Btrfs: change how we unpin extents
[linux-2.6] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include "compat.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "tree-log.h"
40 #include "free-space-cache.h"
41
42 static struct extent_io_ops btree_extent_io_ops;
43 static void end_workqueue_fn(struct btrfs_work *work);
44
45 /*
46  * end_io_wq structs are used to do processing in task context when an IO is
47  * complete.  This is used during reads to verify checksums, and it is used
48  * by writes to insert metadata for new file extents after IO is complete.
49  */
50 struct end_io_wq {
51         struct bio *bio;
52         bio_end_io_t *end_io;
53         void *private;
54         struct btrfs_fs_info *info;
55         int error;
56         int metadata;
57         struct list_head list;
58         struct btrfs_work work;
59 };
60
61 /*
62  * async submit bios are used to offload expensive checksumming
63  * onto the worker threads.  They checksum file and metadata bios
64  * just before they are sent down the IO stack.
65  */
66 struct async_submit_bio {
67         struct inode *inode;
68         struct bio *bio;
69         struct list_head list;
70         extent_submit_bio_hook_t *submit_bio_start;
71         extent_submit_bio_hook_t *submit_bio_done;
72         int rw;
73         int mirror_num;
74         unsigned long bio_flags;
75         struct btrfs_work work;
76 };
77
78 /* These are used to set the lockdep class on the extent buffer locks.
79  * The class is set by the readpage_end_io_hook after the buffer has
80  * passed csum validation but before the pages are unlocked.
81  *
82  * The lockdep class is also set by btrfs_init_new_buffer on freshly
83  * allocated blocks.
84  *
85  * The class is based on the level in the tree block, which allows lockdep
86  * to know that lower nodes nest inside the locks of higher nodes.
87  *
88  * We also add a check to make sure the highest level of the tree is
89  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
90  * code needs update as well.
91  */
92 #ifdef CONFIG_DEBUG_LOCK_ALLOC
93 # if BTRFS_MAX_LEVEL != 8
94 #  error
95 # endif
96 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
97 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
98         /* leaf */
99         "btrfs-extent-00",
100         "btrfs-extent-01",
101         "btrfs-extent-02",
102         "btrfs-extent-03",
103         "btrfs-extent-04",
104         "btrfs-extent-05",
105         "btrfs-extent-06",
106         "btrfs-extent-07",
107         /* highest possible level */
108         "btrfs-extent-08",
109 };
110 #endif
111
112 /*
113  * extents on the btree inode are pretty simple, there's one extent
114  * that covers the entire device
115  */
116 static struct extent_map *btree_get_extent(struct inode *inode,
117                 struct page *page, size_t page_offset, u64 start, u64 len,
118                 int create)
119 {
120         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
121         struct extent_map *em;
122         int ret;
123
124         spin_lock(&em_tree->lock);
125         em = lookup_extent_mapping(em_tree, start, len);
126         if (em) {
127                 em->bdev =
128                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
129                 spin_unlock(&em_tree->lock);
130                 goto out;
131         }
132         spin_unlock(&em_tree->lock);
133
134         em = alloc_extent_map(GFP_NOFS);
135         if (!em) {
136                 em = ERR_PTR(-ENOMEM);
137                 goto out;
138         }
139         em->start = 0;
140         em->len = (u64)-1;
141         em->block_len = (u64)-1;
142         em->block_start = 0;
143         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
144
145         spin_lock(&em_tree->lock);
146         ret = add_extent_mapping(em_tree, em);
147         if (ret == -EEXIST) {
148                 u64 failed_start = em->start;
149                 u64 failed_len = em->len;
150
151                 free_extent_map(em);
152                 em = lookup_extent_mapping(em_tree, start, len);
153                 if (em) {
154                         ret = 0;
155                 } else {
156                         em = lookup_extent_mapping(em_tree, failed_start,
157                                                    failed_len);
158                         ret = -EIO;
159                 }
160         } else if (ret) {
161                 free_extent_map(em);
162                 em = NULL;
163         }
164         spin_unlock(&em_tree->lock);
165
166         if (ret)
167                 em = ERR_PTR(ret);
168 out:
169         return em;
170 }
171
172 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
173 {
174         return crc32c(seed, data, len);
175 }
176
177 void btrfs_csum_final(u32 crc, char *result)
178 {
179         *(__le32 *)result = ~cpu_to_le32(crc);
180 }
181
182 /*
183  * compute the csum for a btree block, and either verify it or write it
184  * into the csum field of the block.
