by the osync.
530 */
531static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
532{
533 struct buffer_head *bh;
534 struct list_head *p;
535 int err = 0;
536
537 spin_lock(lock);
538repeat:
539 list_for_each_prev(p, list) {
540 bh = BH_ENTRY(p);
541 if (buffer_locked(bh)) {
542 get_bh(bh);
543 spin_unlock(lock);
544 wait_on_buffer(bh);
545 if (!buffer_uptodate(bh))
546 err = -EIO;
547 brelse(bh);
548 spin_lock(lock);
549 goto repeat;
550 }
551 }
552 spin_unlock(lock);
553 return err;
554}
555
053c525f 556void do_thaw_all(struct work_struct *work)
c2d75438
ES
557{
558 struct super_block *sb;
559 char b[BDEVNAME_SIZE];
560
561 spin_lock(&sb_lock);
562restart:
563 list_for_each_entry(sb, &super_blocks, s_list) {
564 sb->s_count++;
565 spin_unlock(&sb_lock);
566 down_read(&sb->s_umount);
567 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568 printk(KERN_WARNING "Emergency Thaw on %s\n",
569 bdevname(sb->s_bdev, b));
570 up_read(&sb->s_umount);
571 spin_lock(&sb_lock);
572 if (__put_super_and_need_restart(sb))
573 goto restart;
574 }
575 spin_unlock(&sb_lock);
053c525f 576 kfree(work);
c2d75438
ES
577 printk(KERN_WARNING "Emergency Thaw complete\n");
578}
579
580/**
581 * emergency_thaw_all -- forcibly thaw every frozen filesystem
582 *
583 * Used for emergency unfreeze of all filesystems via SysRq
584 */
585void emergency_thaw_all(void)
586{
053c525f
JA
587 struct work_struct *work;
588
589 work = kmalloc(sizeof(*work), GFP_ATOMIC);
590 if (work) {
591 INIT_WORK(work, do_thaw_all);
592 schedule_work(work);
593 }
c2d75438
ES
594}
595
1da177e4 596/**
78a4a50a 597 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 598 * @mapping: the mapping which wants those buffers written
1da177e4
LT
599 *
600 * Starts I/O against the buffers at mapping->private_list, and waits upon
601 * that I/O.
602 *
67be2dd1
MW
603 * Basically, this is a convenience function for fsync().
604 * @mapping is a file or directory which needs those buffers to be written for
605 * a successful fsync().
1da177e4
LT
606 */
607int sync_mapping_buffers(struct address_space *mapping)
608{
609 struct address_space *buffer_mapping = mapping->assoc_mapping;
610
611 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
612 return 0;
613
614 return fsync_buffers_list(&buffer_mapping->private_lock,
615 &mapping->private_list);
616}
617EXPORT_SYMBOL(sync_mapping_buffers);
618
619/*
620 * Called when we've recently written block `bblock', and it is known that
621 * `bblock' was for a buffer_boundary() buffer. This means that the block at
622 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
623 * dirty, schedule it for IO. So that indirects merge nicely with their data.
624 */
625void write_boundary_block(struct block_device *bdev,
626 sector_t bblock, unsigned blocksize)
627{
628 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
629 if (bh) {
630 if (buffer_dirty(bh))
631 ll_rw_block(WRITE, 1, &bh);
632 put_bh(bh);
633 }
634}
635
636void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
637{
638 struct address_space *mapping = inode->i_mapping;
639 struct address_space *buffer_mapping = bh->b_page->mapping;
640
641 mark_buffer_dirty(bh);
642 if (!mapping->assoc_mapping) {
643 mapping->assoc_mapping = buffer_mapping;
644 } else {
e827f923 645 BUG_ON(mapping->assoc_mapping != buffer_mapping);
1da177e4 646 }
535ee2fb 647 if (!bh->b_assoc_map) {
1da177e4
LT
648 spin_lock(&buffer_mapping->private_lock);
649 list_move_tail(&bh->b_assoc_buffers,
650 &mapping->private_list);
58ff407b 651 bh->b_assoc_map = mapping;
1da177e4
LT
652 spin_unlock(&buffer_mapping->private_lock);
653 }
654}
655EXPORT_SYMBOL(mark_buffer_dirty_inode);
656
787d2214
NP
657/*
658 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
659 * dirty.
660 *
661 * If warn is true, then emit a warning if the page is not uptodate and has
662 * not been truncated.
663 */
a8e7d49a 664static void __set_page_dirty(struct page *page,
787d2214
NP
665 struct address_space *mapping, int warn)
666{
19fd6231 667 spin_lock_irq(&mapping->tree_lock);
787d2214
NP
668 if (page->mapping) { /* Race with truncate? */
669 WARN_ON_ONCE(warn && !PageUptodate(page));
e3a7cca1 670 account_page_dirtied(page, mapping);
787d2214
NP
671 radix_tree_tag_set(&mapping->page_tree,
672 page_index(page), PAGECACHE_TAG_DIRTY);
673 }
19fd6231 674 spin_unlock_irq(&mapping->tree_lock);
787d2214 675 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
787d2214
NP
676}
677
1da177e4
LT
678/*
679 * Add a page to the dirty page list.
680 *
681 * It is a sad fact of life that this function is called from several places
682 * deeply under spinlocking. It may not sleep.
683 *
684 * If the page has buffers, the uptodate buffers are set dirty, to preserve
685 * dirty-state coherency between the page and the buffers. It the page does
686 * not have buffers then when they are later attached they will all be set
687 * dirty.
688 *
689 * The buffers are dirtied before the page is dirtied. There's a small race
690 * window in which a writepage caller may see the page cleanness but not the
691 * buffer dirtiness. That's fine. If this code were to set the page dirty
692 * before the buffers, a concurrent writepage caller could clear the page dirty
693 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
694 * page on the dirty page list.
695 *
696 * We use private_lock to lock against try_to_free_buffers while using the
697 * page's buffer list. Also use this to protect against clean buffers being
698 * added to the page after it was set dirty.
699 *
700 * FIXME: may need to call ->reservepage here as well. That's rather up to the
701 * address_space though.
702 */
703int __set_page_dirty_buffers(struct page *page)
704{
a8e7d49a 705 int newly_dirty;
787d2214 706 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
707
708 if (unlikely(!mapping))
709 return !TestSetPageDirty(page);
1da177e4
LT
710
711 spin_lock(&mapping->private_lock);
712 if (page_has_buffers(page)) {
713 struct buffer_head *head = page_buffers(page);
714 struct buffer_head *bh = head;
715
716 do {
717 set_buffer_dirty(bh);
718 bh = bh->b_this_page;
719 } while (bh != head);
720 }
a8e7d49a 721 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
722 spin_unlock(&mapping->private_lock);
723
a8e7d49a
LT
724 if (newly_dirty)
725 __set_page_dirty(page, mapping, 1);
726 return newly_dirty;
1da177e4
LT
727}
728EXPORT_SYMBOL(__set_page_dirty_buffers);
729
730/*
731 * Write out and wait upon a list of buffers.
732 *
733 * We have conflicting pressures: we want to make sure that all
734 * initially dirty buffers get waited on, but that any subsequently
735 * dirtied buffers don't. After all, we don't want fsync to last
736 * forever if somebody is actively writing to the file.
737 *
738 * Do this in two main stages: first we copy dirty buffers to a
739 * temporary inode list, queueing the writes as we go. Then we clean
740 * up, waiting for those writes to complete.
741 *
742 * During this second stage, any subsequent updates to the file may end
743 * up refiling the buffer on the original inode's dirty list again, so
744 * there is a chance we will end up with a buffer queued for write but
745 * not yet completed on that list. So, as a final cleanup we go through
746 * the osync code to catch these locked, dirty buffers without requeuing
747 * any newly dirty buffers for write.
748 */
749static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
750{
751 struct buffer_head *bh;
752 struct list_head tmp;
9cf6b720 753 struct address_space *mapping, *prev_mapping = NULL;
1da177e4
LT
754 int err = 0, err2;
755
756 INIT_LIST_HEAD(&tmp);
757
758 spin_lock(lock);
759 while (!list_empty(list)) {
760 bh = BH_ENTRY(list->next);
535ee2fb 761 mapping = bh->b_assoc_map;
58ff407b 762 __remove_assoc_queue(bh);
535ee2fb
JK
763 /* Avoid race with mark_buffer_dirty_inode() which does
764 * a lockless check and we rely on seeing the dirty bit */
765 smp_mb();
1da177e4
LT
766 if (buffer_dirty(bh) || buffer_locked(bh)) {
767 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 768 bh->b_assoc_map = mapping;
1da177e4
LT
769 if (buffer_dirty(bh)) {
770 get_bh(bh);
771 spin_unlock(lock);
772 /*
773 * Ensure any pending I/O completes so that
774 * ll_rw_block() actually writes the current
775 * contents - it is a noop if I/O is still in
776 * flight on potentially older contents.
777 */
9cf6b720
JA
778 ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh);
779
780 /*
781 * Kick off IO for the previous mapping. Note
782 * that we will not run the very last mapping,
783 * wait_on_buffer() will do that for us
784 * through sync_buffer().
785 */
786 if (prev_mapping && prev_mapping != mapping)
787 blk_run_address_space(prev_mapping);
788 prev_mapping = mapping;
789
1da177e4
LT
790 brelse(bh);
791 spin_lock(lock);
792 }
793 }
794 }
795
796 while (!list_empty(&tmp)) {
797 bh = BH_ENTRY(tmp.prev);
1da177e4 798 get_bh(bh);
535ee2fb
JK
799 mapping = bh->b_assoc_map;
800 __remove_assoc_queue(bh);
801 /* Avoid race with mark_buffer_dirty_inode() which does
802 * a lockless check and we rely on seeing the dirty bit */
803 smp_mb();
804 if (buffer_dirty(bh)) {
805 list_add(&bh->b_assoc_buffers,
e3892296 806 &mapping->private_list);
535ee2fb
JK
807 bh->b_assoc_map = mapping;
808 }
1da177e4
LT
809 spin_unlock(lock);
810 wait_on_buffer(bh);
811 if (!buffer_uptodate(bh))
812 err = -EIO;
813 brelse(bh);
814 spin_lock(lock);
815 }
816
817 spin_unlock(lock);
818 err2 = osync_buffers_list(lock, list);
819 if (err)
820 return err;
821 else
822 return err2;
823}
824
825/*
826 * Invalidate any and all dirty buffers on a given inode. We are
827 * probably unmounting the fs, but that doesn't mean we have already
828 * done a sync(). Just drop the buffers from the inode list.
829 *
830 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
831 * assumes that all the buffers are against the blockdev. Not true
832 * for reiserfs.
833 */
834void invalidate_inode_buffers(struct inode *inode)
835{
836 if (inode_has_buffers(inode)) {
837 struct address_space *mapping = &inode->i_data;
838 struct list_head *list = &mapping->private_list;
839 struct address_space *buffer_mapping = mapping->assoc_mapping;
840
841 spin_lock(&buffer_mapping->private_lock);
842 while (!list_empty(list))
843 __remove_assoc_queue(BH_ENTRY(list->next));
844 spin_unlock(&buffer_mapping->private_lock);
845 }
846}
52b19ac9 847EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
848
849/*
850 * Remove any clean buffers from the inode's buffer list. This is called
851 * when we're trying to free the inode itself. Those buffers can pin it.
852 *
853 * Returns true if all buffers were removed.
854 */
855int remove_inode_buffers(struct inode *inode)
856{
857 int ret = 1;
858
859 if (inode_has_buffers(inode)) {
860 struct address_space *mapping = &inode->i_data;
861 struct list_head *list = &mapping->private_list;
862 struct address_space *buffer_mapping = mapping->assoc_mapping;
863
864 spin_lock(&buffer_mapping->private_lock);
865 while (!list_empty(list)) {
866 struct buffer_head *bh = BH_ENTRY(list->next);
867 if (buffer_dirty(bh)) {
868 ret = 0;
869 break;
870 }
871 __remove_assoc_queue(bh);
872 }
873 spin_unlock(&buffer_mapping->private_lock);
874 }
875 return ret;
876}
877
878/*
879 * Create the appropriate buffers when given a page for data area and
880 * the size of each buffer.. Use the bh->b_this_page linked list to
881 * follow the buffers created. Return NULL if unable to create more
882 * buffers.
