[PATCH] e1000: Fix SoL/IDER link and loopback
[linux-2.6] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48 struct e1000_stats {
49         char stat_string[ETH_GSTRING_LEN];
50         int sizeof_stat;
51         int stat_offset;
52 };
53
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55                       offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63         { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65         { "multicast", E1000_STAT(net_stats.multicast) },
66         { "collisions", E1000_STAT(net_stats.collisions) },
67         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71         { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
72         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
73         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
74         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
75         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
76         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
77         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
78         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
79         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80         { "tx_deferred_ok", E1000_STAT(stats.dc) },
81         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83         { "rx_long_length_errors", E1000_STAT(stats.roc) },
84         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
85         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
86         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
87         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
88         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
89         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
90         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
91         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
92         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
93         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
94         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
95         { "rx_header_split", E1000_STAT(rx_hdr_split) },
96 };
97 #define E1000_STATS_LEN \
98         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
99 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
100         "Register test  (offline)", "Eeprom test    (offline)",
101         "Interrupt test (offline)", "Loopback test  (offline)",
102         "Link test   (on/offline)"
103 };
104 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
105
106 static int
107 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
108 {
109         struct e1000_adapter *adapter = netdev_priv(netdev);
110         struct e1000_hw *hw = &adapter->hw;
111
112         if(hw->media_type == e1000_media_type_copper) {
113
114                 ecmd->supported = (SUPPORTED_10baseT_Half |
115                                    SUPPORTED_10baseT_Full |
116                                    SUPPORTED_100baseT_Half |
117                                    SUPPORTED_100baseT_Full |
118                                    SUPPORTED_1000baseT_Full|
119                                    SUPPORTED_Autoneg |
120                                    SUPPORTED_TP);
121
122                 ecmd->advertising = ADVERTISED_TP;
123
124                 if(hw->autoneg == 1) {
125                         ecmd->advertising |= ADVERTISED_Autoneg;
126
127                         /* the e1000 autoneg seems to match ethtool nicely */
128
129                         ecmd->advertising |= hw->autoneg_advertised;
130                 }
131
132                 ecmd->port = PORT_TP;
133                 ecmd->phy_address = hw->phy_addr;
134
135                 if(hw->mac_type == e1000_82543)
136                         ecmd->transceiver = XCVR_EXTERNAL;
137                 else
138                         ecmd->transceiver = XCVR_INTERNAL;
139
140         } else {
141                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
142                                      SUPPORTED_FIBRE |
143                                      SUPPORTED_Autoneg);
144
145                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
146                                      ADVERTISED_FIBRE |
147                                      ADVERTISED_Autoneg);
148
149                 ecmd->port = PORT_FIBRE;
150
151                 if(hw->mac_type >= e1000_82545)
152                         ecmd->transceiver = XCVR_INTERNAL;
153                 else
154                         ecmd->transceiver = XCVR_EXTERNAL;
155         }
156
157         if(netif_carrier_ok(adapter->netdev)) {
158
159                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160                                                    &adapter->link_duplex);
161                 ecmd->speed = adapter->link_speed;
162
163                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
164                  *          and HALF_DUPLEX != DUPLEX_HALF */
165
166                 if(adapter->link_duplex == FULL_DUPLEX)
167                         ecmd->duplex = DUPLEX_FULL;
168                 else
169                         ecmd->duplex = DUPLEX_HALF;
170         } else {
171                 ecmd->speed = -1;
172                 ecmd->duplex = -1;
173         }
174
175         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177         return 0;
178 }
179
180 static int
181 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
182 {
183         struct e1000_adapter *adapter = netdev_priv(netdev);
184         struct e1000_hw *hw = &adapter->hw;
185
186         /* When SoL/IDER sessions are active, autoneg/speed/duplex
187          * cannot be changed */
188         if (e1000_check_phy_reset_block(hw)) {
189                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
190                         "when SoL/IDER is active.\n");
191                 return -EINVAL;
192         }
193
194         if (ecmd->autoneg == AUTONEG_ENABLE) {
195                 hw->autoneg = 1;
196                 if(hw->media_type == e1000_media_type_fiber)
197                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
198                                      ADVERTISED_FIBRE |
199                                      ADVERTISED_Autoneg;
200                 else 
201                         hw->autoneg_advertised = ADVERTISED_10baseT_Half |
202                                                   ADVERTISED_10baseT_Full |
203                                                   ADVERTISED_100baseT_Half |
204                                                   ADVERTISED_100baseT_Full |
205                                                   ADVERTISED_1000baseT_Full|
206                                                   ADVERTISED_Autoneg |
207                                                   ADVERTISED_TP;
208                 ecmd->advertising = hw->autoneg_advertised;
209         } else
210                 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
211                         return -EINVAL;
212
213         /* reset the link */
214
215         if(netif_running(adapter->netdev)) {
216                 e1000_down(adapter);
217                 e1000_reset(adapter);
218                 e1000_up(adapter);
219         } else
220                 e1000_reset(adapter);
221
222         return 0;
223 }
224
225 static void
226 e1000_get_pauseparam(struct net_device *netdev,
227                      struct ethtool_pauseparam *pause)
228 {
229         struct e1000_adapter *adapter = netdev_priv(netdev);
230         struct e1000_hw *hw = &adapter->hw;
231
232         pause->autoneg = 
233                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
234         
235         if(hw->fc == e1000_fc_rx_pause)
236                 pause->rx_pause = 1;
237         else if(hw->fc == e1000_fc_tx_pause)
238                 pause->tx_pause = 1;
239         else if(hw->fc == e1000_fc_full) {
240                 pause->rx_pause = 1;
241                 pause->tx_pause = 1;
242         }
243 }
244
245 static int
246 e1000_set_pauseparam(struct net_device *netdev,
247                      struct ethtool_pauseparam *pause)
248 {
249         struct e1000_adapter *adapter = netdev_priv(netdev);
250         struct e1000_hw *hw = &adapter->hw;
251         
252         adapter->fc_autoneg = pause->autoneg;
253
254         if(pause->rx_pause && pause->tx_pause)
255                 hw->fc = e1000_fc_full;
256         else if(pause->rx_pause && !pause->tx_pause)
257                 hw->fc = e1000_fc_rx_pause;
258         else if(!pause->rx_pause && pause->tx_pause)
259                 hw->fc = e1000_fc_tx_pause;
260         else if(!pause->rx_pause && !pause->tx_pause)
261                 hw->fc = e1000_fc_none;
262
263         hw->original_fc = hw->fc;
264
265         if(adapter->fc_autoneg == AUTONEG_ENABLE) {
266                 if(netif_running(adapter->netdev)) {
267                         e1000_down(adapter);
268                         e1000_up(adapter);
269                 } else
270                         e1000_reset(adapter);
271         }
272         else
273                 return ((hw->media_type == e1000_media_type_fiber) ?