185  */
186 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
187                            int verify)
188 {
189         u16 csum_size =
190                 btrfs_super_csum_size(&root->fs_info->super_copy);
191         char *result = NULL;
192         unsigned long len;
193         unsigned long cur_len;
194         unsigned long offset = BTRFS_CSUM_SIZE;
195         char *map_token = NULL;
196         char *kaddr;
197         unsigned long map_start;
198         unsigned long map_len;
199         int err;
200         u32 crc = ~(u32)0;
201         unsigned long inline_result;
202
203         len = buf->len - offset;
204         while (len > 0) {
205                 err = map_private_extent_buffer(buf, offset, 32,
206                                         &map_token, &kaddr,
207                                         &map_start, &map_len, KM_USER0);
208                 if (err)
209                         return 1;
210                 cur_len = min(len, map_len - (offset - map_start));
211                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
212                                       crc, cur_len);
213                 len -= cur_len;
214                 offset += cur_len;
215                 unmap_extent_buffer(buf, map_token, KM_USER0);
216         }
217         if (csum_size > sizeof(inline_result)) {
218                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
219                 if (!result)
220                         return 1;
221         } else {
222                 result = (char *)&inline_result;
223         }
224
225         btrfs_csum_final(crc, result);
226
227         if (verify) {
228                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
229                         u32 val;
230                         u32 found = 0;
231                         memcpy(&found, result, csum_size);
232
233                         read_extent_buffer(buf, &val, 0, csum_size);
234                         if (printk_ratelimit()) {
235                                 printk(KERN_INFO "btrfs: %s checksum verify "
236                                        "failed on %llu wanted %X found %X "
237                                        "level %d\n",
238                                        root->fs_info->sb->s_id,
239                                        (unsigned long long)buf->start, val, found,
240                                        btrfs_header_level(buf));
241                         }
242                         if (result != (char *)&inline_result)
243                                 kfree(result);
244                         return 1;
245                 }
246         } else {
247                 write_extent_buffer(buf, result, 0, csum_size);
248         }
249         if (result != (char *)&inline_result)
250                 kfree(result);
251         return 0;
252 }
253
254 /*
255  * we can't consider a given block up to date unless the transid of the
256  * block matches the transid in the parent node's pointer.  This is how we
257  * detect blocks that either didn't get written at all or got written
258  * in the wrong place.
259  */
260 static int verify_parent_transid(struct extent_io_tree *io_tree,
261                                  struct extent_buffer *eb, u64 parent_transid)
262 {
263         int ret;
264
265         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
266                 return 0;
267
268         lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
269         if (extent_buffer_uptodate(io_tree, eb) &&
270             btrfs_header_generation(eb) == parent_transid) {
271                 ret = 0;
272                 goto out;
273         }
274         if (printk_ratelimit()) {
275                 printk("parent transid verify failed on %llu wanted %llu "
276                        "found %llu\n",
277                        (unsigned long long)eb->start,
278                        (unsigned long long)parent_transid,
279                        (unsigned long long)btrfs_header_generation(eb));
280         }
281         ret = 1;
282         clear_extent_buffer_uptodate(io_tree, eb);
283 out:
284         unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
285                       GFP_NOFS);
286         return ret;
287 }
288
289 /*
290  * helper to read a given tree block, doing retries as required when
291  * the checksums don't match and we have alternate mirrors to try.
292  */
293 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
294                                           struct extent_buffer *eb,
295                                           u64 start, u64 parent_transid)
296 {
297         struct extent_io_tree *io_tree;
298         int ret;
299         int num_copies = 0;
300         int mirror_num = 0;
301
302         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
303         while (1) {
304                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
305                                                btree_get_extent, mirror_num);
306                 if (!ret &&
307                     !verify_parent_transid(io_tree, eb, parent_transid))
308                         return ret;
309
310                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
311                                               eb->start, eb->len);
312                 if (num_copies == 1)
313                         return ret;
314
315                 mirror_num++;
316                 if (mirror_num > num_copies)
317                         return ret;
318         }
319         return -EIO;
320 }
321
322 /*
323  * checksum a dirty tree block before IO.  This has extra checks to make sure
324  * we only fill in the checksum field in the first page of a multi-page block
325  */
326
327 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
328 {
329         struct extent_io_tree *tree;
330         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
331         u64 found_start;
332         int found_level;
333         unsigned long len;
334         struct extent_buffer *eb;
335         int ret;
336
337         tree = &BTRFS_I(page->mapping->host)->io_tree;
338
