oprofile: simplify add_sample() in cpu_buffer.c
[linux-2.6] / drivers / oprofile / cpu_buffer.c
1 /**
2  * @file cpu_buffer.c
3  *
4  * @remark Copyright 2002 OProfile authors
5  * @remark Read the file COPYING
6  *
7  * @author John Levon <levon@movementarian.org>
8  * @author Barry Kasindorf <barry.kasindorf@amd.com>
9  *
10  * Each CPU has a local buffer that stores PC value/event
11  * pairs. We also log context switches when we notice them.
12  * Eventually each CPU's buffer is processed into the global
13  * event buffer by sync_buffer().
14  *
15  * We use a local buffer for two reasons: an NMI or similar
16  * interrupt cannot synchronise, and high sampling rates
17  * would lead to catastrophic global synchronisation if
18  * a global buffer was used.
19  */
20
21 #include <linux/sched.h>
22 #include <linux/oprofile.h>
23 #include <linux/vmalloc.h>
24 #include <linux/errno.h>
25
26 #include "event_buffer.h"
27 #include "cpu_buffer.h"
28 #include "buffer_sync.h"
29 #include "oprof.h"
30
31 #define OP_BUFFER_FLAGS 0
32
33 /*
34  * Read and write access is using spin locking. Thus, writing to the
35  * buffer by NMI handler (x86) could occur also during critical
36  * sections when reading the buffer. To avoid this, there are 2
37  * buffers for independent read and write access. Read access is in
38  * process context only, write access only in the NMI handler. If the
39  * read buffer runs empty, both buffers are swapped atomically. There
40  * is potentially a small window during swapping where the buffers are
41  * disabled and samples could be lost.
42  *
43  * Using 2 buffers is a little bit overhead, but the solution is clear
44  * and does not require changes in the ring buffer implementation. It
45  * can be changed to a single buffer solution when the ring buffer
46  * access is implemented as non-locking atomic code.
47  */
48 static struct ring_buffer *op_ring_buffer_read;
49 static struct ring_buffer *op_ring_buffer_write;
50 DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
51
52 static void wq_sync_buffer(struct work_struct *work);
53
54 #define DEFAULT_TIMER_EXPIRE (HZ / 10)
55 static int work_enabled;
56
57 unsigned long oprofile_get_cpu_buffer_size(void)
58 {
59         return oprofile_cpu_buffer_size;
60 }
61
62 void oprofile_cpu_buffer_inc_smpl_lost(void)
63 {
64         struct oprofile_cpu_buffer *cpu_buf
65                 = &__get_cpu_var(cpu_buffer);
66
67         cpu_buf->sample_lost_overflow++;
68 }
69
70 void free_cpu_buffers(void)
71 {
72         if (op_ring_buffer_read)
73                 ring_buffer_free(op_ring_buffer_read);
74         op_ring_buffer_read = NULL;
75         if (op_ring_buffer_write)
76                 ring_buffer_free(op_ring_buffer_write);
77         op_ring_buffer_write = NULL;
78 }
79
80 int alloc_cpu_buffers(void)
81 {
82         int i;
83
84         unsigned long buffer_size = oprofile_cpu_buffer_size;
85
86         op_ring_buffer_read = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS);
87         if (!op_ring_buffer_read)
88                 goto fail;
89         op_ring_buffer_write = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS);
90         if (!op_ring_buffer_write)
91                 goto fail;
92
93         for_each_possible_cpu(i) {
94                 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
95
96                 b->last_task = NULL;
97                 b->last_is_kernel = -1;
98                 b->tracing = 0;
99                 b->buffer_size = buffer_size;
100                 b->tail_pos = 0;
101                 b->head_pos = 0;
102                 b->sample_received = 0;
103                 b->sample_lost_overflow = 0;
104                 b->backtrace_aborted = 0;
105                 b->sample_invalid_eip = 0;
106                 b->cpu = i;
107                 INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
108         }
109         return 0;
110
111 fail:
112         free_cpu_buffers();
113         return -ENOMEM;
114 }
115
116 void start_cpu_work(void)
117 {
118         int i;
119
120         work_enabled = 1;
121
122         for_each_online_cpu(i) {
123                 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
124
125                 /*
126                  * Spread the work by 1 jiffy per cpu so they dont all
127                  * fire at once.