883 *
884 * The retry flag is used to differentiate async IO (paging, swapping)
885 * which may not fail from ordinary buffer allocations.
886 */
887struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
888 int retry)
889{
890 struct buffer_head *bh, *head;
891 long offset;
892
893try_again:
894 head = NULL;
895 offset = PAGE_SIZE;
896 while ((offset -= size) >= 0) {
897 bh = alloc_buffer_head(GFP_NOFS);
898 if (!bh)
899 goto no_grow;
900
901 bh->b_bdev = NULL;
902 bh->b_this_page = head;
903 bh->b_blocknr = -1;
904 head = bh;
905
906 bh->b_state = 0;
907 atomic_set(&bh->b_count, 0);
fc5cd582 908 bh->b_private = NULL;
1da177e4
LT
909 bh->b_size = size;
910
911 /* Link the buffer to its page */
912 set_bh_page(bh, page, offset);
913
01ffe339 914 init_buffer(bh, NULL, NULL);
1da177e4
LT
915 }
916 return head;
917/*
918 * In case anything failed, we just free everything we got.
919 */
920no_grow:
921 if (head) {
922 do {
923 bh = head;
924 head = head->b_this_page;
925 free_buffer_head(bh);
926 } while (head);
927 }
928
929 /*
930 * Return failure for non-async IO requests. Async IO requests
931 * are not allowed to fail, so we have to wait until buffer heads
932 * become available. But we don't want tasks sleeping with
933 * partially complete buffers, so all were released above.
934 */
935 if (!retry)
936 return NULL;
937
938 /* We're _really_ low on memory. Now we just
939 * wait for old buffer heads to become free due to
940 * finishing IO. Since this is an async request and
941 * the reserve list is empty, we're sure there are
942 * async buffer heads in use.
943 */
944 free_more_memory();
945 goto try_again;
946}
947EXPORT_SYMBOL_GPL(alloc_page_buffers);
948
949static inline void
950link_dev_buffers(struct page *page, struct buffer_head *head)
951{
952 struct buffer_head *bh, *tail;
953
954 bh = head;
955 do {
956 tail = bh;
957 bh = bh->b_this_page;
958 } while (bh);
959 tail->b_this_page = head;
960 attach_page_buffers(page, head);
961}
962
963/*
964 * Initialise the state of a blockdev page's buffers.
965 */
966static void
967init_page_buffers(struct page *page, struct block_device *bdev,
968 sector_t block, int size)
969{
970 struct buffer_head *head = page_buffers(page);
971 struct buffer_head *bh = head;
972 int uptodate = PageUptodate(page);
973
974 do {
975 if (!buffer_mapped(bh)) {
976 init_buffer(bh, NULL, NULL);
977 bh->b_bdev = bdev;
978 bh->b_blocknr = block;
979 if (uptodate)
980 set_buffer_uptodate(bh);
981 set_buffer_mapped(bh);
982 }
983 block++;
984 bh = bh->b_this_page;
985 } while (bh != head);
986}
987
988/*
989 * Create the page-cache page that contains the requested block.
990 *
991 * This is user purely for blockdev mappings.
992 */
993static struct page *
994grow_dev_page(struct block_device *bdev, sector_t block,
995 pgoff_t index, int size)
996{
997 struct inode *inode = bdev->bd_inode;
998 struct page *page;
999 struct buffer_head *bh;
1000
ea125892 1001 page = find_or_create_page(inode->i_mapping, index,
769848c0 1002 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1da177e4
LT
1003 if (!page)
1004 return NULL;
1005
e827f923 1006 BUG_ON(!PageLocked(page));
1da177e4
LT
1007
1008 if (page_has_buffers(page)) {
1009 bh = page_buffers(page);
1010 if (bh->b_size == size) {
1011 init_page_buffers(page, bdev, block, size);
1012 return page;
1013 }
1014 if (!try_to_free_buffers(page))
1015 goto failed;
1016 }
1017
1018 /*
1019 * Allocate some buffers for this page
1020 */
1021 bh = alloc_page_buffers(page, size, 0);
1022 if (!bh)
1023 goto failed;
1024
1025 /*
1026 * Link the page to the buffers and initialise them. Take the
1027 * lock to be atomic wrt __find_get_block(), which does not
1028 * run under the page lock.
1029 */
1030 spin_lock(&inode->i_mapping->private_lock);
1031 link_dev_buffers(page, bh);
1032 init_page_buffers(page, bdev, block, size);
1033 spin_unlock(&inode->i_mapping->private_lock);
1034 return page;
1035
1036failed:
1037 BUG();
1038 unlock_page(page);
1039 page_cache_release(page);
1040 return NULL;
1041}
1042
1043/*
1044 * Create buffers for the specified block device block's page. If
1045 * that page was dirty, the buffers are set dirty also.
1da177e4 1046 */
858119e1 1047static int
1da177e4
LT
1048grow_buffers(struct block_device *bdev, sector_t block, int size)
1049{
1050 struct page *page;
1051 pgoff_t index;
1052 int sizebits;
1053
1054 sizebits = -1;
1055 do {
1056 sizebits++;
1057 } while ((size << sizebits) < PAGE_SIZE);
1058
1059 index = block >> sizebits;
1da177e4 1060
e5657933
AM
1061 /*
1062 * Check for a block which wants to lie outside our maximum possible
1063 * pagecache index. (this comparison is done using sector_t types).
1064 */
1065 if (unlikely(index != block >> sizebits)) {
1066 char b[BDEVNAME_SIZE];
1067
1068 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1069 "device %s\n",
8e24eea7 1070 __func__, (unsigned long long)block,
e5657933
AM
1071 bdevname(bdev, b));
1072 return -EIO;
1073 }
1074 block = index << sizebits;
1da177e4
LT
1075 /* Create a page with the proper size buffers.. */
1076 page = grow_dev_page(bdev, block, index, size);
1077 if (!page)
1078 return 0;
1079 unlock_page(page);
1080 page_cache_release(page);
1081 return 1;
1082}
1083
75c96f85 1084static struct buffer_head *
1da177e4
LT
1085__getblk_slow(struct block_device *bdev, sector_t block, int size)
1086{
1087 /* Size must be multiple of hard sectorsize */
1088 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1089 (size < 512 || size > PAGE_SIZE))) {
1090 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1091 size);
1092 printk(KERN_ERR "hardsect size: %d\n",
1093 bdev_hardsect_size(bdev));
1094
1095 dump_stack();
1096 return NULL;
1097 }
1098
1099 for (;;) {
1100 struct buffer_head * bh;
e5657933 1101 int ret;
1da177e4
LT
1102
1103 bh = __find_get_block(bdev, block, size);
1104 if (bh)
1105 return bh;
1106
e5657933
AM
1107 ret = grow_buffers(bdev, block, size);
1108 if (ret < 0)
1109 return NULL;
1110 if (ret == 0)
1da177e4
LT
1111 free_more_memory();
1112 }
1113}
1114
1115/*
1116 * The relationship between dirty buffers and dirty pages:
1117 *
1118 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1119 * the page is tagged dirty in its radix tree.
1120 *
1121 * At all times, the dirtiness of the buffers represents the dirtiness of
1122 * subsections of the page. If the page has buffers, the page dirty bit is
1123 * merely a hint about the true dirty state.
1124 *
1125 * When a page is set dirty in its entirety, all its buffers are marked dirty
1126 * (if the page has buffers).
1127 *
1128 * When a buffer is marked dirty, its page is dirtied, but the page's other
1129 * buffers are not.
1130 *
1131 * Also. When blockdev buffers are explicitly read with bread(), they
1132 * individually become uptodate. But their backing page remains not
1133 * uptodate - even if all of its buffers are uptodate. A subsequent
1134 * block_read_full_page() against that page will discover all the uptodate
1135 * buffers, will set the page uptodate and will perform no I/O.
1136 */
1137
1138/**
1139 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1140 * @bh: the buffer_head to mark dirty
1da177e4
LT
1141 *
1142 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1143 * backing page dirty, then tag the page as dirty in its address_space's radix
1144 * tree and then attach the address_space's inode to its superblock's dirty
1145 * inode list.
1146 *
1147 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1148 * mapping->tree_lock and the global inode_lock.
1149 */
fc9b52cd 1150void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1151{
787d2214 1152 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1
LT
1153
1154 /*
1155 * Very *carefully* optimize the it-is-already-dirty case.
1156 *
1157 * Don't let the final "is it dirty" escape to before we
1158 * perhaps modified the buffer.
1159 */
1160 if (buffer_dirty(bh)) {
1161 smp_mb();
1162 if (buffer_dirty(bh))
1163 return;
1164 }
1165
a8e7d49a
LT
1166 if (!test_set_buffer_dirty(bh)) {
1167 struct page *page = bh->b_page;
1168 if (!TestSetPageDirty(page))
1169 __set_page_dirty(page, page_mapping(page), 0);
1170 }
1da177e4
LT
1171}
1172
1173/*
1174 * Decrement a buffer_head's reference count. If all buffers against a page
1175 * have zero reference count, are clean and unlocked, and if the page is clean
1176 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1177 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1178 * a page but it ends up not being freed, and buffers may later be reattached).
1179 */
1180void __brelse(struct buffer_head * buf)
1181{
1182 if (atomic_read(&buf->b_count)) {
1183 put_bh(buf);
1184 return;
1185 }
5c752ad9 1186 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4
LT
1187}
1188
1189/*
1190 * bforget() is like brelse(), except it discards any
1191 * potentially dirty data.
1192 */
1193void __bforget(struct buffer_head *bh)
1194{
1195 clear_buffer_dirty(bh);
535ee2fb 1196 if (bh->b_assoc_map) {
1da177e4
LT
1197 struct address_space *buffer_mapping = bh->b_page->mapping;
1198
1199 spin_lock(&buffer_mapping->private_lock);
1200 list_del_init(&bh->b_assoc_buffers);
58ff407b 1201 bh->b_assoc_map = NULL;
1da177e4
LT
1202 spin_unlock(&buffer_mapping->private_lock);
1203 }
1204 __brelse(bh);
1205}
1206
1207static struct buffer_head *__bread_slow(struct buffer_head *bh)
1208{
1209 lock_buffer(bh);
1210 if (buffer_uptodate(bh)) {
1211 unlock_buffer(bh);
1212 return bh;
1213 } else {
1214 get_bh(bh);
1215 bh->b_end_io = end_buffer_read_sync;
1216 submit_bh(READ, bh);
1217 wait_on_buffer(bh);
1218 if (buffer_uptodate(bh))
1219 return bh;
1220 }
1221 brelse(bh);
1222 return NULL;
1223}
1224
1225/*
1226 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1227 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1228 * refcount elevated by one when they're in an LRU. A buffer can only appear
1229 * once in a particular CPU's LRU. A single buffer can be present in multiple
1230 * CPU's LRUs at the same time.
1231 *
1232 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1233 * sb_find_get_block().
1234 *
1235 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1236 * a local interrupt disable for that.
1237 */
1238
1239#define BH_LRU_SIZE 8
1240
1241struct bh_lru {
1242 struct buffer_head *bhs[BH_LRU_SIZE];
1243};
1244
1245static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1246
1247#ifdef CONFIG_SMP
1248#define bh_lru_lock() local_irq_disable()
1249#define bh_lru_unlock() local_irq_enable()
1250#else
1251#define bh_lru_lock() preempt_disable()
1252#define bh_lru_unlock() preempt_enable()
1253#endif
1254
1255static inline void check_irqs_on(void)
1256{
1257#ifdef irqs_disabled
1258 BUG_ON(irqs_disabled());
1259#endif
1260}
1261
1262/*
1263 * The LRU management algorithm is dopey-but-simple. Sorry.