339         if (page->private == EXTENT_PAGE_PRIVATE)
340                 goto out;
341         if (!page->private)
342                 goto out;
343         len = page->private >> 2;
344         WARN_ON(len == 0);
345
346         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
347         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
348                                              btrfs_header_generation(eb));
349         BUG_ON(ret);
350         found_start = btrfs_header_bytenr(eb);
351         if (found_start != start) {
352                 WARN_ON(1);
353                 goto err;
354         }
355         if (eb->first_page != page) {
356                 WARN_ON(1);
357                 goto err;
358         }
359         if (!PageUptodate(page)) {
360                 WARN_ON(1);
361                 goto err;
362         }
363         found_level = btrfs_header_level(eb);
364
365         csum_tree_block(root, eb, 0);
366 err:
367         free_extent_buffer(eb);
368 out:
369         return 0;
370 }
371
372 static int check_tree_block_fsid(struct btrfs_root *root,
373                                  struct extent_buffer *eb)
374 {
375         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
376         u8 fsid[BTRFS_UUID_SIZE];
377         int ret = 1;
378
379         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
380                            BTRFS_FSID_SIZE);
381         while (fs_devices) {
382                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
383                         ret = 0;
384                         break;
385                 }
386                 fs_devices = fs_devices->seed;
387         }
388         return ret;
389 }
390
391 #ifdef CONFIG_DEBUG_LOCK_ALLOC
392 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
393 {
394         lockdep_set_class_and_name(&eb->lock,
395                            &btrfs_eb_class[level],
396                            btrfs_eb_name[level]);
397 }
398 #endif
399
400 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
401                                struct extent_state *state)
402 {
403         struct extent_io_tree *tree;
404         u64 found_start;
405         int found_level;
406         unsigned long len;
407         struct extent_buffer *eb;
408         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
409         int ret = 0;
410
411         tree = &BTRFS_I(page->mapping->host)->io_tree;
412         if (page->private == EXTENT_PAGE_PRIVATE)
413                 goto out;
414         if (!page->private)
415                 goto out;
416
417         len = page->private >> 2;
418         WARN_ON(len == 0);
419
420         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
421
422         found_start = btrfs_header_bytenr(eb);
423         if (found_start != start) {
424                 if (printk_ratelimit()) {
425                         printk(KERN_INFO "btrfs bad tree block start "
426                                "%llu %llu\n",
427                                (unsigned long long)found_start,
428                                (unsigned long long)eb->start);
429                 }
430                 ret = -EIO;
431                 goto err;
432         }
433         if (eb->first_page != page) {
434                 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
435                        eb->first_page->index, page->index);
436                 WARN_ON(1);
437                 ret = -EIO;
438                 goto err;
439         }
440         if (check_tree_block_fsid(root, eb)) {
441                 if (printk_ratelimit()) {
442                         printk(KERN_INFO "btrfs bad fsid on block %llu\n",
443                                (unsigned long long)eb->start);
444                 }
445                 ret = -EIO;
446                 goto err;
447         }
448         found_level = btrfs_header_level(eb);
449
450         btrfs_set_buffer_lockdep_class(eb, found_level);
451
452         ret = csum_tree_block(root, eb, 1);
453         if (ret)
454                 ret = -EIO;
455
456         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
457         end = eb->start + end - 1;
458 err:
459         free_extent_buffer(eb);
460 out:
461         return ret;
462 }
463
464 static void end_workqueue_bio(struct bio *bio, int err)
465 {
466         struct end_io_wq *end_io_wq = bio->bi_private;
467         struct btrfs_fs_info *fs_info;
468
469         fs_info = end_io_wq->info;
470         end_io_wq->error = err;
471         end_io_wq->work.func = end_workqueue_fn;
472         end_io_wq->work.flags = 0;
473
474         if (bio->bi_rw & (1 << BIO_RW)) {
475                 if (end_io_wq->metadata)
476                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
477                                            &end_io_wq->work);
478                 else
479                         btrfs_queue_worker(&fs_info->endio_write_workers,
480                                            &end_io_wq->work);
481         } else {
482                 if (end_io_wq->metadata)
483                         btrfs_queue_worker(&fs_info->endio_meta_workers,
484                                            &end_io_wq->work);
485                 else
486                         btrfs_queue_worker(&fs_info->endio_workers,
487                                            &end_io_wq->work);
488         }
489 }
490
491 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
492                         int metadata)
493 {
494         struct end_io_wq *end_io_wq;
495         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
496         if (!end_io_wq)
497                 return -ENOMEM;
498
499         end_io_wq->private = bio->bi_private;
500         end_io_wq->end_io = bio->bi_end_io;
501         end_io_wq->info = info;
502         end_io_wq->error = 0;
503         end_io_wq->bio = bio;
504         end_io_wq->metadata = metadata;
505
506         bio->bi_private = end_io_wq;
507         bio->bi_end_io = end_workqueue_bio;
508         return 0;
509 }
510
511 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
512 {
513         unsigned long limit = min_t(unsigned long,