274                         e1000_setup_link(hw) : e1000_force_mac_fc(hw));
275         
276         return 0;
277 }
278
279 static uint32_t
280 e1000_get_rx_csum(struct net_device *netdev)
281 {
282         struct e1000_adapter *adapter = netdev_priv(netdev);
283         return adapter->rx_csum;
284 }
285
286 static int
287 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
288 {
289         struct e1000_adapter *adapter = netdev_priv(netdev);
290         adapter->rx_csum = data;
291
292         if(netif_running(netdev)) {
293                 e1000_down(adapter);
294                 e1000_up(adapter);
295         } else
296                 e1000_reset(adapter);
297         return 0;
298 }
299         
300 static uint32_t
301 e1000_get_tx_csum(struct net_device *netdev)
302 {
303         return (netdev->features & NETIF_F_HW_CSUM) != 0;
304 }
305
306 static int
307 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
308 {
309         struct e1000_adapter *adapter = netdev_priv(netdev);
310
311         if(adapter->hw.mac_type < e1000_82543) {
312                 if (!data)
313                         return -EINVAL;
314                 return 0;
315         }
316
317         if (data)
318                 netdev->features |= NETIF_F_HW_CSUM;
319         else
320                 netdev->features &= ~NETIF_F_HW_CSUM;
321
322         return 0;
323 }
324
325 #ifdef NETIF_F_TSO
326 static int
327 e1000_set_tso(struct net_device *netdev, uint32_t data)
328 {
329         struct e1000_adapter *adapter = netdev_priv(netdev);
330         if((adapter->hw.mac_type < e1000_82544) ||
331             (adapter->hw.mac_type == e1000_82547)) 
332                 return data ? -EINVAL : 0;
333
334         if (data)
335                 netdev->features |= NETIF_F_TSO;
336         else
337                 netdev->features &= ~NETIF_F_TSO;
338         return 0;
339
340 #endif /* NETIF_F_TSO */
341
342 static uint32_t
343 e1000_get_msglevel(struct net_device *netdev)
344 {
345         struct e1000_adapter *adapter = netdev_priv(netdev);
346         return adapter->msg_enable;
347 }
348
349 static void
350 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
351 {
352         struct e1000_adapter *adapter = netdev_priv(netdev);
353         adapter->msg_enable = data;
354 }
355
356 static int 
357 e1000_get_regs_len(struct net_device *netdev)
358 {
359 #define E1000_REGS_LEN 32
360         return E1000_REGS_LEN * sizeof(uint32_t);
361 }
362
363 static void
364 e1000_get_regs(struct net_device *netdev,
365                struct ethtool_regs *regs, void *p)
366 {
367         struct e1000_adapter *adapter = netdev_priv(netdev);
368         struct e1000_hw *hw = &adapter->hw;
369         uint32_t *regs_buff = p;
370         uint16_t phy_data;
371
372         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
373
374         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
375
376         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
377         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
378
379         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
380         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
381         regs_buff[4]  = E1000_READ_REG(hw, RDH);
382         regs_buff[5]  = E1000_READ_REG(hw, RDT);
383         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
384
385         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
386         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
387         regs_buff[9]  = E1000_READ_REG(hw, TDH);
388         regs_buff[10] = E1000_READ_REG(hw, TDT);
389         regs_buff[11] = E1000_READ_REG(hw, TIDV);
390
391         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
392         if(hw->phy_type == e1000_phy_igp) {
393                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
394                                     IGP01E1000_PHY_AGC_A);
395                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
396                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
397                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
398                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
399                                     IGP01E1000_PHY_AGC_B);
400                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
401                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
402                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
403                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
404                                     IGP01E1000_PHY_AGC_C);
405                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
406                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
407                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
408                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
409                                     IGP01E1000_PHY_AGC_D);
410                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
411                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
412                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
413                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
414                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
415                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
416                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
417                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
418                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
419                                     IGP01E1000_PHY_PCS_INIT_REG);
420                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
421                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
422                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
423                 regs_buff[20] = 0; /* polarity correction enabled (always) */
424                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
425                 regs_buff[23] = regs_buff[18]; /* mdix mode */
426                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
427         } else {
428                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
429                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
430                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
431                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
432                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
433                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
434                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
435                 regs_buff[18] = regs_buff[13]; /* cable polarity */
436                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
437                 regs_buff[20] = regs_buff[17]; /* polarity correction */
438                 /* phy receive errors */
439                 regs_buff[22] = adapter->phy_stats.receive_errors;
440                 regs_buff[23] = regs_buff[13]; /* mdix mode */
441         }
442         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
443         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
444         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
445         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
446         if(hw->mac_type >= e1000_82540 &&
447            hw->media_type == e1000_media_type_copper) {
448                 regs_buff[26] = E1000_READ_REG(hw, MANC);
449         }
450 }
451
452 static int
453 e1000_get_eeprom_len(struct net_device *netdev)
454 {
455         struct e1000_adapter *adapter = netdev_priv(netdev);
456         return adapter->hw.eeprom.word_size * 2;
457 }
458
459 static int
460 e1000_get_eeprom(struct net_device *netdev,
461                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
462 {
463         struct e1000_adapter *adapter = netdev_priv(netdev);
464         struct e1000_hw *hw = &adapter->hw;
465         uint16_t *eeprom_buff;
466         int first_word, last_word;
467         int ret_val = 0;
468         uint16_t i;
469
470         if(eeprom->len == 0)
471                 return -EINVAL;
472
473         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
474
475         first_word = eeprom->offset >> 1;
476         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
477
478         eeprom_buff = kmalloc(sizeof(uint16_t) *
479                         (last_word - first_word + 1), GFP_KERNEL);
480         if(!eeprom_buff)
481                 return -ENOMEM;
482
483         if(hw->eeprom.type == e1000_eeprom_spi)
484                 ret_val = e1000_read_eeprom(hw, first_word,
485                                             last_word - first_word + 1,
486                                             eeprom_buff);
487         else {
488                 for (i = 0; i < last_word - first_word + 1; i++)
489                         if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
490                                                         &eeprom_buff[i])))
491                                 break;
492         }
493
494         /* Device's eeprom is always little-endian, word addressable */
495         for (i = 0; i < last_word - first_word + 1; i++)
496                 le16_to_cpus(&eeprom_buff[i]);
497
498         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
499                         eeprom->len);
500         kfree(eeprom_buff);
501
502         return ret_val;
503 }
504
505 static int
506 e1000_set_eeprom(struct net_device *netdev,
507                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
508 {
509         struct e1000_adapter *adapter = netdev_priv(netdev);
510         struct e1000_hw *hw = &adapter->hw;
511         uint16_t *eeprom_buff;
512         void *ptr;
513         int max_len, first_word, last_word, ret_val = 0;