1264 */
1265static void bh_lru_install(struct buffer_head *bh)
1266{
1267 struct buffer_head *evictee = NULL;
1268 struct bh_lru *lru;
1269
1270 check_irqs_on();
1271 bh_lru_lock();
1272 lru = &__get_cpu_var(bh_lrus);
1273 if (lru->bhs[0] != bh) {
1274 struct buffer_head *bhs[BH_LRU_SIZE];
1275 int in;
1276 int out = 0;
1277
1278 get_bh(bh);
1279 bhs[out++] = bh;
1280 for (in = 0; in < BH_LRU_SIZE; in++) {
1281 struct buffer_head *bh2 = lru->bhs[in];
1282
1283 if (bh2 == bh) {
1284 __brelse(bh2);
1285 } else {
1286 if (out >= BH_LRU_SIZE) {
1287 BUG_ON(evictee != NULL);
1288 evictee = bh2;
1289 } else {
1290 bhs[out++] = bh2;
1291 }
1292 }
1293 }
1294 while (out < BH_LRU_SIZE)
1295 bhs[out++] = NULL;
1296 memcpy(lru->bhs, bhs, sizeof(bhs));
1297 }
1298 bh_lru_unlock();
1299
1300 if (evictee)
1301 __brelse(evictee);
1302}
1303
1304/*
1305 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1306 */
858119e1 1307static struct buffer_head *
3991d3bd 1308lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1309{
1310 struct buffer_head *ret = NULL;
1311 struct bh_lru *lru;
3991d3bd 1312 unsigned int i;
1da177e4
LT
1313
1314 check_irqs_on();
1315 bh_lru_lock();
1316 lru = &__get_cpu_var(bh_lrus);
1317 for (i = 0; i < BH_LRU_SIZE; i++) {
1318 struct buffer_head *bh = lru->bhs[i];
1319
1320 if (bh && bh->b_bdev == bdev &&
1321 bh->b_blocknr == block && bh->b_size == size) {
1322 if (i) {
1323 while (i) {
1324 lru->bhs[i] = lru->bhs[i - 1];
1325 i--;
1326 }
1327 lru->bhs[0] = bh;
1328 }
1329 get_bh(bh);
1330 ret = bh;
1331 break;
1332 }
1333 }
1334 bh_lru_unlock();
1335 return ret;
1336}
1337
1338/*
1339 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1340 * it in the LRU and mark it as accessed. If it is not present then return
1341 * NULL
1342 */
1343struct buffer_head *
3991d3bd 1344__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1345{
1346 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1347
1348 if (bh == NULL) {
385fd4c5 1349 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1350 if (bh)
1351 bh_lru_install(bh);
1352 }
1353 if (bh)
1354 touch_buffer(bh);
1355 return bh;
1356}
1357EXPORT_SYMBOL(__find_get_block);
1358
1359/*
1360 * __getblk will locate (and, if necessary, create) the buffer_head
1361 * which corresponds to the passed block_device, block and size. The
1362 * returned buffer has its reference count incremented.
1363 *
1364 * __getblk() cannot fail - it just keeps trying. If you pass it an
1365 * illegal block number, __getblk() will happily return a buffer_head
1366 * which represents the non-existent block. Very weird.
1367 *
1368 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1369 * attempt is failing. FIXME, perhaps?
1370 */
1371struct buffer_head *
3991d3bd 1372__getblk(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1373{
1374 struct buffer_head *bh = __find_get_block(bdev, block, size);
1375
1376 might_sleep();
1377 if (bh == NULL)
1378 bh = __getblk_slow(bdev, block, size);
1379 return bh;
1380}
1381EXPORT_SYMBOL(__getblk);
1382
1383/*
1384 * Do async read-ahead on a buffer..
1385 */
3991d3bd 1386void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1387{
1388 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1389 if (likely(bh)) {
1390 ll_rw_block(READA, 1, &bh);
1391 brelse(bh);
1392 }
1da177e4
LT
1393}
1394EXPORT_SYMBOL(__breadahead);
1395
1396/**
1397 * __bread() - reads a specified block and returns the bh
67be2dd1 1398 * @bdev: the block_device to read from
1da177e4
LT
1399 * @block: number of block
1400 * @size: size (in bytes) to read
1401 *
1402 * Reads a specified block, and returns buffer head that contains it.
1403 * It returns NULL if the block was unreadable.
1404 */
1405struct buffer_head *
3991d3bd 1406__bread(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1407{
1408 struct buffer_head *bh = __getblk(bdev, block, size);
1409
a3e713b5 1410 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1411 bh = __bread_slow(bh);
1412 return bh;
1413}
1414EXPORT_SYMBOL(__bread);
1415
1416/*
1417 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1418 * This doesn't race because it runs in each cpu either in irq
1419 * or with preempt disabled.
1420 */
1421static void invalidate_bh_lru(void *arg)
1422{
1423 struct bh_lru *b = &get_cpu_var(bh_lrus);
1424 int i;
1425
1426 for (i = 0; i < BH_LRU_SIZE; i++) {
1427 brelse(b->bhs[i]);
1428 b->bhs[i] = NULL;
1429 }
1430 put_cpu_var(bh_lrus);
1431}
1432
f9a14399 1433void invalidate_bh_lrus(void)
1da177e4 1434{
15c8b6c1 1435 on_each_cpu(invalidate_bh_lru, NULL, 1);
1da177e4 1436}
9db5579b 1437EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1438
1439void set_bh_page(struct buffer_head *bh,
1440 struct page *page, unsigned long offset)
1441{
1442 bh->b_page = page;
e827f923 1443 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1444 if (PageHighMem(page))
1445 /*
1446 * This catches illegal uses and preserves the offset:
1447 */
1448 bh->b_data = (char *)(0 + offset);
1449 else
1450 bh->b_data = page_address(page) + offset;
1451}
1452EXPORT_SYMBOL(set_bh_page);
1453
1454/*
1455 * Called when truncating a buffer on a page completely.
1456 */
858119e1 1457static void discard_buffer(struct buffer_head * bh)
1da177e4
LT
1458{
1459 lock_buffer(bh);
1460 clear_buffer_dirty(bh);
1461 bh->b_bdev = NULL;
1462 clear_buffer_mapped(bh);
1463 clear_buffer_req(bh);
1464 clear_buffer_new(bh);
1465 clear_buffer_delay(bh);
33a266dd 1466 clear_buffer_unwritten(bh);
1da177e4
LT
1467 unlock_buffer(bh);
1468}
1469
1da177e4
LT
1470/**
1471 * block_invalidatepage - invalidate part of all of a buffer-backed page
1472 *
1473 * @page: the page which is affected
1474 * @offset: the index of the truncation point
1475 *
1476 * block_invalidatepage() is called when all or part of the page has become
1477 * invalidatedby a truncate operation.
1478 *
1479 * block_invalidatepage() does not have to release all buffers, but it must
1480 * ensure that no dirty buffer is left outside @offset and that no I/O
1481 * is underway against any of the blocks which are outside the truncation
1482 * point. Because the caller is about to free (and possibly reuse) those
1483 * blocks on-disk.
1484 */
2ff28e22 1485void block_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1486{
1487 struct buffer_head *head, *bh, *next;
1488 unsigned int curr_off = 0;
1da177e4
LT
1489
1490 BUG_ON(!PageLocked(page));
1491 if (!page_has_buffers(page))
1492 goto out;
1493
1494 head = page_buffers(page);
1495 bh = head;
1496 do {
1497 unsigned int next_off = curr_off + bh->b_size;
1498 next = bh->b_this_page;
1499
1500 /*
1501 * is this block fully invalidated?
1502 */
1503 if (offset <= curr_off)
1504 discard_buffer(bh);
1505 curr_off = next_off;
1506 bh = next;
1507 } while (bh != head);
1508
1509 /*
1510 * We release buffers only if the entire page is being invalidated.
1511 * The get_block cached value has been unconditionally invalidated,
1512 * so real IO is not possible anymore.
1513 */
1514 if (offset == 0)
2ff28e22 1515 try_to_release_page(page, 0);
1da177e4 1516out:
2ff28e22 1517 return;
1da177e4
LT
1518}
1519EXPORT_SYMBOL(block_invalidatepage);
1520
1521/*
1522 * We attach and possibly dirty the buffers atomically wrt
1523 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1524 * is already excluded via the page lock.
1525 */
1526void create_empty_buffers(struct page *page,
1527 unsigned long blocksize, unsigned long b_state)
1528{
1529 struct buffer_head *bh, *head, *tail;
1530
1531 head = alloc_page_buffers(page, blocksize, 1);
1532 bh = head;
1533 do {
1534 bh->b_state |= b_state;
1535 tail = bh;
1536 bh = bh->b_this_page;
1537 } while (bh);
1538 tail->b_this_page = head;
1539
1540 spin_lock(&page->mapping->private_lock);
1541 if (PageUptodate(page) || PageDirty(page)) {
1542 bh = head;
1543 do {
1544 if (PageDirty(page))
1545 set_buffer_dirty(bh);
1546 if (PageUptodate(page))
1547 set_buffer_uptodate(bh);
1548 bh = bh->b_this_page;
1549 } while (bh != head);
1550 }
1551 attach_page_buffers(page, head);
1552 spin_unlock(&page->mapping->private_lock);
1553}
1554EXPORT_SYMBOL(create_empty_buffers);
1555
1556/*
1557 * We are taking a block for data and we don't want any output from any
1558 * buffer-cache aliases starting from return from that function and
1559 * until the moment when something will explicitly mark the buffer
1560 * dirty (hopefully that will not happen until we will free that block ;-)
1561 * We don't even need to mark it not-uptodate - nobody can expect
1562 * anything from a newly allocated buffer anyway. We used to used
1563 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1564 * don't want to mark the alias unmapped, for example - it would confuse
1565 * anyone who might pick it with bread() afterwards...
1566 *
1567 * Also.. Note that bforget() doesn't lock the buffer. So there can
1568 * be writeout I/O going on against recently-freed buffers. We don't
1569 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1570 * only if we really need to. That happens here.
1571 */
1572void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1573{
1574 struct buffer_head *old_bh;
1575
1576 might_sleep();
1577
385fd4c5 1578 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1579 if (old_bh) {
1580 clear_buffer_dirty(old_bh);
1581 wait_on_buffer(old_bh);
1582 clear_buffer_req(old_bh);
1583 __brelse(old_bh);
1584 }
1585}
1586EXPORT_SYMBOL(unmap_underlying_metadata);
1587
1588/*
1589 * NOTE! All mapped/uptodate combinations are valid:
1590 *
1591 * Mapped Uptodate Meaning
1592 *
1593 * No No "unknown" - must do get_block()
1594 * No Yes "hole" - zero-filled
1595 * Yes No "allocated" - allocated on disk, not read in
1596 * Yes Yes "valid" - allocated and up-to-date in memory.
1597 *
1598 * "Dirty" is valid only with the last case (mapped+uptodate).
1599 */
1600
1601/*
1602 * While block_write_full_page is writing back the dirty buffers under
1603 * the page lock, whoever dirtied the buffers may decide to clean them
1604 * again at any time. We handle that by only looking at the buffer
1605 * state inside lock_buffer().
1606 *
1607 * If block_write_full_page() is called for regular writeback
1608 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1609 * locked buffer. This only can happen if someone has written the buffer
1610 * directly, with submit_bh(). At the address_space level PageWriteback
1611 * prevents this contention from occurring.
6e34eedd
TT
1612 *
1613 * If block_write_full_page() is called with wbc->sync_mode ==
1614 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1615 * causes the writes to be flagged as synchronous writes, but the
1616 * block device queue will NOT be unplugged, since usually many pages
1617 * will be pushed to the out before the higher-level caller actually
1618 * waits for the writes to be completed. The various wait functions,
1619 * such as wait_on_writeback_range() will ultimately call sync_page()
1620 * which will ultimately call blk_run_backing_dev(), which will end up
1621 * unplugging the device queue.