128                  */
129                 schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
130         }
131 }
132
133 void end_cpu_work(void)
134 {
135         int i;
136
137         work_enabled = 0;
138
139         for_each_online_cpu(i) {
140                 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
141
142                 cancel_delayed_work(&b->work);
143         }
144
145         flush_scheduled_work();
146 }
147
148 int op_cpu_buffer_write_entry(struct op_entry *entry)
149 {
150         entry->event = ring_buffer_lock_reserve(op_ring_buffer_write,
151                                                 sizeof(struct op_sample),
152                                                 &entry->irq_flags);
153         if (entry->event)
154                 entry->sample = ring_buffer_event_data(entry->event);
155         else
156                 entry->sample = NULL;
157
158         if (!entry->sample)
159                 return -ENOMEM;
160
161         return 0;
162 }
163
164 int op_cpu_buffer_write_commit(struct op_entry *entry)
165 {
166         return ring_buffer_unlock_commit(op_ring_buffer_write, entry->event,
167                                          entry->irq_flags);
168 }
169
170 struct op_sample *op_cpu_buffer_read_entry(int cpu)
171 {
172         struct ring_buffer_event *e;
173         e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
174         if (e)
175                 return ring_buffer_event_data(e);
176         if (ring_buffer_swap_cpu(op_ring_buffer_read,
177                                  op_ring_buffer_write,
178                                  cpu))
179                 return NULL;
180         e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
181         if (e)
182                 return ring_buffer_event_data(e);
183         return NULL;
184 }
185
186 unsigned long op_cpu_buffer_entries(int cpu)
187 {
188         return ring_buffer_entries_cpu(op_ring_buffer_read, cpu)
189                 + ring_buffer_entries_cpu(op_ring_buffer_write, cpu);
190 }
191
192 static inline int
193 add_sample(struct oprofile_cpu_buffer *cpu_buf,
194            unsigned long pc, unsigned long event)
195 {
196         struct op_entry entry;
197         int ret;
198
199         ret = op_cpu_buffer_write_entry(&entry);
200         if (ret)
201                 return ret;
202
203         entry.sample->eip = pc;
204         entry.sample->event = event;
205
206         return op_cpu_buffer_write_commit(&entry);
207 }
208
209 static inline int
210 add_code(struct oprofile_cpu_buffer *buffer, unsigned long value)
211 {
212         return add_sample(buffer, ESCAPE_CODE, value);
213 }
214
215 /* This must be safe from any context. It's safe writing here
216  * because of the head/tail separation of the writer and reader
217  * of the CPU buffer.
218  *
219  * is_kernel is needed because on some architectures you cannot
220  * tell if you are in kernel or user space simply by looking at
221  * pc. We tag this in the buffer by generating kernel enter/exit
222  * events whenever is_kernel changes
223  */
224 static int log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
225                       int is_kernel, unsigned long event)
226 {
227         struct task_struct *task;
228
229         cpu_buf->sample_received++;
230
231         if (pc == ESCAPE_CODE) {
232                 cpu_buf->sample_invalid_eip++;
233                 return 0;
234         }
235
236         is_kernel = !!is_kernel;
237
238         task = current;
239
240         /* notice a switch from user->kernel or vice versa */
241         if (cpu_buf->last_is_kernel != is_kernel) {
242                 cpu_buf->last_is_kernel = is_kernel;
243                 if (add_code(cpu_buf, is_kernel))
244                         goto fail;
245         }
246
247         /* notice a task switch */
248         if (cpu_buf->last_task != task) {
249                 cpu_buf->last_task = task;
250                 if (add_code(cpu_buf, (unsigned long)task))
251                         goto fail;
252         }
253
254         if (add_sample(cpu_buf, pc, event))
255                 goto fail;
256
257         return 1;
258
259 fail:
260         cpu_buf->sample_lost_overflow++;
261         return 0;
262 }
263
264 static inline void oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
265 {
266         add_code(cpu_buf, CPU_TRACE_BEGIN);
267         cpu_buf->tracing = 1;
268 }
269
270 static inline void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf)
271 {
272         cpu_buf->tracing = 0;
273 }
274
275 static inline void
276 __oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
277                           unsigned long event, int is_kernel)
278 {
279         struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
280
281         if (!oprofile_backtrace_depth) {