514         uint16_t i;
515
516         if(eeprom->len == 0)
517                 return -EOPNOTSUPP;
518
519         if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
520                 return -EFAULT;
521
522         max_len = hw->eeprom.word_size * 2;
523
524         first_word = eeprom->offset >> 1;
525         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
526         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
527         if(!eeprom_buff)
528                 return -ENOMEM;
529
530         ptr = (void *)eeprom_buff;
531
532         if(eeprom->offset & 1) {
533                 /* need read/modify/write of first changed EEPROM word */
534                 /* only the second byte of the word is being modified */
535                 ret_val = e1000_read_eeprom(hw, first_word, 1,
536                                             &eeprom_buff[0]);
537                 ptr++;
538         }
539         if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
540                 /* need read/modify/write of last changed EEPROM word */
541                 /* only the first byte of the word is being modified */
542                 ret_val = e1000_read_eeprom(hw, last_word, 1,
543                                   &eeprom_buff[last_word - first_word]);
544         }
545
546         /* Device's eeprom is always little-endian, word addressable */
547         for (i = 0; i < last_word - first_word + 1; i++)
548                 le16_to_cpus(&eeprom_buff[i]);
549
550         memcpy(ptr, bytes, eeprom->len);
551
552         for (i = 0; i < last_word - first_word + 1; i++)
553                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
554
555         ret_val = e1000_write_eeprom(hw, first_word,
556                                      last_word - first_word + 1, eeprom_buff);
557
558         /* Update the checksum over the first part of the EEPROM if needed 
559          * and flush shadow RAM for 82573 conrollers */
560         if((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) || 
561                                 (hw->mac_type == e1000_82573)))
562                 e1000_update_eeprom_checksum(hw);
563
564         kfree(eeprom_buff);
565         return ret_val;
566 }
567
568 static void
569 e1000_get_drvinfo(struct net_device *netdev,
570                        struct ethtool_drvinfo *drvinfo)
571 {
572         struct e1000_adapter *adapter = netdev_priv(netdev);
573
574         strncpy(drvinfo->driver,  e1000_driver_name, 32);
575         strncpy(drvinfo->version, e1000_driver_version, 32);
576         strncpy(drvinfo->fw_version, "N/A", 32);
577         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
578         drvinfo->n_stats = E1000_STATS_LEN;
579         drvinfo->testinfo_len = E1000_TEST_LEN;
580         drvinfo->regdump_len = e1000_get_regs_len(netdev);
581         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
582 }
583
584 static void
585 e1000_get_ringparam(struct net_device *netdev,
586                     struct ethtool_ringparam *ring)
587 {
588         struct e1000_adapter *adapter = netdev_priv(netdev);
589         e1000_mac_type mac_type = adapter->hw.mac_type;
590         struct e1000_tx_ring *txdr = adapter->tx_ring;
591         struct e1000_rx_ring *rxdr = adapter->rx_ring;
592
593         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
594                 E1000_MAX_82544_RXD;
595         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
596                 E1000_MAX_82544_TXD;
597         ring->rx_mini_max_pending = 0;
598         ring->rx_jumbo_max_pending = 0;
599         ring->rx_pending = rxdr->count;
600         ring->tx_pending = txdr->count;
601         ring->rx_mini_pending = 0;
602         ring->rx_jumbo_pending = 0;
603 }
604
605 static int 
606 e1000_set_ringparam(struct net_device *netdev,
607                     struct ethtool_ringparam *ring)
608 {
609         struct e1000_adapter *adapter = netdev_priv(netdev);
610         e1000_mac_type mac_type = adapter->hw.mac_type;
611         struct e1000_tx_ring *txdr, *tx_old, *tx_new;
612         struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
613         int i, err, tx_ring_size, rx_ring_size;
614
615         tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_queues;
616         rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_queues;
617
618         if (netif_running(adapter->netdev))
619                 e1000_down(adapter);
620
621         tx_old = adapter->tx_ring;
622         rx_old = adapter->rx_ring;
623
624         adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
625         if (!adapter->tx_ring) {
626                 err = -ENOMEM;
627                 goto err_setup_rx;
628         }
629         memset(adapter->tx_ring, 0, tx_ring_size);
630
631         adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
632         if (!adapter->rx_ring) {
633                 kfree(adapter->tx_ring);
634                 err = -ENOMEM;
635                 goto err_setup_rx;
636         }
637         memset(adapter->rx_ring, 0, rx_ring_size);
638
639         txdr = adapter->tx_ring;
640         rxdr = adapter->rx_ring;
641
642         if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
643                 return -EINVAL;
644
645         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
646         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
647                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
648         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 
649
650         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
651         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
652                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
653         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 
654
655         for (i = 0; i < adapter->num_queues; i++) {
656                 txdr[i].count = txdr->count;
657                 rxdr[i].count = rxdr->count;
658         }
659
660         if(netif_running(adapter->netdev)) {
661                 /* Try to get new resources before deleting old */
662                 if ((err = e1000_setup_all_rx_resources(adapter)))
663                         goto err_setup_rx;
664                 if ((err = e1000_setup_all_tx_resources(adapter)))
665                         goto err_setup_tx;
666
667                 /* save the new, restore the old in order to free it,
668                  * then restore the new back again */
669
670                 rx_new = adapter->rx_ring;
671                 tx_new = adapter->tx_ring;
672                 adapter->rx_ring = rx_old;
673                 adapter->tx_ring = tx_old;
674                 e1000_free_all_rx_resources(adapter);
675                 e1000_free_all_tx_resources(adapter);
676                 kfree(tx_old);
677                 kfree(rx_old);
678                 adapter->rx_ring = rx_new;
679                 adapter->tx_ring = tx_new;
680                 if((err = e1000_up(adapter)))
681                         return err;
682         }
683
684         return 0;
685 err_setup_tx:
686         e1000_free_all_rx_resources(adapter);
687 err_setup_rx:
688         adapter->rx_ring = rx_old;
689         adapter->tx_ring = tx_old;
690         e1000_up(adapter);
691         return err;
692 }
693
694 #define REG_PATTERN_TEST(R, M, W)                                              \
695 {                                                                              \
696         uint32_t pat, value;                                                   \
697         uint32_t test[] =                                                      \
698                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
699         for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
700                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
701                 value = E1000_READ_REG(&adapter->hw, R);                       \
702                 if(value != (test[pat] & W & M)) {                             \
703                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
704                                 "0x%08X expected 0x%08X\n",                    \
705                                 E1000_##R, value, (test[pat] & W & M));        \
706                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
707                                 E1000_82542_##R : E1000_##R;                   \
708                         return 1;                                              \
709                 }                                                              \
710         }                                                                      \
711 }
712
713 #define REG_SET_AND_CHECK(R, M, W)                                             \
714 {                                                                              \
715         uint32_t value;                                                        \
716         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
717         value = E1000_READ_REG(&adapter->hw, R);                               \
718         if((W & M) != (value & M)) {                                          \
719                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
720                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
721                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
722                         E1000_82542_##R : E1000_##R;                           \
723                 return 1;                                                      \
724         }                                                                      \
725 }
726
727 static int
728 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
729 {
730         uint32_t value, before, after;
731         uint32_t i, toggle;
732
733         /* The status register is Read Only, so a write should fail.