1da177e4
LT
1622 */
1623static int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1624 get_block_t *get_block, struct writeback_control *wbc,
1625 bh_end_io_t *handler)
1da177e4
LT
1626{
1627 int err;
1628 sector_t block;
1629 sector_t last_block;
f0fbd5fc 1630 struct buffer_head *bh, *head;
b0cf2321 1631 const unsigned blocksize = 1 << inode->i_blkbits;
1da177e4 1632 int nr_underway = 0;
6e34eedd
TT
1633 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1634 WRITE_SYNC_PLUG : WRITE);
1da177e4
LT
1635
1636 BUG_ON(!PageLocked(page));
1637
1638 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1639
1640 if (!page_has_buffers(page)) {
b0cf2321 1641 create_empty_buffers(page, blocksize,
1da177e4
LT
1642 (1 << BH_Dirty)|(1 << BH_Uptodate));
1643 }
1644
1645 /*
1646 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1647 * here, and the (potentially unmapped) buffers may become dirty at
1648 * any time. If a buffer becomes dirty here after we've inspected it
1649 * then we just miss that fact, and the page stays dirty.
1650 *
1651 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1652 * handle that here by just cleaning them.
1653 */
1654
54b21a79 1655 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
1656 head = page_buffers(page);
1657 bh = head;
1658
1659 /*
1660 * Get all the dirty buffers mapped to disk addresses and
1661 * handle any aliases from the underlying blockdev's mapping.
1662 */
1663 do {
1664 if (block > last_block) {
1665 /*
1666 * mapped buffers outside i_size will occur, because
1667 * this page can be outside i_size when there is a
1668 * truncate in progress.
1669 */
1670 /*
1671 * The buffer was zeroed by block_write_full_page()
1672 */
1673 clear_buffer_dirty(bh);
1674 set_buffer_uptodate(bh);
29a814d2
AT
1675 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1676 buffer_dirty(bh)) {
b0cf2321 1677 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1678 err = get_block(inode, block, bh, 1);
1679 if (err)
1680 goto recover;
29a814d2 1681 clear_buffer_delay(bh);
1da177e4
LT
1682 if (buffer_new(bh)) {
1683 /* blockdev mappings never come here */
1684 clear_buffer_new(bh);
1685 unmap_underlying_metadata(bh->b_bdev,
1686 bh->b_blocknr);
1687 }
1688 }
1689 bh = bh->b_this_page;
1690 block++;
1691 } while (bh != head);
1692
1693 do {
1da177e4
LT
1694 if (!buffer_mapped(bh))
1695 continue;
1696 /*
1697 * If it's a fully non-blocking write attempt and we cannot
1698 * lock the buffer then redirty the page. Note that this can
1699 * potentially cause a busy-wait loop from pdflush and kswapd
1700 * activity, but those code paths have their own higher-level
1701 * throttling.
1702 */
1703 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1704 lock_buffer(bh);
ca5de404 1705 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1706 redirty_page_for_writepage(wbc, page);
1707 continue;
1708 }
1709 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1710 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1711 } else {
1712 unlock_buffer(bh);
1713 }
1714 } while ((bh = bh->b_this_page) != head);
1715
1716 /*
1717 * The page and its buffers are protected by PageWriteback(), so we can
1718 * drop the bh refcounts early.
1719 */
1720 BUG_ON(PageWriteback(page));
1721 set_page_writeback(page);
1da177e4
LT
1722
1723 do {
1724 struct buffer_head *next = bh->b_this_page;
1725 if (buffer_async_write(bh)) {
a64c8610 1726 submit_bh(write_op, bh);
1da177e4
LT
1727 nr_underway++;
1728 }
1da177e4
LT
1729 bh = next;
1730 } while (bh != head);
05937baa 1731 unlock_page(page);
1da177e4
LT
1732
1733 err = 0;
1734done:
1735 if (nr_underway == 0) {
1736 /*
1737 * The page was marked dirty, but the buffers were
1738 * clean. Someone wrote them back by hand with
1739 * ll_rw_block/submit_bh. A rare case.
1740 */
1da177e4 1741 end_page_writeback(page);
3d67f2d7 1742
1da177e4
LT
1743 /*
1744 * The page and buffer_heads can be released at any time from
1745 * here on.
1746 */
1da177e4
LT
1747 }
1748 return err;
1749
1750recover:
1751 /*
1752 * ENOSPC, or some other error. We may already have added some
1753 * blocks to the file, so we need to write these out to avoid
1754 * exposing stale data.
1755 * The page is currently locked and not marked for writeback
1756 */
1757 bh = head;
1758 /* Recovery: lock and submit the mapped buffers */
1759 do {
29a814d2
AT
1760 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1761 !buffer_delay(bh)) {
1da177e4 1762 lock_buffer(bh);
35c80d5f 1763 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1764 } else {
1765 /*
1766 * The buffer may have been set dirty during
1767 * attachment to a dirty page.
1768 */
1769 clear_buffer_dirty(bh);
1770 }
1771 } while ((bh = bh->b_this_page) != head);
1772 SetPageError(page);
1773 BUG_ON(PageWriteback(page));
7e4c3690 1774 mapping_set_error(page->mapping, err);
1da177e4 1775 set_page_writeback(page);
1da177e4
LT
1776 do {
1777 struct buffer_head *next = bh->b_this_page;
1778 if (buffer_async_write(bh)) {
1779 clear_buffer_dirty(bh);
a64c8610 1780 submit_bh(write_op, bh);
1da177e4
LT
1781 nr_underway++;
1782 }
1da177e4
LT
1783 bh = next;
1784 } while (bh != head);
ffda9d30 1785 unlock_page(page);
1da177e4
LT
1786 goto done;
1787}
1788
afddba49
NP
1789/*
1790 * If a page has any new buffers, zero them out here, and mark them uptodate
1791 * and dirty so they'll be written out (in order to prevent uninitialised
1792 * block data from leaking). And clear the new bit.
1793 */
1794void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1795{
1796 unsigned int block_start, block_end;
1797 struct buffer_head *head, *bh;
1798
1799 BUG_ON(!PageLocked(page));
1800 if (!page_has_buffers(page))
1801 return;
1802
1803 bh = head = page_buffers(page);
1804 block_start = 0;
1805 do {
1806 block_end = block_start + bh->b_size;
1807
1808 if (buffer_new(bh)) {
1809 if (block_end > from && block_start < to) {
1810 if (!PageUptodate(page)) {
1811 unsigned start, size;
1812
1813 start = max(from, block_start);
1814 size = min(to, block_end) - start;
1815
eebd2aa3 1816 zero_user(page, start, size);
afddba49
NP
1817 set_buffer_uptodate(bh);
1818 }
1819
1820 clear_buffer_new(bh);
1821 mark_buffer_dirty(bh);
1822 }
1823 }
1824
1825 block_start = block_end;
1826 bh = bh->b_this_page;
1827 } while (bh != head);
1828}
1829EXPORT_SYMBOL(page_zero_new_buffers);
1830
1da177e4
LT
1831static int __block_prepare_write(struct inode *inode, struct page *page,
1832 unsigned from, unsigned to, get_block_t *get_block)
1833{
1834 unsigned block_start, block_end;
1835 sector_t block;
1836 int err = 0;
1837 unsigned blocksize, bbits;
1838 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1839
1840 BUG_ON(!PageLocked(page));
1841 BUG_ON(from > PAGE_CACHE_SIZE);
1842 BUG_ON(to > PAGE_CACHE_SIZE);
1843 BUG_ON(from > to);
1844
1845 blocksize = 1 << inode->i_blkbits;
1846 if (!page_has_buffers(page))
1847 create_empty_buffers(page, blocksize, 0);
1848 head = page_buffers(page);
1849
1850 bbits = inode->i_blkbits;
1851 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1852
1853 for(bh = head, block_start = 0; bh != head || !block_start;
1854 block++, block_start=block_end, bh = bh->b_this_page) {
1855 block_end = block_start + blocksize;
1856 if (block_end <= from || block_start >= to) {
1857 if (PageUptodate(page)) {
1858 if (!buffer_uptodate(bh))
1859 set_buffer_uptodate(bh);
1860 }
1861 continue;
1862 }
1863 if (buffer_new(bh))
1864 clear_buffer_new(bh);
1865 if (!buffer_mapped(bh)) {
b0cf2321 1866 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1867 err = get_block(inode, block, bh, 1);
1868 if (err)
f3ddbdc6 1869 break;
1da177e4 1870 if (buffer_new(bh)) {
1da177e4
LT
1871 unmap_underlying_metadata(bh->b_bdev,
1872 bh->b_blocknr);
1873 if (PageUptodate(page)) {
637aff46 1874 clear_buffer_new(bh);
1da177e4 1875 set_buffer_uptodate(bh);
637aff46 1876 mark_buffer_dirty(bh);
1da177e4
LT
1877 continue;
1878 }
eebd2aa3
CL
1879 if (block_end > to || block_start < from)
1880 zero_user_segments(page,
1881 to, block_end,
1882 block_start, from);
1da177e4
LT
1883 continue;
1884 }
1885 }
1886 if (PageUptodate(page)) {
1887 if (!buffer_uptodate(bh))
1888 set_buffer_uptodate(bh);
1889 continue;
1890 }
1891 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 1892 !buffer_unwritten(bh) &&
1da177e4
LT
1893 (block_start < from || block_end > to)) {
1894 ll_rw_block(READ, 1, &bh);
1895 *wait_bh++=bh;
1896 }
1897 }
1898 /*
1899 * If we issued read requests - let them complete.
1900 */
1901 while(wait_bh > wait) {
1902 wait_on_buffer(*--wait_bh);
1903 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1904 err = -EIO;
1da177e4 1905 }
afddba49
NP
1906 if (unlikely(err))
1907 page_zero_new_buffers(page, from, to);
1da177e4
LT
1908 return err;
1909}
1910
1911static int __block_commit_write(struct inode *inode, struct page *page,
1912 unsigned from, unsigned to)
1913{
1914 unsigned block_start, block_end;
1915 int partial = 0;
1916 unsigned blocksize;
1917 struct buffer_head *bh, *head;
1918
1919 blocksize = 1 << inode->i_blkbits;
1920
1921 for(bh = head = page_buffers(page), block_start = 0;
1922 bh != head || !block_start;
1923 block_start=block_end, bh = bh->b_this_page) {
1924 block_end = block_start + blocksize;
1925 if (block_end <= from || block_start >= to) {
1926 if (!buffer_uptodate(bh))
1927 partial = 1;
1928 } else {
1929 set_buffer_uptodate(bh);
1930 mark_buffer_dirty(bh);
1931 }
afddba49 1932 clear_buffer_new(bh);
1da177e4
LT
1933 }
1934
1935 /*
1936 * If this is a partial write which happened to make all buffers
1937 * uptodate then we can optimize away a bogus readpage() for
1938 * the next read(). Here we 'discover' whether the page went
1939 * uptodate as a result of this (potentially partial) write.
1940 */
1941 if (!partial)
1942 SetPageUptodate(page);
1943 return 0;
1944}
1945
afddba49
NP
1946/*
1947 * block_write_begin takes care of the basic task of block allocation and
1948 * bringing partial write blocks uptodate first.
1949 *
1950 * If *pagep is not NULL, then block_write_begin uses the locked page
1951 * at *pagep rather than allocating its own. In this case, the page will
1952 * not be unlocked or deallocated on failure.
1953 */
1954int block_write_begin(struct file *file, struct address_space *mapping,
1955 loff_t pos, unsigned len, unsigned flags,
1956 struct page **pagep, void **fsdata,
1957 get_block_t *get_block)
1958{
1959 struct inode *inode = mapping->host;
1960 int status = 0;
1961 struct page *page;
1962 pgoff_t index;
1963 unsigned start, end;
1964 int ownpage = 0;
1965
1966 index = pos >> PAGE_CACHE_SHIFT;
1967 start = pos & (PAGE_CACHE_SIZE - 1);
1968 end = start + len;
1969
1970 page = *pagep;
1971 if (page == NULL) {
1972 ownpage = 1;
54566b2c 1973 page = grab_cache_page_write_begin(mapping, index, flags);
afddba49
NP
1974 if (!page) {
1975 status = -ENOMEM;
1976 goto out;
1977 }
1978 *pagep = page;
1979 } else
1980 BUG_ON(!PageLocked(page));
1981
1982 status = __block_prepare_write(inode, page, start, end, get_block);
1983 if (unlikely(status)) {
1984 ClearPageUptodate(page);
1985
1986 if (ownpage) {
1987 unlock_page(page);
1988 page_cache_release(page);
1989 *pagep = NULL;
1990
1991 /*
1992 * prepare_write() may have instantiated a few blocks
1993 * outside i_size. Trim these off again. Don't need
1994 * i_size_read because we hold i_mutex.