282                 log_sample(cpu_buf, pc, is_kernel, event);
283                 return;
284         }
285
286         oprofile_begin_trace(cpu_buf);
287
288         /*
289          * if log_sample() fail we can't backtrace since we lost the
290          * source of this event
291          */
292         if (log_sample(cpu_buf, pc, is_kernel, event))
293                 oprofile_ops.backtrace(regs, oprofile_backtrace_depth);
294
295         oprofile_end_trace(cpu_buf);
296 }
297
298 void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
299                              unsigned long event, int is_kernel)
300 {
301         __oprofile_add_ext_sample(pc, regs, event, is_kernel);
302 }
303
304 void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
305 {
306         int is_kernel = !user_mode(regs);
307         unsigned long pc = profile_pc(regs);
308
309         __oprofile_add_ext_sample(pc, regs, event, is_kernel);
310 }
311
312 #ifdef CONFIG_OPROFILE_IBS
313
314 #define MAX_IBS_SAMPLE_SIZE 14
315
316 void oprofile_add_ibs_sample(struct pt_regs * const regs,
317                              unsigned int * const ibs_sample, int ibs_code)
318 {
319         int is_kernel = !user_mode(regs);
320         struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
321         struct task_struct *task;
322         int fail = 0;
323
324         cpu_buf->sample_received++;
325
326         /* notice a switch from user->kernel or vice versa */
327         if (cpu_buf->last_is_kernel != is_kernel) {
328                 if (add_code(cpu_buf, is_kernel))
329                         goto fail;
330                 cpu_buf->last_is_kernel = is_kernel;
331         }
332
333         /* notice a task switch */
334         if (!is_kernel) {
335                 task = current;
336                 if (cpu_buf->last_task != task) {
337                         if (add_code(cpu_buf, (unsigned long)task))
338                                 goto fail;
339                         cpu_buf->last_task = task;
340                 }
341         }
342
343         fail = fail || add_code(cpu_buf, ibs_code);
344         fail = fail || add_sample(cpu_buf, ibs_sample[0], ibs_sample[1]);
345         fail = fail || add_sample(cpu_buf, ibs_sample[2], ibs_sample[3]);
346         fail = fail || add_sample(cpu_buf, ibs_sample[4], ibs_sample[5]);
347
348         if (ibs_code == IBS_OP_BEGIN) {
349                 fail = fail || add_sample(cpu_buf, ibs_sample[6], ibs_sample[7]);
350                 fail = fail || add_sample(cpu_buf, ibs_sample[8], ibs_sample[9]);
351                 fail = fail || add_sample(cpu_buf, ibs_sample[10], ibs_sample[11]);
352         }
353
354         if (fail)
355                 goto fail;
356
357         if (oprofile_backtrace_depth)
358                 oprofile_ops.backtrace(regs, oprofile_backtrace_depth);
359
360         return;
361
362 fail:
363         cpu_buf->sample_lost_overflow++;
364         return;
365 }
366
367 #endif
368
369 void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
370 {
371         struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
372         log_sample(cpu_buf, pc, is_kernel, event);
373 }
374
375 void oprofile_add_trace(unsigned long pc)
376 {
377         struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
378
379         if (!cpu_buf->tracing)
380                 return;
381
382         /*
383          * broken frame can give an eip with the same value as an
384          * escape code, abort the trace if we get it
385          */
386         if (pc == ESCAPE_CODE)
387                 goto fail;
388
389         if (add_sample(cpu_buf, pc, 0))
390                 goto fail;
391
392         return;
393 fail:
394         cpu_buf->tracing = 0;
395         cpu_buf->backtrace_aborted++;
396         return;
397 }
398
399 /*
400  * This serves to avoid cpu buffer overflow, and makes sure
401  * the task mortuary progresses
402  *
403  * By using schedule_delayed_work_on and then schedule_delayed_work
404  * we guarantee this will stay on the correct cpu
405  */
406 static void wq_sync_buffer(struct work_struct *work)
407 {
408         struct oprofile_cpu_buffer *b =
409                 container_of(work, struct oprofile_cpu_buffer, work.work);
410         if (b->cpu != smp_processor_id()) {
411                 printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n",
412                        smp_processor_id(), b->cpu);
413
414                 if (!cpu_online(b->cpu)) {
415                         cancel_delayed_work(&b->work);
416                         return;
417                 }
418         }
419         sync_buffer(b->cpu);
420
421         /* don't re-add the work if we're shutting down */
422         if (work_enabled)
423                 schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
424 }