734          * Some bits that get toggled are ignored.
735          */
736         switch (adapter->hw.mac_type) {
737         /* there are several bits on newer hardware that are r/w */
738         case e1000_82571:
739         case e1000_82572:
740                 toggle = 0x7FFFF3FF;
741                 break;
742         case e1000_82573:
743                 toggle = 0x7FFFF033;
744                 break;
745         default:
746                 toggle = 0xFFFFF833;
747                 break;
748         }
749
750         before = E1000_READ_REG(&adapter->hw, STATUS);
751         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
752         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
753         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
754         if(value != after) {
755                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
756                         "0x%08X expected: 0x%08X\n", after, value);
757                 *data = 1;
758                 return 1;
759         }
760         /* restore previous status */
761         E1000_WRITE_REG(&adapter->hw, STATUS, before);
762
763         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
764         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
765         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
766         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
767         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
768         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
769         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
770         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
771         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
772         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
773         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
774         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
775         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
776         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
777
778         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
779         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
780         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
781
782         if(adapter->hw.mac_type >= e1000_82543) {
783
784                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
785                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
786                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
787                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
788                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
789
790                 for(i = 0; i < E1000_RAR_ENTRIES; i++) {
791                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
792                                          0xFFFFFFFF);
793                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
794                                          0xFFFFFFFF);
795                 }
796
797         } else {
798
799                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
800                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
801                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
802                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
803
804         }
805
806         for(i = 0; i < E1000_MC_TBL_SIZE; i++)
807                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
808
809         *data = 0;
810         return 0;
811 }
812
813 static int
814 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
815 {
816         uint16_t temp;
817         uint16_t checksum = 0;
818         uint16_t i;
819
820         *data = 0;
821         /* Read and add up the contents of the EEPROM */
822         for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
823                 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
824                         *data = 1;
825                         break;
826                 }
827                 checksum += temp;
828         }
829
830         /* If Checksum is not Correct return error else test passed */
831         if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
832                 *data = 2;
833
834         return *data;
835 }
836
837 static irqreturn_t
838 e1000_test_intr(int irq,
839                 void *data,
840                 struct pt_regs *regs)
841 {
842         struct net_device *netdev = (struct net_device *) data;
843         struct e1000_adapter *adapter = netdev_priv(netdev);
844
845         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
846
847         return IRQ_HANDLED;
848 }
849
850 static int
851 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
852 {
853         struct net_device *netdev = adapter->netdev;
854         uint32_t mask, i=0, shared_int = TRUE;
855         uint32_t irq = adapter->pdev->irq;
856
857         *data = 0;
858
859         /* Hook up test interrupt handler just for this test */
860         if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
861                 shared_int = FALSE;
862         } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
863                               netdev->name, netdev)){
864                 *data = 1;
865                 return -1;
866         }
867
868         /* Disable all the interrupts */
869         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
870         msec_delay(10);
871
872         /* Test each interrupt */
873         for(; i < 10; i++) {
874
875                 /* Interrupt to test */
876                 mask = 1 << i;
877
878                 if(!shared_int) {
879                         /* Disable the interrupt to be reported in
880                          * the cause register and then force the same
881                          * interrupt and see if one gets posted.  If
882                          * an interrupt was posted to the bus, the
883                          * test failed.
884                          */
885                         adapter->test_icr = 0;
886                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
887                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
888                         msec_delay(10);
889  
890                         if(adapter->test_icr & mask) {
891                                 *data = 3;
892                                 break;
893                         }
894                 }
895
896                 /* Enable the interrupt to be reported in
897                  * the cause register and then force the same
898                  * interrupt and see if one gets posted.  If
899                  * an interrupt was not posted to the bus, the
900                  * test failed.
901                  */
902                 adapter->test_icr = 0;
903                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
904                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
905                 msec_delay(10);
906
907                 if(!(adapter->test_icr & mask)) {
908                         *data = 4;
909                         break;
910                 }
911
912                 if(!shared_int) {
913                         /* Disable the other interrupts to be reported in
914                          * the cause register and then force the other
915                          * interrupts and see if any get posted.  If
916                          * an interrupt was posted to the bus, the
917                          * test failed.