1995 */
1996 if (pos + len > inode->i_size)
1997 vmtruncate(inode, inode->i_size);
1998 }
afddba49
NP
1999 }
2000
2001out:
2002 return status;
2003}
2004EXPORT_SYMBOL(block_write_begin);
2005
2006int block_write_end(struct file *file, struct address_space *mapping,
2007 loff_t pos, unsigned len, unsigned copied,
2008 struct page *page, void *fsdata)
2009{
2010 struct inode *inode = mapping->host;
2011 unsigned start;
2012
2013 start = pos & (PAGE_CACHE_SIZE - 1);
2014
2015 if (unlikely(copied < len)) {
2016 /*
2017 * The buffers that were written will now be uptodate, so we
2018 * don't have to worry about a readpage reading them and
2019 * overwriting a partial write. However if we have encountered
2020 * a short write and only partially written into a buffer, it
2021 * will not be marked uptodate, so a readpage might come in and
2022 * destroy our partial write.
2023 *
2024 * Do the simplest thing, and just treat any short write to a
2025 * non uptodate page as a zero-length write, and force the
2026 * caller to redo the whole thing.
2027 */
2028 if (!PageUptodate(page))
2029 copied = 0;
2030
2031 page_zero_new_buffers(page, start+copied, start+len);
2032 }
2033 flush_dcache_page(page);
2034
2035 /* This could be a short (even 0-length) commit */
2036 __block_commit_write(inode, page, start, start+copied);
2037
2038 return copied;
2039}
2040EXPORT_SYMBOL(block_write_end);
2041
2042int generic_write_end(struct file *file, struct address_space *mapping,
2043 loff_t pos, unsigned len, unsigned copied,
2044 struct page *page, void *fsdata)
2045{
2046 struct inode *inode = mapping->host;
c7d206b3 2047 int i_size_changed = 0;
afddba49
NP
2048
2049 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2050
2051 /*
2052 * No need to use i_size_read() here, the i_size
2053 * cannot change under us because we hold i_mutex.
2054 *
2055 * But it's important to update i_size while still holding page lock:
2056 * page writeout could otherwise come in and zero beyond i_size.
2057 */
2058 if (pos+copied > inode->i_size) {
2059 i_size_write(inode, pos+copied);
c7d206b3 2060 i_size_changed = 1;
afddba49
NP
2061 }
2062
2063 unlock_page(page);
2064 page_cache_release(page);
2065
c7d206b3
JK
2066 /*
2067 * Don't mark the inode dirty under page lock. First, it unnecessarily
2068 * makes the holding time of page lock longer. Second, it forces lock
2069 * ordering of page lock and transaction start for journaling
2070 * filesystems.
2071 */
2072 if (i_size_changed)
2073 mark_inode_dirty(inode);
2074
afddba49
NP
2075 return copied;
2076}
2077EXPORT_SYMBOL(generic_write_end);
2078
8ab22b9a
HH
2079/*
2080 * block_is_partially_uptodate checks whether buffers within a page are
2081 * uptodate or not.
2082 *
2083 * Returns true if all buffers which correspond to a file portion
2084 * we want to read are uptodate.
2085 */
2086int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2087 unsigned long from)
2088{
2089 struct inode *inode = page->mapping->host;
2090 unsigned block_start, block_end, blocksize;
2091 unsigned to;
2092 struct buffer_head *bh, *head;
2093 int ret = 1;
2094
2095 if (!page_has_buffers(page))
2096 return 0;
2097
2098 blocksize = 1 << inode->i_blkbits;
2099 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2100 to = from + to;
2101 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2102 return 0;
2103
2104 head = page_buffers(page);
2105 bh = head;
2106 block_start = 0;
2107 do {
2108 block_end = block_start + blocksize;
2109 if (block_end > from && block_start < to) {
2110 if (!buffer_uptodate(bh)) {
2111 ret = 0;
2112 break;
2113 }
2114 if (block_end >= to)
2115 break;
2116 }
2117 block_start = block_end;
2118 bh = bh->b_this_page;
2119 } while (bh != head);
2120
2121 return ret;
2122}
2123EXPORT_SYMBOL(block_is_partially_uptodate);
2124
1da177e4
LT
2125/*
2126 * Generic "read page" function for block devices that have the normal
2127 * get_block functionality. This is most of the block device filesystems.
2128 * Reads the page asynchronously --- the unlock_buffer() and
2129 * set/clear_buffer_uptodate() functions propagate buffer state into the
2130 * page struct once IO has completed.
2131 */
2132int block_read_full_page(struct page *page, get_block_t *get_block)
2133{
2134 struct inode *inode = page->mapping->host;
2135 sector_t iblock, lblock;
2136 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2137 unsigned int blocksize;
2138 int nr, i;
2139 int fully_mapped = 1;
2140
cd7619d6 2141 BUG_ON(!PageLocked(page));
1da177e4
LT
2142 blocksize = 1 << inode->i_blkbits;
2143 if (!page_has_buffers(page))
2144 create_empty_buffers(page, blocksize, 0);
2145 head = page_buffers(page);
2146
2147 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2148 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2149 bh = head;
2150 nr = 0;
2151 i = 0;
2152
2153 do {
2154 if (buffer_uptodate(bh))
2155 continue;
2156
2157 if (!buffer_mapped(bh)) {
c64610ba
AM
2158 int err = 0;
2159
1da177e4
LT
2160 fully_mapped = 0;
2161 if (iblock < lblock) {
b0cf2321 2162 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2163 err = get_block(inode, iblock, bh, 0);
2164 if (err)
1da177e4
LT
2165 SetPageError(page);
2166 }
2167 if (!buffer_mapped(bh)) {
eebd2aa3 2168 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2169 if (!err)
2170 set_buffer_uptodate(bh);
1da177e4
LT
2171 continue;
2172 }
2173 /*
2174 * get_block() might have updated the buffer
2175 * synchronously
2176 */
2177 if (buffer_uptodate(bh))
2178 continue;
2179 }
2180 arr[nr++] = bh;
2181 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2182
2183 if (fully_mapped)
2184 SetPageMappedToDisk(page);
2185
2186 if (!nr) {
2187 /*
2188 * All buffers are uptodate - we can set the page uptodate
2189 * as well. But not if get_block() returned an error.
2190 */
2191 if (!PageError(page))
2192 SetPageUptodate(page);
2193 unlock_page(page);
2194 return 0;
2195 }
2196
2197 /* Stage two: lock the buffers */
2198 for (i = 0; i < nr; i++) {
2199 bh = arr[i];
2200 lock_buffer(bh);
2201 mark_buffer_async_read(bh);
2202 }
2203
2204 /*
2205 * Stage 3: start the IO. Check for uptodateness
2206 * inside the buffer lock in case another process reading
2207 * the underlying blockdev brought it uptodate (the sct fix).
2208 */
2209 for (i = 0; i < nr; i++) {
2210 bh = arr[i];
2211 if (buffer_uptodate(bh))
2212 end_buffer_async_read(bh, 1);
2213 else
2214 submit_bh(READ, bh);
2215 }
2216 return 0;
2217}
2218
2219/* utility function for filesystems that need to do work on expanding
89e10787 2220 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2221 * deal with the hole.
2222 */
89e10787 2223int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2224{
2225 struct address_space *mapping = inode->i_mapping;
2226 struct page *page;
89e10787 2227 void *fsdata;
05eb0b51 2228 unsigned long limit;
1da177e4
LT
2229 int err;
2230
2231 err = -EFBIG;
2232 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2233 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2234 send_sig(SIGXFSZ, current, 0);
2235 goto out;
2236 }
2237 if (size > inode->i_sb->s_maxbytes)
2238 goto out;
2239
89e10787
NP
2240 err = pagecache_write_begin(NULL, mapping, size, 0,
2241 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2242 &page, &fsdata);
2243 if (err)
05eb0b51 2244 goto out;
05eb0b51 2245
89e10787
NP
2246 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2247 BUG_ON(err > 0);
05eb0b51 2248
1da177e4
LT
2249out:
2250 return err;
2251}
2252
f1e3af72
AB
2253static int cont_expand_zero(struct file *file, struct address_space *mapping,
2254 loff_t pos, loff_t *bytes)
1da177e4 2255{
1da177e4 2256 struct inode *inode = mapping->host;
1da177e4 2257 unsigned blocksize = 1 << inode->i_blkbits;
89e10787
NP
2258 struct page *page;
2259 void *fsdata;
2260 pgoff_t index, curidx;
2261 loff_t curpos;
2262 unsigned zerofrom, offset, len;
2263 int err = 0;
1da177e4 2264
89e10787
NP
2265 index = pos >> PAGE_CACHE_SHIFT;
2266 offset = pos & ~PAGE_CACHE_MASK;
2267
2268 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2269 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4
LT
2270 if (zerofrom & (blocksize-1)) {
2271 *bytes |= (blocksize-1);
2272 (*bytes)++;
2273 }
89e10787 2274 len = PAGE_CACHE_SIZE - zerofrom;
1da177e4 2275
89e10787
NP
2276 err = pagecache_write_begin(file, mapping, curpos, len,
2277 AOP_FLAG_UNINTERRUPTIBLE,
2278 &page, &fsdata);
2279 if (err)
2280 goto out;
eebd2aa3 2281 zero_user(page, zerofrom, len);
89e10787
NP
2282 err = pagecache_write_end(file, mapping, curpos, len, len,
2283 page, fsdata);
2284 if (err < 0)
2285 goto out;
2286 BUG_ON(err != len);
2287 err = 0;
061e9746
OH
2288
2289 balance_dirty_pages_ratelimited(mapping);
89e10787 2290 }
1da177e4 2291
89e10787
NP
2292 /* page covers the boundary, find the boundary offset */
2293 if (index == curidx) {
2294 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4 2295 /* if we will expand the thing last block will be filled */
89e10787
NP
2296 if (offset <= zerofrom) {
2297 goto out;
2298 }
2299 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2300 *bytes |= (blocksize-1);
2301 (*bytes)++;
2302 }
89e10787 2303 len = offset - zerofrom;
1da177e4 2304
89e10787
NP
2305 err = pagecache_write_begin(file, mapping, curpos, len,
2306 AOP_FLAG_UNINTERRUPTIBLE,
2307 &page, &fsdata);
2308 if (err)
2309 goto out;
eebd2aa3 2310 zero_user(page, zerofrom, len);
89e10787
NP
2311 err = pagecache_write_end(file, mapping, curpos, len, len,
2312 page, fsdata);
2313 if (err < 0)
2314 goto out;
2315 BUG_ON(err != len);
2316 err = 0;
1da177e4 2317 }
89e10787
NP
2318out:
2319 return err;
2320}
2321
2322/*
2323 * For moronic filesystems that do not allow holes in file.
2324 * We may have to extend the file.
2325 */
2326int cont_write_begin(struct file *file, struct address_space *mapping,
2327 loff_t pos, unsigned len, unsigned flags,
2328 struct page **pagep, void **fsdata,
2329 get_block_t *get_block, loff_t *bytes)
2330{
2331 struct inode *inode = mapping->host;
2332 unsigned blocksize = 1 << inode->i_blkbits;
2333 unsigned zerofrom;
2334 int err;
2335
2336 err = cont_expand_zero(file, mapping, pos, bytes);
2337 if (err)
2338 goto out;
2339
2340 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2341 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2342 *bytes |= (blocksize-1);
2343 (*bytes)++;
1da177e4 2344 }
1da177e4 2345
89e10787
NP
2346 *pagep = NULL;
2347 err = block_write_begin(file, mapping, pos, len,
2348 flags, pagep, fsdata, get_block);
1da177e4 2349out:
89e10787 2350 return err;
1da177e4
LT
2351}
2352
2353int block_prepare_write(struct page *page, unsigned from, unsigned to,
2354 get_block_t *get_block)
2355{
2356 struct inode *inode = page->mapping->host;
2357 int err = __block_prepare_write(inode, page, from, to, get_block);
2358 if (err)
2359 ClearPageUptodate(page);
2360 return err;
2361}
2362
2363int block_commit_write(struct page *page, unsigned from, unsigned to)
2364{
2365 struct inode *inode = page->mapping->host;
2366 __block_commit_write(inode,page,from,to);
2367 return 0;
2368}
2369
54171690
DC
2370/*
2371 * block_page_mkwrite() is not allowed to change the file size as it gets
2372 * called from a page fault handler when a page is first dirtied. Hence we must
2373 * be careful to check for EOF conditions here. We set the page up correctly
2374 * for a written page which means we get ENOSPC checking when writing into
2375 * holes and correct delalloc and unwritten extent mapping on filesystems that
2376 * support these features.
2377 *
2378 * We are not allowed to take the i_mutex here so we have to play games to
2379 * protect against truncate races as the page could now be beyond EOF. Because
2380 * vmtruncate() writes the inode size before removing pages, once we have the
2381 * page lock we can determine safely if the page is beyond EOF. If it is not
2382 * beyond EOF, then the page is guaranteed safe against truncation until we
2383 * unlock the page.
2384 */
2385int
c2ec175c 2386block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
54171690
DC
2387 get_block_t get_block)
2388{
c2ec175c 2389 struct page *page = vmf->page;
54171690
DC
2390 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2391 unsigned long end;
2392 loff_t size;
56a76f82 2393 int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
54171690
DC
2394
2395 lock_page(page);
2396 size = i_size_read(inode);
2397 if ((page->mapping != inode->i_mapping) ||
18336338 2398 (page_offset(page) > size)) {
54171690 2399 /* page got truncated out from underneath us */
b827e496
NP
2400 unlock_page(page);
2401 goto out;
54171690
DC
2402 }
2403
2404 /* page is wholly or partially inside EOF */
2405 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2406 end = size & ~PAGE_CACHE_MASK;
2407 else
2408 end = PAGE_CACHE_SIZE;
2409
2410 ret = block_prepare_write(page, 0, end, get_block);
2411 if (!ret)
2412 ret = block_commit_write(page, 0, end);
2413
56a76f82 2414 if (unlikely(ret)) {
b827e496 2415 unlock_page(page);
56a76f82
NP
2416 if (ret == -ENOMEM)
2417 ret = VM_FAULT_OOM;
2418 else /* -ENOSPC, -EIO, etc */
2419 ret = VM_FAULT_SIGBUS;
b827e496
NP
2420 } else
2421 ret = VM_FAULT_LOCKED;
c2ec175c 2422
b827e496 2423out:
54171690
DC
2424 return ret;
2425}
1da177e4
LT
2426
2427/*
03158cd7 2428 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2429 * immediately, while under the page lock. So it needs a special end_io
2430 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2431 */
2432static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2433{
68671f35 2434 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2435}
2436
03158cd7
NP
2437/*
2438 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2439 * the page (converting it to circular linked list and taking care of page
2440 * dirty races).
2441 */
2442static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2443{
2444 struct buffer_head *bh;
2445
2446 BUG_ON(!PageLocked(page));
2447
2448 spin_lock(&page->mapping->private_lock);
2449 bh = head;
2450 do {
2451 if (PageDirty(page))
2452 set_buffer_dirty(bh);
2453 if (!bh->b_this_page)
2454 bh->b_this_page = head;
2455 bh = bh->b_this_page;
2456 } while (bh != head);
2457 attach_page_buffers(page, head);
2458 spin_unlock(&page->mapping->private_lock);
2459}
2460
1da177e4
LT
2461/*
2462 * On entry, the page is fully not uptodate.
2463 * On exit the page is fully uptodate in the areas outside (from,to)
2464 */
03158cd7
NP
2465int nobh_write_begin(struct file *file, struct address_space *mapping,
2466 loff_t pos, unsigned len, unsigned flags,
2467 struct page **pagep, void **fsdata,
1da177e4
LT
2468 get_block_t *get_block)
2469{
03158cd7 2470 struct inode *inode = mapping->host;
1da177e4
LT
2471 const unsigned blkbits = inode->i_blkbits;
2472 const unsigned blocksize = 1 << blkbits;
a4b0672d 2473 struct buffer_head *head, *bh;
03158cd7
NP
2474 struct page *page;
2475 pgoff_t index;
2476 unsigned from, to;
1da177e4 2477 unsigned block_in_page;
a4b0672d 2478 unsigned block_start, block_end;
1da177e4 2479 sector_t block_in_file;
1da177e4 2480 int nr_reads = 0;
1da177e4
LT
2481 int ret = 0;
2482 int is_mapped_to_disk = 1;
1da177e4 2483
03158cd7
NP
2484 index = pos >> PAGE_CACHE_SHIFT;
2485 from = pos & (PAGE_CACHE_SIZE - 1);
2486 to = from + len;
2487
54566b2c 2488 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2489 if (!page)
2490 return -ENOMEM;
2491 *pagep = page;
2492 *fsdata = NULL;
2493
2494 if (page_has_buffers(page)) {
2495 unlock_page(page);
2496 page_cache_release(page);
2497 *pagep = NULL;
2498 return block_write_begin(file, mapping, pos, len, flags, pagep,
2499 fsdata, get_block);
2500 }
a4b0672d 2501
1da177e4
LT
2502 if (PageMappedToDisk(page))
2503 return 0;
2504
a4b0672d
NP
2505 /*
2506 * Allocate buffers so that we can keep track of state, and potentially
2507 * attach them to the page if an error occurs. In the common case of
2508 * no error, they will just be freed again without ever being attached
2509 * to the page (which is all OK, because we're under the page lock).
2510 *
2511 * Be careful: the buffer linked list is a NULL terminated one, rather
2512 * than the circular one we're used to.
2513 */
2514 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2515 if (!head) {
2516 ret = -ENOMEM;
2517 goto out_release;
2518 }
a4b0672d 2519
1da177e4 2520 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
1da177e4
LT
2521
2522 /*
2523 * We loop across all blocks in the page, whether or not they are
2524 * part of the affected region. This is so we can discover if the
2525 * page is fully mapped-to-disk.
2526 */
a4b0672d 2527 for (block_start = 0, block_in_page = 0, bh = head;
1da177e4 2528 block_start < PAGE_CACHE_SIZE;
a4b0672d 2529 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2530 int create;
2531
a4b0672d
NP
2532 block_end = block_start + blocksize;
2533 bh->b_state = 0;
1da177e4
LT
2534 create = 1;
2535 if (block_start >= to)
2536 create = 0;
2537 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2538 bh, create);
1da177e4
LT
2539 if (ret)
2540 goto failed;
a4b0672d 2541 if (!buffer_mapped(bh))
1da177e4 2542 is_mapped_to_disk = 0;
a4b0672d
NP
2543 if (buffer_new(bh))
2544 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2545 if (PageUptodate(page)) {
2546 set_buffer_uptodate(bh);
1da177e4 2547 continue;
a4b0672d
NP
2548 }
2549 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2550 zero_user_segments(page, block_start, from,
2551 to, block_end);
1da177e4
LT
2552 continue;
2553 }
a4b0672d 2554 if (buffer_uptodate(bh))
1da177e4
LT
2555 continue; /* reiserfs does this */
2556 if (block_start < from || block_end > to) {
a4b0672d
NP
2557 lock_buffer(bh);
2558 bh->b_end_io = end_buffer_read_nobh;
2559 submit_bh(READ, bh);
2560 nr_reads++;
1da177e4
LT
2561 }
2562 }
2563
2564 if (nr_reads) {
1da177e4
LT
2565 /*
2566 * The page is locked, so these buffers are protected from
2567 * any VM or truncate activity. Hence we don't need to care
2568 * for the buffer_head refcounts.
2569 */
a4b0672d 2570 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2571 wait_on_buffer(bh);
2572 if (!buffer_uptodate(bh))
2573 ret = -EIO;
1da177e4
LT
2574 }
2575 if (ret)
2576 goto failed;
2577 }
2578
2579 if (is_mapped_to_disk)
2580 SetPageMappedToDisk(page);
1da177e4 2581
03158cd7 2582 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2583
1da177e4
LT
2584 return 0;
2585
2586failed:
03158cd7 2587 BUG_ON(!ret);
1da177e4 2588 /*
a4b0672d
NP
2589 * Error recovery is a bit difficult. We need to zero out blocks that
2590 * were newly allocated, and dirty them to ensure they get written out.
2591 * Buffers need to be attached to the page at this point, otherwise
2592 * the handling of potential IO errors during writeout would be hard
2593 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2594 */
03158cd7
NP
2595 attach_nobh_buffers(page, head);
2596 page_zero_new_buffers(page, from, to);
a4b0672d 2597
03158cd7
NP
2598out_release:
2599 unlock_page(page);
2600 page_cache_release(page);
2601 *pagep = NULL;
a4b0672d 2602
03158cd7
NP
2603 if (pos + len > inode->i_size)
2604 vmtruncate(inode, inode->i_size);
a4b0672d 2605
1da177e4
LT
2606 return ret;
2607}
03158cd7 2608EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2609
03158cd7
NP
2610int nobh_write_end(struct file *file, struct address_space *mapping,
2611 loff_t pos, unsigned len, unsigned copied,
2612 struct page *page, void *fsdata)
1da177e4
LT
2613{
2614 struct inode *inode = page->mapping->host;
efdc3131 2615 struct buffer_head *head = fsdata;
03158cd7 2616 struct buffer_head *bh;
5b41e74a 2617 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2618
d4cf109f 2619 if (unlikely(copied < len) && head)
5b41e74a
DM
2620 attach_nobh_buffers(page, head);
2621 if (page_has_buffers(page))
2622 return generic_write_end(file, mapping, pos, len,
2623 copied, page, fsdata);
a4b0672d 2624
22c8ca78 2625 SetPageUptodate(page);
1da177e4 2626 set_page_dirty(page);
03158cd7
NP
2627 if (pos+copied > inode->i_size) {
2628 i_size_write(inode, pos+copied);
1da177e4
LT
2629 mark_inode_dirty(inode);
2630 }
03158cd7
NP
2631
2632 unlock_page(page);
2633 page_cache_release(page);
2634
03158cd7
NP
2635 while (head) {
2636 bh = head;
2637 head = head->b_this_page;
2638 free_buffer_head(bh);
2639 }
2640
2641 return copied;
1da177e4 2642}
03158cd7 2643EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2644
2645/*
2646 * nobh_writepage() - based on block_full_write_page() except
2647 * that it tries to operate without attaching bufferheads to
2648 * the page.
2649 */
2650int nobh_writepage(struct page *page, get_block_t *get_block,
2651 struct writeback_control *wbc)
2652{
2653 struct inode * const inode = page->mapping->host;
2654 loff_t i_size = i_size_read(inode);
2655 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2656 unsigned offset;
1da177e4
LT
2657 int ret;
2658
2659 /* Is the page fully inside i_size? */
2660 if (page->index < end_index)
2661 goto out;
2662
2663 /* Is the page fully outside i_size? (truncate in progress) */
2664 offset = i_size & (PAGE_CACHE_SIZE-1);
2665 if (page->index >= end_index+1 || !offset) {
2666 /*
2667 * The page may have dirty, unmapped buffers. For example,
2668 * they may have been added in ext3_writepage(). Make them
2669 * freeable here, so the page does not leak.
2670 */
2671#if 0
2672 /* Not really sure about this - do we need this ? */
2673 if (page->mapping->a_ops->invalidatepage)
2674 page->mapping->a_ops->invalidatepage(page, offset);
2675#endif
2676 unlock_page(page);
2677 return 0; /* don't care */
2678 }
2679
2680 /*
2681 * The page straddles i_size. It must be zeroed out on each and every
2682 * writepage invocation because it may be mmapped. "A file is mapped
2683 * in multiples of the page size. For a file that is not a multiple of
2684 * the page size, the remaining memory is zeroed when mapped, and
2685 * writes to that region are not written out to the file."