918                          */
919                         adapter->test_icr = 0;
920                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
921                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
922                         msec_delay(10);
923
924                         if(adapter->test_icr) {
925                                 *data = 5;
926                                 break;
927                         }
928                 }
929         }
930
931         /* Disable all the interrupts */
932         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
933         msec_delay(10);
934
935         /* Unhook test interrupt handler */
936         free_irq(irq, netdev);
937
938         return *data;
939 }
940
941 static void
942 e1000_free_desc_rings(struct e1000_adapter *adapter)
943 {
944         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
945         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
946         struct pci_dev *pdev = adapter->pdev;
947         int i;
948
949         if(txdr->desc && txdr->buffer_info) {
950                 for(i = 0; i < txdr->count; i++) {
951                         if(txdr->buffer_info[i].dma)
952                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
953                                                  txdr->buffer_info[i].length,
954                                                  PCI_DMA_TODEVICE);
955                         if(txdr->buffer_info[i].skb)
956                                 dev_kfree_skb(txdr->buffer_info[i].skb);
957                 }
958         }
959
960         if(rxdr->desc && rxdr->buffer_info) {
961                 for(i = 0; i < rxdr->count; i++) {
962                         if(rxdr->buffer_info[i].dma)
963                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
964                                                  rxdr->buffer_info[i].length,
965                                                  PCI_DMA_FROMDEVICE);
966                         if(rxdr->buffer_info[i].skb)
967                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
968                 }
969         }
970
971         if(txdr->desc) {
972                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
973                 txdr->desc = NULL;
974         }
975         if(rxdr->desc) {
976                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
977                 rxdr->desc = NULL;
978         }
979
980         kfree(txdr->buffer_info);
981         txdr->buffer_info = NULL;
982         kfree(rxdr->buffer_info);
983         rxdr->buffer_info = NULL;
984         return;
985 }
986
987 static int
988 e1000_setup_desc_rings(struct e1000_adapter *adapter)
989 {
990         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
991         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
992         struct pci_dev *pdev = adapter->pdev;
993         uint32_t rctl;
994         int size, i, ret_val;
995
996         /* Setup Tx descriptor ring and Tx buffers */
997
998         if(!txdr->count)
999                 txdr->count = E1000_DEFAULT_TXD;   
1000
1001         size = txdr->count * sizeof(struct e1000_buffer);
1002         if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1003                 ret_val = 1;
1004                 goto err_nomem;
1005         }
1006         memset(txdr->buffer_info, 0, size);
1007
1008         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1009         E1000_ROUNDUP(txdr->size, 4096);
1010         if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1011                 ret_val = 2;
1012                 goto err_nomem;
1013         }
1014         memset(txdr->desc, 0, txdr->size);
1015         txdr->next_to_use = txdr->next_to_clean = 0;
1016
1017         E1000_WRITE_REG(&adapter->hw, TDBAL,
1018                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1019         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1020         E1000_WRITE_REG(&adapter->hw, TDLEN,
1021                         txdr->count * sizeof(struct e1000_tx_desc));
1022         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1023         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1024         E1000_WRITE_REG(&adapter->hw, TCTL,
1025                         E1000_TCTL_PSP | E1000_TCTL_EN |
1026                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1027                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1028
1029         for(i = 0; i < txdr->count; i++) {
1030                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1031                 struct sk_buff *skb;
1032                 unsigned int size = 1024;
1033
1034                 if(!(skb = alloc_skb(size, GFP_KERNEL))) {
1035                         ret_val = 3;
1036                         goto err_nomem;
1037                 }
1038                 skb_put(skb, size);
1039                 txdr->buffer_info[i].skb = skb;
1040                 txdr->buffer_info[i].length = skb->len;
1041                 txdr->buffer_info[i].dma =
1042                         pci_map_single(pdev, skb->data, skb->len,
1043                                        PCI_DMA_TODEVICE);
1044                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1045                 tx_desc->lower.data = cpu_to_le32(skb->len);
1046                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1047                                                    E1000_TXD_CMD_IFCS |
1048                                                    E1000_TXD_CMD_RPS);
1049                 tx_desc->upper.data = 0;
1050         }
1051
1052         /* Setup Rx descriptor ring and Rx buffers */
1053
1054         if(!rxdr->count)
1055                 rxdr->count = E1000_DEFAULT_RXD;   
1056
1057         size = rxdr->count * sizeof(struct e1000_buffer);
1058         if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1059                 ret_val = 4;
1060                 goto err_nomem;
1061         }
1062         memset(rxdr->buffer_info, 0, size);
1063
1064         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1065         if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1066                 ret_val = 5;
1067                 goto err_nomem;
1068         }
1069         memset(rxdr->desc, 0, rxdr->size);
1070         rxdr->next_to_use = rxdr->next_to_clean = 0;
1071
1072         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1073         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1074         E1000_WRITE_REG(&adapter->hw, RDBAL,
1075                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1076         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1077         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1078         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1079         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1080         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1081                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1082                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1083         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1084
1085         for(i = 0; i < rxdr->count; i++) {
1086                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1087                 struct sk_buff *skb;
1088
1089                 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1090                                 GFP_KERNEL))) {
1091                         ret_val = 6;
1092                         goto err_nomem;
1093                 }
1094                 skb_reserve(skb, NET_IP_ALIGN);
1095                 rxdr->buffer_info[i].skb = skb;
1096                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1097                 rxdr->buffer_info[i].dma =
1098                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1099                                        PCI_DMA_FROMDEVICE);
1100                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1101                 memset(skb->data, 0x00, skb->len);
1102         }
1103
1104         return 0;
1105
1106 err_nomem:
1107         e1000_free_desc_rings(adapter);
1108         return ret_val;
1109 }
1110
1111 static void
1112 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1113 {
1114         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1115         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1116         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1117         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1118         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1119 }
1120
1121 static void
1122 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1123 {
1124         uint16_t phy_reg;
1125
1126         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1127          * Extended PHY Specific Control Register to 25MHz clock.  This
1128          * value defaults back to a 2.5MHz clock when the PHY is reset.
1129          */
1130         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1131         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1132         e1000_write_phy_reg(&adapter->hw,
1133                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1134
1135         /* In addition, because of the s/w reset above, we need to enable
1136          * CRS on TX.  This must be set for both full and half duplex
1137          * operation.
1138          */
1139         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1140         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1141         e1000_write_phy_reg(&adapter->hw,
1142                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1143 }
1144
1145 static int
1146 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1147 {
1148         uint32_t ctrl_reg;
1149         uint16_t phy_reg;
1150
1151         /* Setup the Device Control Register for PHY loopback test. */
1152
1153         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1154         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1155                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1156                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1157                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1158                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1159
1160         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1161
1162         /* Read the PHY Specific Control Register (0x10) */
1163         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1164
1165         /* Clear Auto-Crossover bits in PHY Specific Control Register
1166          * (bits 6:5).
1167          */
1168         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1169         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1170
1171         /* Perform software reset on the PHY */
1172         e1000_phy_reset(&adapter->hw);
1173
1174         /* Have to setup TX_CLK and TX_CRS after software reset */
1175         e1000_phy_reset_clk_and_crs(adapter);
1176
1177         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1178
1179         /* Wait for reset to complete. */
1180         udelay(500);
1181
1182         /* Have to setup TX_CLK and TX_CRS after software reset */
1183         e1000_phy_reset_clk_and_crs(adapter);
1184
1185         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1186         e1000_phy_disable_receiver(adapter);
1187
1188         /* Set the loopback bit in the PHY control register. */
1189         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1190         phy_reg |= MII_CR_LOOPBACK;
1191         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1192
1193         /* Setup TX_CLK and TX_CRS one more time. */
1194         e1000_phy_reset_clk_and_crs(adapter);
1195
1196         /* Check Phy Configuration */
1197         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1198         if(phy_reg != 0x4100)
1199                  return 9;
1200
1201         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1202         if(phy_reg != 0x0070)
1203                 return 10;
1204
1205         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1206         if(phy_reg != 0x001A)
1207                 return 11;
1208
1209         return 0;
1210 }
1211
1212 static int
1213 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1214 {
1215         uint32_t ctrl_reg = 0;
1216         uint32_t stat_reg = 0;
1217
1218         adapter->hw.autoneg = FALSE;
1219
1220         if(adapter->hw.phy_type == e1000_phy_m88) {
1221                 /* Auto-MDI/MDIX Off */
1222                 e1000_write_phy_reg(&adapter->hw,
1223                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1224                 /* reset to update Auto-MDI/MDIX */
1225                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1226                 /* autoneg off */
1227                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1228         }
1229         /* force 1000, set loopback */
1230         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1231
1232         /* Now set up the MAC to the same speed/duplex as the PHY. */
1233         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1234         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1235         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1236                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1237                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1238                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1239
1240         if(adapter->hw.media_type == e1000_media_type_copper &&
1241            adapter->hw.phy_type == e1000_phy_m88) {
1242                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1243         } else {
1244                 /* Set the ILOS bit on the fiber Nic is half
1245                  * duplex link is detected. */
1246                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1247                 if((stat_reg & E1000_STATUS_FD) == 0)
1248                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1249         }
1250
1251         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1252
1253         /* Disable the receiver on the PHY so when a cable is plugged in, the
1254          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1255          */
1256         if(adapter->hw.phy_type == e1000_phy_m88)
1257                 e1000_phy_disable_receiver(adapter);
1258
1259         udelay(500);
1260
1261         return 0;
1262 }
1263
1264 static int
1265 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1266 {
1267         uint16_t phy_reg = 0;
1268         uint16_t count = 0;
1269
1270         switch (adapter->hw.mac_type) {
1271         case e1000_82543:
1272                 if(adapter->hw.media_type == e1000_media_type_copper) {
1273                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1274                          * Some PHY registers get corrupted at random, so
1275                          * attempt this 10 times.