2686 */
eebd2aa3 2687 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
2688out:
2689 ret = mpage_writepage(page, get_block, wbc);
2690 if (ret == -EAGAIN)
35c80d5f
CM
2691 ret = __block_write_full_page(inode, page, get_block, wbc,
2692 end_buffer_async_write);
1da177e4
LT
2693 return ret;
2694}
2695EXPORT_SYMBOL(nobh_writepage);
2696
03158cd7
NP
2697int nobh_truncate_page(struct address_space *mapping,
2698 loff_t from, get_block_t *get_block)
1da177e4 2699{
1da177e4
LT
2700 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2701 unsigned offset = from & (PAGE_CACHE_SIZE-1);
03158cd7
NP
2702 unsigned blocksize;
2703 sector_t iblock;
2704 unsigned length, pos;
2705 struct inode *inode = mapping->host;
1da177e4 2706 struct page *page;
03158cd7
NP
2707 struct buffer_head map_bh;
2708 int err;
1da177e4 2709
03158cd7
NP
2710 blocksize = 1 << inode->i_blkbits;
2711 length = offset & (blocksize - 1);
2712
2713 /* Block boundary? Nothing to do */
2714 if (!length)
2715 return 0;
2716
2717 length = blocksize - length;
2718 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4 2719
1da177e4 2720 page = grab_cache_page(mapping, index);
03158cd7 2721 err = -ENOMEM;
1da177e4
LT
2722 if (!page)
2723 goto out;
2724
03158cd7
NP
2725 if (page_has_buffers(page)) {
2726has_buffers:
2727 unlock_page(page);
2728 page_cache_release(page);
2729 return block_truncate_page(mapping, from, get_block);
2730 }
2731
2732 /* Find the buffer that contains "offset" */
2733 pos = blocksize;
2734 while (offset >= pos) {
2735 iblock++;
2736 pos += blocksize;
2737 }
2738
460bcf57
TT
2739 map_bh.b_size = blocksize;
2740 map_bh.b_state = 0;
03158cd7
NP
2741 err = get_block(inode, iblock, &map_bh, 0);
2742 if (err)
2743 goto unlock;
2744 /* unmapped? It's a hole - nothing to do */
2745 if (!buffer_mapped(&map_bh))
2746 goto unlock;
2747
2748 /* Ok, it's mapped. Make sure it's up-to-date */
2749 if (!PageUptodate(page)) {
2750 err = mapping->a_ops->readpage(NULL, page);
2751 if (err) {
2752 page_cache_release(page);
2753 goto out;
2754 }
2755 lock_page(page);
2756 if (!PageUptodate(page)) {
2757 err = -EIO;
2758 goto unlock;
2759 }
2760 if (page_has_buffers(page))
2761 goto has_buffers;
1da177e4 2762 }
eebd2aa3 2763 zero_user(page, offset, length);
03158cd7
NP
2764 set_page_dirty(page);
2765 err = 0;
2766
2767unlock:
1da177e4
LT
2768 unlock_page(page);
2769 page_cache_release(page);
2770out:
03158cd7 2771 return err;
1da177e4
LT
2772}
2773EXPORT_SYMBOL(nobh_truncate_page);
2774
2775int block_truncate_page(struct address_space *mapping,
2776 loff_t from, get_block_t *get_block)
2777{
2778 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2779 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2780 unsigned blocksize;
54b21a79 2781 sector_t iblock;
1da177e4
LT
2782 unsigned length, pos;
2783 struct inode *inode = mapping->host;
2784 struct page *page;
2785 struct buffer_head *bh;
1da177e4
LT
2786 int err;
2787
2788 blocksize = 1 << inode->i_blkbits;
2789 length = offset & (blocksize - 1);
2790
2791 /* Block boundary? Nothing to do */
2792 if (!length)
2793 return 0;
2794
2795 length = blocksize - length;
54b21a79 2796 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2797
2798 page = grab_cache_page(mapping, index);
2799 err = -ENOMEM;
2800 if (!page)
2801 goto out;
2802
2803 if (!page_has_buffers(page))
2804 create_empty_buffers(page, blocksize, 0);
2805
2806 /* Find the buffer that contains "offset" */
2807 bh = page_buffers(page);
2808 pos = blocksize;
2809 while (offset >= pos) {
2810 bh = bh->b_this_page;
2811 iblock++;
2812 pos += blocksize;
2813 }
2814
2815 err = 0;
2816 if (!buffer_mapped(bh)) {
b0cf2321 2817 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2818 err = get_block(inode, iblock, bh, 0);
2819 if (err)
2820 goto unlock;
2821 /* unmapped? It's a hole - nothing to do */
2822 if (!buffer_mapped(bh))
2823 goto unlock;
2824 }
2825
2826 /* Ok, it's mapped. Make sure it's up-to-date */
2827 if (PageUptodate(page))
2828 set_buffer_uptodate(bh);
2829
33a266dd 2830 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4
LT
2831 err = -EIO;
2832 ll_rw_block(READ, 1, &bh);
2833 wait_on_buffer(bh);
2834 /* Uhhuh. Read error. Complain and punt. */
2835 if (!buffer_uptodate(bh))
2836 goto unlock;
2837 }
2838
eebd2aa3 2839 zero_user(page, offset, length);
1da177e4
LT
2840 mark_buffer_dirty(bh);
2841 err = 0;
2842
2843unlock:
2844 unlock_page(page);
2845 page_cache_release(page);
2846out:
2847 return err;
2848}
2849
2850/*
2851 * The generic ->writepage function for buffer-backed address_spaces
35c80d5f 2852 * this form passes in the end_io handler used to finish the IO.
1da177e4 2853 */
35c80d5f
CM
2854int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2855 struct writeback_control *wbc, bh_end_io_t *handler)
1da177e4
LT
2856{
2857 struct inode * const inode = page->mapping->host;
2858 loff_t i_size = i_size_read(inode);
2859 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2860 unsigned offset;
1da177e4
LT
2861
2862 /* Is the page fully inside i_size? */
2863 if (page->index < end_index)
35c80d5f
CM
2864 return __block_write_full_page(inode, page, get_block, wbc,
2865 handler);
1da177e4
LT
2866
2867 /* Is the page fully outside i_size? (truncate in progress) */
2868 offset = i_size & (PAGE_CACHE_SIZE-1);
2869 if (page->index >= end_index+1 || !offset) {
2870 /*
2871 * The page may have dirty, unmapped buffers. For example,
2872 * they may have been added in ext3_writepage(). Make them
2873 * freeable here, so the page does not leak.
2874 */
aaa4059b 2875 do_invalidatepage(page, 0);
1da177e4
LT
2876 unlock_page(page);
2877 return 0; /* don't care */
2878 }
2879
2880 /*
2881 * The page straddles i_size. It must be zeroed out on each and every
2882 * writepage invokation because it may be mmapped. "A file is mapped
2883 * in multiples of the page size. For a file that is not a multiple of
2884 * the page size, the remaining memory is zeroed when mapped, and
2885 * writes to that region are not written out to the file."
2886 */
eebd2aa3 2887 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
35c80d5f 2888 return __block_write_full_page(inode, page, get_block, wbc, handler);
1da177e4
LT
2889}
2890
35c80d5f
CM
2891/*
2892 * The generic ->writepage function for buffer-backed address_spaces
2893 */
2894int block_write_full_page(struct page *page, get_block_t *get_block,
2895 struct writeback_control *wbc)
2896{
2897 return block_write_full_page_endio(page, get_block, wbc,
2898 end_buffer_async_write);
2899}
2900
2901
1da177e4
LT
2902sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2903 get_block_t *get_block)
2904{
2905 struct buffer_head tmp;
2906 struct inode *inode = mapping->host;
2907 tmp.b_state = 0;
2908 tmp.b_blocknr = 0;
b0cf2321 2909 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
2910 get_block(inode, block, &tmp, 0);
2911 return tmp.b_blocknr;
2912}
2913
6712ecf8 2914static void end_bio_bh_io_sync(struct bio *bio, int err)
1da177e4
LT
2915{
2916 struct buffer_head *bh = bio->bi_private;
2917
1da177e4
LT
2918 if (err == -EOPNOTSUPP) {
2919 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2920 set_bit(BH_Eopnotsupp, &bh->b_state);
2921 }
2922
08bafc03
KM
2923 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2924 set_bit(BH_Quiet, &bh->b_state);
2925
1da177e4
LT
2926 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2927 bio_put(bio);
1da177e4
LT
2928}
2929
2930int submit_bh(int rw, struct buffer_head * bh)
2931{
2932 struct bio *bio;
2933 int ret = 0;
2934
2935 BUG_ON(!buffer_locked(bh));
2936 BUG_ON(!buffer_mapped(bh));
2937 BUG_ON(!bh->b_end_io);
2938
48fd4f93
JA
2939 /*
2940 * Mask in barrier bit for a write (could be either a WRITE or a
2941 * WRITE_SYNC
2942 */
2943 if (buffer_ordered(bh) && (rw & WRITE))
2944 rw |= WRITE_BARRIER;
1da177e4
LT
2945
2946 /*
48fd4f93 2947 * Only clear out a write error when rewriting
1da177e4 2948 */
48fd4f93 2949 if (test_set_buffer_req(bh) && (rw & WRITE))
1da177e4
LT
2950 clear_buffer_write_io_error(bh);
2951
2952 /*
2953 * from here on down, it's all bio -- do the initial mapping,
2954 * submit_bio -> generic_make_request may further map this bio around
2955 */
2956 bio = bio_alloc(GFP_NOIO, 1);
2957
2958 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2959 bio->bi_bdev = bh->b_bdev;
2960 bio->bi_io_vec[0].bv_page = bh->b_page;
2961 bio->bi_io_vec[0].bv_len = bh->b_size;
2962 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2963
2964 bio->bi_vcnt = 1;
2965 bio->bi_idx = 0;
2966 bio->bi_size = bh->b_size;
2967
2968 bio->bi_end_io = end_bio_bh_io_sync;
2969 bio->bi_private = bh;
2970
2971 bio_get(bio);
2972 submit_bio(rw, bio);
2973
2974 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2975 ret = -EOPNOTSUPP;
2976
2977 bio_put(bio);
2978 return ret;
2979}
2980
2981/**
2982 * ll_rw_block: low-level access to block devices (DEPRECATED)
a7662236 2983 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
1da177e4
LT
2984 * @nr: number of &struct buffer_heads in the array
2985 * @bhs: array of pointers to &struct buffer_head
2986 *
a7662236
JK
2987 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2988 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2989 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2990 * are sent to disk. The fourth %READA option is described in the documentation
2991 * for generic_make_request() which ll_rw_block() calls.
1da177e4
LT
2992 *
2993 * This function drops any buffer that it cannot get a lock on (with the
a7662236
JK
2994 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2995 * clean when doing a write request, and any buffer that appears to be
2996 * up-to-date when doing read request. Further it marks as clean buffers that
2997 * are processed for writing (the buffer cache won't assume that they are
2998 * actually clean until the buffer gets unlocked).
1da177e4
LT
2999 *
3000 * ll_rw_block sets b_end_io to simple completion handler that marks
3001 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3002 * any waiters.
3003 *
3004 * All of the buffers must be for the same device, and must also be a
3005 * multiple of the current approved size for the device.
3006 */
3007void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3008{
3009 int i;
3010
3011 for (i = 0; i < nr; i++) {
3012 struct buffer_head *bh = bhs[i];
3013
9cf6b720 3014 if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG)
a7662236 3015 lock_buffer(bh);
ca5de404 3016 else if (!trylock_buffer(bh))
1da177e4
LT
3017 continue;
3018
9cf6b720
JA
3019 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC ||
3020 rw == SWRITE_SYNC_PLUG) {
1da177e4 3021 if (test_clear_buffer_dirty(bh)) {
76c3073a 3022 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3023 get_bh(bh);
18ce3751
JA
3024 if (rw == SWRITE_SYNC)
3025 submit_bh(WRITE_SYNC, bh);
3026 else
3027 submit_bh(WRITE, bh);
1da177e4
LT
3028 continue;
3029 }
3030 } else {
1da177e4 3031 if (!buffer_uptodate(bh)) {
76c3073a 3032 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3033 get_bh(bh);
1da177e4
LT
3034 submit_bh(rw, bh);
3035 continue;
3036 }
3037 }
3038 unlock_buffer(bh);
1da177e4
LT
3039 }
3040}
3041
3042/*
3043 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3044 * and then start new I/O and then wait upon it. The caller must have a ref on
3045 * the buffer_head.