1276                          */
1277                         while(e1000_nonintegrated_phy_loopback(adapter) &&
1278                               count++ < 10);
1279                         if(count < 11)
1280                                 return 0;
1281                 }
1282                 break;
1283
1284         case e1000_82544:
1285         case e1000_82540:
1286         case e1000_82545:
1287         case e1000_82545_rev_3:
1288         case e1000_82546:
1289         case e1000_82546_rev_3:
1290         case e1000_82541:
1291         case e1000_82541_rev_2:
1292         case e1000_82547:
1293         case e1000_82547_rev_2:
1294         case e1000_82571:
1295         case e1000_82572:
1296         case e1000_82573:
1297                 return e1000_integrated_phy_loopback(adapter);
1298                 break;
1299
1300         default:
1301                 /* Default PHY loopback work is to read the MII
1302                  * control register and assert bit 14 (loopback mode).
1303                  */
1304                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1305                 phy_reg |= MII_CR_LOOPBACK;
1306                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1307                 return 0;
1308                 break;
1309         }
1310
1311         return 8;
1312 }
1313
1314 static int
1315 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1316 {
1317         uint32_t rctl;
1318
1319         if(adapter->hw.media_type == e1000_media_type_fiber ||
1320            adapter->hw.media_type == e1000_media_type_internal_serdes) {
1321                 if(adapter->hw.mac_type == e1000_82545 ||
1322                    adapter->hw.mac_type == e1000_82546 ||
1323                    adapter->hw.mac_type == e1000_82545_rev_3 ||
1324                    adapter->hw.mac_type == e1000_82546_rev_3)
1325                         return e1000_set_phy_loopback(adapter);
1326                 else {
1327                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1328                         rctl |= E1000_RCTL_LBM_TCVR;
1329                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1330                         return 0;
1331                 }
1332         } else if(adapter->hw.media_type == e1000_media_type_copper)
1333                 return e1000_set_phy_loopback(adapter);
1334
1335         return 7;
1336 }
1337
1338 static void
1339 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1340 {
1341         uint32_t rctl;
1342         uint16_t phy_reg;
1343
1344         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1345         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1346         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1347
1348         if(adapter->hw.media_type == e1000_media_type_copper ||
1349            ((adapter->hw.media_type == e1000_media_type_fiber ||
1350              adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1351             (adapter->hw.mac_type == e1000_82545 ||
1352              adapter->hw.mac_type == e1000_82546 ||
1353              adapter->hw.mac_type == e1000_82545_rev_3 ||
1354              adapter->hw.mac_type == e1000_82546_rev_3))) {
1355                 adapter->hw.autoneg = TRUE;
1356                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1357                 if(phy_reg & MII_CR_LOOPBACK) {
1358                         phy_reg &= ~MII_CR_LOOPBACK;
1359                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1360                         e1000_phy_reset(&adapter->hw);
1361                 }
1362         }
1363 }
1364
1365 static void
1366 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1367 {
1368         memset(skb->data, 0xFF, frame_size);
1369         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1370         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1371         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1372         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1373 }
1374
1375 static int
1376 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1377 {
1378         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1379         if(*(skb->data + 3) == 0xFF) {
1380                 if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1381                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1382                         return 0;
1383                 }
1384         }
1385         return 13;
1386 }
1387
1388 static int
1389 e1000_run_loopback_test(struct e1000_adapter *adapter)
1390 {
1391         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1392         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1393         struct pci_dev *pdev = adapter->pdev;
1394         int i, j, k, l, lc, good_cnt, ret_val=0;
1395         unsigned long time;
1396
1397         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1398
1399         /* Calculate the loop count based on the largest descriptor ring 
1400          * The idea is to wrap the largest ring a number of times using 64
1401          * send/receive pairs during each loop
1402          */
1403
1404         if(rxdr->count <= txdr->count)
1405                 lc = ((txdr->count / 64) * 2) + 1;
1406         else
1407                 lc = ((rxdr->count / 64) * 2) + 1;
1408
1409         k = l = 0;
1410         for(j = 0; j <= lc; j++) { /* loop count loop */
1411                 for(i = 0; i < 64; i++) { /* send the packets */
1412                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 
1413                                         1024);
1414                         pci_dma_sync_single_for_device(pdev, 
1415                                         txdr->buffer_info[k].dma,
1416                                         txdr->buffer_info[k].length,
1417                                         PCI_DMA_TODEVICE);
1418                         if(unlikely(++k == txdr->count)) k = 0;
1419                 }
1420                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1421                 msec_delay(200);
1422                 time = jiffies; /* set the start time for the receive */
1423                 good_cnt = 0;
1424                 do { /* receive the sent packets */
1425                         pci_dma_sync_single_for_cpu(pdev, 
1426                                         rxdr->buffer_info[l].dma,
1427                                         rxdr->buffer_info[l].length,
1428                                         PCI_DMA_FROMDEVICE);
1429         
1430                         ret_val = e1000_check_lbtest_frame(
1431                                         rxdr->buffer_info[l].skb,
1432                                         1024);
1433                         if(!ret_val)
1434                                 good_cnt++;
1435                         if(unlikely(++l == rxdr->count)) l = 0;
1436                         /* time + 20 msecs (200 msecs on 2.4) is more than 
1437                          * enough time to complete the receives, if it's 
1438                          * exceeded, break and error off
1439                          */
1440                 } while (good_cnt < 64 && jiffies < (time + 20));
1441                 if(good_cnt != 64) {
1442                         ret_val = 13; /* ret_val is the same as mis-compare */
1443                         break; 