3046 */
3047int sync_dirty_buffer(struct buffer_head *bh)
3048{
3049 int ret = 0;
3050
3051 WARN_ON(atomic_read(&bh->b_count) < 1);
3052 lock_buffer(bh);
3053 if (test_clear_buffer_dirty(bh)) {
3054 get_bh(bh);
3055 bh->b_end_io = end_buffer_write_sync;
1aa2a7cc 3056 ret = submit_bh(WRITE_SYNC, bh);
1da177e4
LT
3057 wait_on_buffer(bh);
3058 if (buffer_eopnotsupp(bh)) {
3059 clear_buffer_eopnotsupp(bh);
3060 ret = -EOPNOTSUPP;
3061 }
3062 if (!ret && !buffer_uptodate(bh))
3063 ret = -EIO;
3064 } else {
3065 unlock_buffer(bh);
3066 }
3067 return ret;
3068}
3069
3070/*
3071 * try_to_free_buffers() checks if all the buffers on this particular page
3072 * are unused, and releases them if so.
3073 *
3074 * Exclusion against try_to_free_buffers may be obtained by either
3075 * locking the page or by holding its mapping's private_lock.
3076 *
3077 * If the page is dirty but all the buffers are clean then we need to
3078 * be sure to mark the page clean as well. This is because the page
3079 * may be against a block device, and a later reattachment of buffers
3080 * to a dirty page will set *all* buffers dirty. Which would corrupt
3081 * filesystem data on the same device.
3082 *
3083 * The same applies to regular filesystem pages: if all the buffers are
3084 * clean then we set the page clean and proceed. To do that, we require
3085 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3086 * private_lock.
3087 *
3088 * try_to_free_buffers() is non-blocking.
3089 */
3090static inline int buffer_busy(struct buffer_head *bh)
3091{
3092 return atomic_read(&bh->b_count) |
3093 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3094}
3095
3096static int
3097drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3098{
3099 struct buffer_head *head = page_buffers(page);
3100 struct buffer_head *bh;
3101
3102 bh = head;
3103 do {
de7d5a3b 3104 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
3105 set_bit(AS_EIO, &page->mapping->flags);
3106 if (buffer_busy(bh))
3107 goto failed;
3108 bh = bh->b_this_page;
3109 } while (bh != head);
3110
3111 do {
3112 struct buffer_head *next = bh->b_this_page;
3113
535ee2fb 3114 if (bh->b_assoc_map)
1da177e4
LT
3115 __remove_assoc_queue(bh);
3116 bh = next;
3117 } while (bh != head);
3118 *buffers_to_free = head;
3119 __clear_page_buffers(page);
3120 return 1;
3121failed:
3122 return 0;
3123}
3124
3125int try_to_free_buffers(struct page *page)
3126{
3127 struct address_space * const mapping = page->mapping;
3128 struct buffer_head *buffers_to_free = NULL;
3129 int ret = 0;
3130
3131 BUG_ON(!PageLocked(page));
ecdfc978 3132 if (PageWriteback(page))
1da177e4
LT
3133 return 0;
3134
3135 if (mapping == NULL) { /* can this still happen? */
3136 ret = drop_buffers(page, &buffers_to_free);
3137 goto out;
3138 }
3139
3140 spin_lock(&mapping->private_lock);
3141 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3142
3143 /*
3144 * If the filesystem writes its buffers by hand (eg ext3)
3145 * then we can have clean buffers against a dirty page. We
3146 * clean the page here; otherwise the VM will never notice
3147 * that the filesystem did any IO at all.
3148 *
3149 * Also, during truncate, discard_buffer will have marked all
3150 * the page's buffers clean. We discover that here and clean
3151 * the page also.
87df7241
NP
3152 *
3153 * private_lock must be held over this entire operation in order
3154 * to synchronise against __set_page_dirty_buffers and prevent the
3155 * dirty bit from being lost.
ecdfc978
LT
3156 */
3157 if (ret)
3158 cancel_dirty_page(page, PAGE_CACHE_SIZE);
87df7241 3159 spin_unlock(&mapping->private_lock);
1da177e4
LT
3160out:
3161 if (buffers_to_free) {
3162 struct buffer_head *bh = buffers_to_free;
3163
3164 do {
3165 struct buffer_head *next = bh->b_this_page;
3166 free_buffer_head(bh);
3167 bh = next;
3168 } while (bh != buffers_to_free);
3169 }
3170 return ret;
3171}
3172EXPORT_SYMBOL(try_to_free_buffers);
3173
3978d717 3174void block_sync_page(struct page *page)
1da177e4
LT
3175{
3176 struct address_space *mapping;
3177
3178 smp_mb();
3179 mapping = page_mapping(page);
3180 if (mapping)
3181 blk_run_backing_dev(mapping->backing_dev_info, page);
1da177e4
LT
3182}
3183
3184/*
3185 * There are no bdflush tunables left. But distributions are
3186 * still running obsolete flush daemons, so we terminate them here.
3187 *
3188 * Use of bdflush() is deprecated and will be removed in a future kernel.
3189 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3190 */
bdc480e3 3191SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3192{
3193 static int msg_count;
3194
3195 if (!capable(CAP_SYS_ADMIN))
3196 return -EPERM;
3197
3198 if (msg_count < 5) {
3199 msg_count++;
3200 printk(KERN_INFO
3201 "warning: process `%s' used the obsolete bdflush"
3202 " system call\n", current->comm);
3203 printk(KERN_INFO "Fix your initscripts?\n");
3204 }
3205
3206 if (func == 1)
3207 do_exit(0);
3208 return 0;
3209}
3210
3211/*
3212 * Buffer-head allocation
3213 */
e18b890b 3214static struct kmem_cache *bh_cachep;
1da177e4
LT
3215
3216/*
3217 * Once the number of bh's in the machine exceeds this level, we start
3218 * stripping them in writeback.
3219 */
3220static int max_buffer_heads;
3221
3222int buffer_heads_over_limit;
3223
3224struct bh_accounting {
3225 int nr; /* Number of live bh's */
3226 int ratelimit; /* Limit cacheline bouncing */
3227};
3228
3229static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3230
3231static void recalc_bh_state(void)
3232{
3233 int i;
3234 int tot = 0;
3235
3236 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3237 return;
3238 __get_cpu_var(bh_accounting).ratelimit = 0;
8a143426 3239 for_each_online_cpu(i)
1da177e4
LT
3240 tot += per_cpu(bh_accounting, i).nr;
3241 buffer_heads_over_limit = (tot > max_buffer_heads);
3242}
3243
dd0fc66f 3244struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3245{
488514d1 3246 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
1da177e4 3247 if (ret) {
a35afb83 3248 INIT_LIST_HEAD(&ret->b_assoc_buffers);
736c7b80 3249 get_cpu_var(bh_accounting).nr++;
1da177e4 3250 recalc_bh_state();
736c7b80 3251 put_cpu_var(bh_accounting);
1da177e4
LT
3252 }
3253 return ret;
3254}
3255EXPORT_SYMBOL(alloc_buffer_head);
3256
3257void free_buffer_head(struct buffer_head *bh)
3258{
3259 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3260 kmem_cache_free(bh_cachep, bh);
736c7b80 3261 get_cpu_var(bh_accounting).nr--;
1da177e4 3262 recalc_bh_state();
736c7b80 3263 put_cpu_var(bh_accounting);
1da177e4
LT
3264}
3265EXPORT_SYMBOL(free_buffer_head);
3266
1da177e4
LT
3267static void buffer_exit_cpu(int cpu)
3268{
3269 int i;
3270 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3271
3272 for (i = 0; i < BH_LRU_SIZE; i++) {
3273 brelse(b->bhs[i]);
3274 b->bhs[i] = NULL;
3275 }
8a143426
ED
3276 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3277 per_cpu(bh_accounting, cpu).nr = 0;
3278 put_cpu_var(bh_accounting);
1da177e4
LT
3279}
3280
3281static int buffer_cpu_notify(struct notifier_block *self,
3282 unsigned long action, void *hcpu)
3283{
8bb78442 3284 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1da177e4
LT
3285 buffer_exit_cpu((unsigned long)hcpu);
3286 return NOTIFY_OK;
3287}
1da177e4 3288
389d1b08 3289/**
a6b91919 3290 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3291 * @bh: struct buffer_head
3292 *
3293 * Return true if the buffer is up-to-date and false,
3294 * with the buffer locked, if not.
3295 */
3296int bh_uptodate_or_lock(struct buffer_head *bh)
3297{
3298 if (!buffer_uptodate(bh)) {
3299 lock_buffer(bh);
3300 if (!buffer_uptodate(bh))
3301 return 0;
3302 unlock_buffer(bh);
3303 }
3304 return 1;
3305}
3306EXPORT_SYMBOL(bh_uptodate_or_lock);
3307
3308/**
a6b91919 3309 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3310 * @bh: struct buffer_head
3311 *
3312 * Returns zero on success and -EIO on error.
3313 */
3314int bh_submit_read(struct buffer_head *bh)
3315{
3316 BUG_ON(!buffer_locked(bh));
3317
3318 if (buffer_uptodate(bh)) {
3319 unlock_buffer(bh);
3320 return 0;
3321 }
3322
3323 get_bh(bh);
3324 bh->b_end_io = end_buffer_read_sync;
3325 submit_bh(READ, bh);
3326 wait_on_buffer(bh);
3327 if (buffer_uptodate(bh))
3328 return 0;
3329 return -EIO;
3330}
3331EXPORT_SYMBOL(bh_submit_read);
3332
b98938c3 3333static void
51cc5068 3334init_buffer_head(void *data)
b98938c3
CL
3335{
3336 struct buffer_head *bh = data;
3337
3338 memset(bh, 0, sizeof(*bh));
3339 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3340}
3341
1da177e4
LT
3342void __init buffer_init(void)
3343{
3344 int nrpages;
3345
b98938c3
CL
3346 bh_cachep = kmem_cache_create("buffer_head",
3347 sizeof(struct buffer_head), 0,
3348 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3349 SLAB_MEM_SPREAD),
3350 init_buffer_head);
1da177e4
LT
3351
3352 /*
3353 * Limit the bh occupancy to 10% of ZONE_NORMAL
3354 */
3355 nrpages = (nr_free_buffer_pages() * 10) / 100;
3356 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3357 hotcpu_notifier(buffer_cpu_notify, 0);
3358}
3359
3360EXPORT_SYMBOL(__bforget);
3361EXPORT_SYMBOL(__brelse);
3362EXPORT_SYMBOL(__wait_on_buffer);
3363EXPORT_SYMBOL(block_commit_write);
3364EXPORT_SYMBOL(block_prepare_write);
54171690 3365EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
3366EXPORT_SYMBOL(block_read_full_page);
3367EXPORT_SYMBOL(block_sync_page);
3368EXPORT_SYMBOL(block_truncate_page);
3369EXPORT_SYMBOL(block_write_full_page);
35c80d5f 3370EXPORT_SYMBOL(block_write_full_page_endio);
89e10787 3371EXPORT_SYMBOL(cont_write_begin);
1da177e4
LT
3372EXPORT_SYMBOL(end_buffer_read_sync);
3373EXPORT_SYMBOL(end_buffer_write_sync);
35c80d5f 3374EXPORT_SYMBOL(end_buffer_async_write);
1da177e4 3375EXPORT_SYMBOL(file_fsync);
1da177e4 3376EXPORT_SYMBOL(generic_block_bmap);
05eb0b51 3377EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4
LT
3378EXPORT_SYMBOL(init_buffer);
3379EXPORT_SYMBOL(invalidate_bdev);
3380EXPORT_SYMBOL(ll_rw_block);
3381EXPORT_SYMBOL(mark_buffer_dirty);
3382EXPORT_SYMBOL(submit_bh);
3383EXPORT_SYMBOL(sync_dirty_buffer);
3384EXPORT_SYMBOL(unlock_buffer);