1444                 }
1445                 if(jiffies >= (time + 2)) {
1446                         ret_val = 14; /* error code for time out error */
1447                         break;
1448                 }
1449         } /* end loop count loop */
1450         return ret_val;
1451 }
1452
1453 static int
1454 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1455 {
1456         /* PHY loopback cannot be performed if SoL/IDER
1457          * sessions are active */
1458         if (e1000_check_phy_reset_block(&adapter->hw)) {
1459                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1460                         "when SoL/IDER is active.\n");
1461                 *data = 0;
1462                 goto out;
1463         }
1464
1465         if ((*data = e1000_setup_desc_rings(adapter)))
1466                 goto out;
1467         if ((*data = e1000_setup_loopback_test(adapter)))
1468                 goto err_loopback;
1469         *data = e1000_run_loopback_test(adapter);
1470         e1000_loopback_cleanup(adapter);
1471
1472 err_loopback:
1473         e1000_free_desc_rings(adapter);
1474 out:
1475         return *data;
1476 }
1477
1478 static int
1479 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1480 {
1481         *data = 0;
1482         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1483                 int i = 0;
1484                 adapter->hw.serdes_link_down = TRUE;
1485
1486                 /* On some blade server designs, link establishment
1487                  * could take as long as 2-3 minutes */
1488                 do {
1489                         e1000_check_for_link(&adapter->hw);
1490                         if (adapter->hw.serdes_link_down == FALSE)
1491                                 return *data;
1492                         msec_delay(20);
1493                 } while (i++ < 3750);
1494
1495                 *data = 1;
1496         } else {
1497                 e1000_check_for_link(&adapter->hw);
1498                 if(adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1499                         msec_delay(4000);
1500
1501                 if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1502                         *data = 1;
1503                 }
1504         }
1505         return *data;
1506 }
1507
1508 static int 
1509 e1000_diag_test_count(struct net_device *netdev)
1510 {
1511         return E1000_TEST_LEN;
1512 }
1513
1514 static void
1515 e1000_diag_test(struct net_device *netdev,
1516                    struct ethtool_test *eth_test, uint64_t *data)
1517 {
1518         struct e1000_adapter *adapter = netdev_priv(netdev);
1519         boolean_t if_running = netif_running(netdev);
1520
1521         if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
1522                 /* Offline tests */
1523
1524                 /* save speed, duplex, autoneg settings */
1525                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1526                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1527                 uint8_t autoneg = adapter->hw.autoneg;
1528
1529                 /* Link test performed before hardware reset so autoneg doesn't
1530                  * interfere with test result */
1531                 if(e1000_link_test(adapter, &data[4]))
1532                         eth_test->flags |= ETH_TEST_FL_FAILED;
1533
1534                 if(if_running)
1535                         e1000_down(adapter);
1536                 else
1537                         e1000_reset(adapter);
1538
1539                 if(e1000_reg_test(adapter, &data[0]))
1540                         eth_test->flags |= ETH_TEST_FL_FAILED;
1541
1542                 e1000_reset(adapter);
1543                 if(e1000_eeprom_test(adapter, &data[1]))
1544                         eth_test->flags |= ETH_TEST_FL_FAILED;
1545
1546                 e1000_reset(adapter);
1547                 if(e1000_intr_test(adapter, &data[2]))
1548                         eth_test->flags |= ETH_TEST_FL_FAILED;
1549
1550                 e1000_reset(adapter);
1551                 if(e1000_loopback_test(adapter, &data[3]))
1552                         eth_test->flags |= ETH_TEST_FL_FAILED;
1553
1554                 /* restore speed, duplex, autoneg settings */
1555                 adapter->hw.autoneg_advertised = autoneg_advertised;
1556                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1557                 adapter->hw.autoneg = autoneg;
1558
1559                 e1000_reset(adapter);
1560                 if(if_running)
1561                         e1000_up(adapter);
1562         } else {
1563                 /* Online tests */
1564                 if(e1000_link_test(adapter, &data[4]))
1565                         eth_test->flags |= ETH_TEST_FL_FAILED;
1566
1567                 /* Offline tests aren't run; pass by default */
1568                 data[0] = 0;
1569                 data[1] = 0;
1570                 data[2] = 0;
1571                 data[3] = 0;
1572         }
1573         msleep_interruptible(4 * 1000);
1574 }
1575
1576 static void
1577 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1578 {
1579         struct e1000_adapter *adapter = netdev_priv(netdev);
1580         struct e1000_hw *hw = &adapter->hw;
1581
1582         switch(adapter->hw.device_id) {
1583         case E1000_DEV_ID_82542:
1584         case E1000_DEV_ID_82543GC_FIBER:
1585         case E1000_DEV_ID_82543GC_COPPER:
1586         case E1000_DEV_ID_82544EI_FIBER:
1587         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1588         case E1000_DEV_ID_82545EM_FIBER:
1589         case E1000_DEV_ID_82545EM_COPPER:
1590                 wol->supported = 0;
1591                 wol->wolopts   = 0;
1592                 return;
1593
1594         case E1000_DEV_ID_82546EB_FIBER:
1595         case E1000_DEV_ID_82546GB_FIBER:
1596                 /* Wake events only supported on port A for dual fiber */
1597                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1598                         wol->supported = 0;
1599                         wol->wolopts   = 0;
1600                         return;
1601                 }
1602                 /* Fall Through */
1603
1604         default:
1605                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1606                                  WAKE_BCAST | WAKE_MAGIC;
1607
1608                 wol->wolopts = 0;
1609                 if(adapter->wol & E1000_WUFC_EX)
1610                         wol->wolopts |= WAKE_UCAST;
1611                 if(adapter->wol & E1000_WUFC_MC)
1612                         wol->wolopts |= WAKE_MCAST;
1613                 if(adapter->wol & E1000_WUFC_BC)
1614                         wol->wolopts |= WAKE_BCAST;
1615                 if(adapter->wol & E1000_WUFC_MAG)
1616                         wol->wolopts |= WAKE_MAGIC;
1617                 return;
1618         }
1619 }
1620
1621 static int
1622 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1623 {
1624         struct e1000_adapter *adapter = netdev_priv(netdev);
1625         struct e1000_hw *hw = &adapter->hw;
1626
1627         switch(adapter->hw.device_id) {
1628         case E1000_DEV_ID_82542:
1629         case E1000_DEV_ID_82543GC_FIBER:
1630         case E1000_DEV_ID_82543GC_COPPER:
1631         case E1000_DEV_ID_82544EI_FIBER:
1632         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1633         case E1000_DEV_ID_82545EM_FIBER:
1634         case E1000_DEV_ID_82545EM_COPPER:
1635                 return wol->wolopts ? -EOPNOTSUPP : 0;
1636
1637         case E1000_DEV_ID_82546EB_FIBER:
1638         case E1000_DEV_ID_82546GB_FIBER:
1639                 /* Wake events only supported on port A for dual fiber */
1640                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1641                         return wol->wolopts ? -EOPNOTSUPP : 0;
1642                 /* Fall Through */
1643
1644         default:
1645                 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1646                         return -EOPNOTSUPP;
1647
1648                 adapter->wol = 0;
1649
1650                 if(wol->wolopts & WAKE_UCAST)
1651                         adapter->wol |= E1000_WUFC_EX;
1652                 if(wol->wolopts & WAKE_MCAST)
1653                         adapter->wol |= E1000_WUFC_MC;
1654                 if(wol->wolopts & WAKE_BCAST)
1655                         adapter->wol |= E1000_WUFC_BC;
1656                 if(wol->wolopts & WAKE_MAGIC)
1657                         adapter->wol |= E1000_WUFC_MAG;
1658         }
1659
1660         return 0;
1661 }
1662
1663 /* toggle LED 4 times per second = 2 "blinks" per second */
1664 #define E1000_ID_INTERVAL       (HZ/4)
1665
1666 /* bit defines for adapter->led_status */
1667 #define E1000_LED_ON            0
1668
1669 static void
1670 e1000_led_blink_callback(unsigned long data)
1671 {
1672         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1673
1674         if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1675                 e1000_led_off(&adapter->hw);
1676         else
1677                 e1000_led_on(&adapter->hw);
1678
1679         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1680 }
1681
1682 static int
1683 e1000_phys_id(struct net_device *netdev, uint32_t data)
1684 {
1685         struct e1000_adapter *adapter = netdev_priv(netdev);
1686
1687         if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1688                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1689
1690         if(adapter->hw.mac_type < e1000_82571) {
1691                 if(!adapter->blink_timer.function) {
1692                         init_timer(&adapter->blink_timer);
1693                         adapter->blink_timer.function = e1000_led_blink_callback;
1694                         adapter->blink_timer.data = (unsigned long) adapter;
1695                 }
1696                 e1000_setup_led(&adapter->hw);
1697                 mod_timer(&adapter->blink_timer, jiffies);
1698                 msleep_interruptible(data * 1000);
1699                 del_timer_sync(&adapter->blink_timer);
1700         }
1701         else {
1702                 E1000_WRITE_REG(&adapter->hw, LEDCTL, (E1000_LEDCTL_LED2_BLINK_RATE |
1703                         E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK | 
1704                         (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1705                         (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1706                         (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1707                 msleep_interruptible(data * 1000);
1708         }
1709
1710         e1000_led_off(&adapter->hw);
1711         clear_bit(E1000_LED_ON, &adapter->led_status);
1712         e1000_cleanup_led(&adapter->hw);
1713
1714         return 0;
1715 }
1716
1717 static int
1718 e1000_nway_reset(struct net_device *netdev)
1719 {
1720         struct e1000_adapter *adapter = netdev_priv(netdev);
1721         if(netif_running(netdev)) {
1722                 e1000_down(adapter);
1723                 e1000_up(adapter);
1724         }
1725         return 0;
1726 }
1727
1728 static int 
1729 e1000_get_stats_count(struct net_device *netdev)
1730 {
1731         return E1000_STATS_LEN;
1732 }
1733
1734 static void 
1735 e1000_get_ethtool_stats(struct net_device *netdev, 
1736                 struct ethtool_stats *stats, uint64_t *data)
1737 {
1738         struct e1000_adapter *adapter = netdev_priv(netdev);
1739         int i;
1740
1741         e1000_update_stats(adapter);
1742         for(i = 0; i < E1000_STATS_LEN; i++) {
1743                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;  
1744                 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 
1745                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1746         }
1747 }
1748
1749 static void 
1750 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1751 {
1752         int i;
1753
1754         switch(stringset) {
1755         case ETH_SS_TEST:
1756                 memcpy(data, *e1000_gstrings_test, 
1757                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1758                 break;
1759         case ETH_SS_STATS:
1760                 for (i=0; i < E1000_STATS_LEN; i++) {
1761                         memcpy(data + i * ETH_GSTRING_LEN, 
1762                         e1000_gstrings_stats[i].stat_string,
1763                         ETH_GSTRING_LEN);
1764                 }
1765                 break;
1766         }
1767 }
1768
1769 static struct ethtool_ops e1000_ethtool_ops = {
1770         .get_settings           = e1000_get_settings,
1771         .set_settings           = e1000_set_settings,
1772         .get_drvinfo            = e1000_get_drvinfo,
1773         .get_regs_len           = e1000_get_regs_len,
1774         .get_regs               = e1000_get_regs,
1775         .get_wol                = e1000_get_wol,
1776         .set_wol                = e1000_set_wol,
1777         .get_msglevel           = e1000_get_msglevel,
1778         .set_msglevel           = e1000_set_msglevel,
1779         .nway_reset             = e1000_nway_reset,
1780         .get_link               = ethtool_op_get_link,
1781         .get_eeprom_len         = e1000_get_eeprom_len,
1782         .get_eeprom             = e1000_get_eeprom,
1783         .set_eeprom             = e1000_set_eeprom,
1784         .get_ringparam          = e1000_get_ringparam,
1785         .set_ringparam          = e1000_set_ringparam,
1786         .get_pauseparam         = e1000_get_pauseparam,
1787         .set_pauseparam         = e1000_set_pauseparam,
1788         .get_rx_csum            = e1000_get_rx_csum,
1789         .set_rx_csum            = e1000_set_rx_csum,
1790         .get_tx_csum            = e1000_get_tx_csum,
1791         .set_tx_csum            = e1000_set_tx_csum,
1792         .get_sg                 = ethtool_op_get_sg,
1793         .set_sg                 = ethtool_op_set_sg,
1794 #ifdef NETIF_F_TSO
1795         .get_tso                = ethtool_op_get_tso,
1796         .set_tso                = e1000_set_tso,
1797 #endif
1798         .self_test_count        = e1000_diag_test_count,
1799         .self_test              = e1000_diag_test,
1800         .get_strings            = e1000_get_strings,
1801         .phys_id                = e1000_phys_id,
1802         .get_stats_count        = e1000_get_stats_count,
1803         .get_ethtool_stats      = e1000_get_ethtool_stats,
1804         .get_perm_addr          = ethtool_op_get_perm_addr,
1805 };
1806
1807 void e1000_set_ethtool_ops(struct net_device *netdev)
1808 {
1809         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1810 }