514                                     info->workers.max_workers,
515                                     info->fs_devices->open_devices);
516         return 256 * limit;
517 }
518
519 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
520 {
521         return atomic_read(&info->nr_async_bios) >
522                 btrfs_async_submit_limit(info);
523 }
524
525 static void run_one_async_start(struct btrfs_work *work)
526 {
527         struct btrfs_fs_info *fs_info;
528         struct async_submit_bio *async;
529
530         async = container_of(work, struct  async_submit_bio, work);
531         fs_info = BTRFS_I(async->inode)->root->fs_info;
532         async->submit_bio_start(async->inode, async->rw, async->bio,
533                                async->mirror_num, async->bio_flags);
534 }
535
536 static void run_one_async_done(struct btrfs_work *work)
537 {
538         struct btrfs_fs_info *fs_info;
539         struct async_submit_bio *async;
540         int limit;
541
542         async = container_of(work, struct  async_submit_bio, work);
543         fs_info = BTRFS_I(async->inode)->root->fs_info;
544
545         limit = btrfs_async_submit_limit(fs_info);
546         limit = limit * 2 / 3;
547
548         atomic_dec(&fs_info->nr_async_submits);
549
550         if (atomic_read(&fs_info->nr_async_submits) < limit &&
551             waitqueue_active(&fs_info->async_submit_wait))
552                 wake_up(&fs_info->async_submit_wait);
553
554         async->submit_bio_done(async->inode, async->rw, async->bio,
555                                async->mirror_num, async->bio_flags);
556 }
557
558 static void run_one_async_free(struct btrfs_work *work)
559 {
560         struct async_submit_bio *async;
561
562         async = container_of(work, struct  async_submit_bio, work);
563         kfree(async);
564 }
565
566 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
567                         int rw, struct bio *bio, int mirror_num,
568                         unsigned long bio_flags,
569                         extent_submit_bio_hook_t *submit_bio_start,
570                         extent_submit_bio_hook_t *submit_bio_done)
571 {
572         struct async_submit_bio *async;
573
574         async = kmalloc(sizeof(*async), GFP_NOFS);
575         if (!async)
576                 return -ENOMEM;
577
578         async->inode = inode;
579         async->rw = rw;
580         async->bio = bio;
581         async->mirror_num = mirror_num;
582         async->submit_bio_start = submit_bio_start;
583         async->submit_bio_done = submit_bio_done;
584
585         async->work.func = run_one_async_start;
586         async->work.ordered_func = run_one_async_done;
587         async->work.ordered_free = run_one_async_free;
588
589         async->work.flags = 0;
590         async->bio_flags = bio_flags;
591
592         atomic_inc(&fs_info->nr_async_submits);
593
594         if (rw & (1 << BIO_RW_SYNCIO))
595                 btrfs_set_work_high_prio(&async->work);
596
597         btrfs_queue_worker(&fs_info->workers, &async->work);
598
599         while (atomic_read(&fs_info->async_submit_draining) &&
600               atomic_read(&fs_info->nr_async_submits)) {
601                 wait_event(fs_info->async_submit_wait,
602                            (atomic_read(&fs_info->nr_async_submits) == 0));
603         }
604
605         return 0;
606 }
607
608 static int btree_csum_one_bio(struct bio *bio)
609 {
610         struct bio_vec *bvec = bio->bi_io_vec;
611         int bio_index = 0;
612         struct btrfs_root *root;
613
614         WARN_ON(bio->bi_vcnt <= 0);
615         while (bio_index < bio->bi_vcnt) {
616                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
617                 csum_dirty_buffer(root, bvec->bv_page);
618                 bio_index++;
619                 bvec++;
620         }
621         return 0;
622 }
623
624 static int __btree_submit_bio_start(struct inode *inode, int rw,
625                                     struct bio *bio, int mirror_num,
626                                     unsigned long bio_flags)
627 {
628         /*
629          * when we're called for a write, we're already in the async
630          * submission context.  Just jump into btrfs_map_bio
631          */
632         btree_csum_one_bio(bio);
633         return 0;
634 }
635
636 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
637                                  int mirror_num, unsigned long bio_flags)
638 {
639         /*
640          * when we're called for a write, we're already in the async
641          * submission context.  Just jump into btrfs_map_bio
642          */
643         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
644 }
645
646 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
647                                  int mirror_num, unsigned long bio_flags)
648 {
649         int ret;
650
651         ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
652                                           bio, 1);
653         BUG_ON(ret);
654
655         if (!(rw & (1 << BIO_RW))) {
656                 /*
657                  * called for a read, do the setup so that checksum validation
658                  * can happen in the async kernel threads
659                  */
660                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
661                                      mirror_num, 0);
662         }
663
664         /*
665          * kthread helpers are used to submit writes so that checksumming
666          * can happen in parallel across all CPUs
667          */
668         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
669                                    inode, rw, bio, mirror_num, 0,
670                                    __btree_submit_bio_start,
671                                    __btree_submit_bio_done);
672 }
673
674 static int btree_writepage(struct page *page, struct writeback_control *wbc)
675 {
676         struct extent_io_tree *tree;
677         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
678         struct extent_buffer *eb;
679         int was_dirty;
680
681         tree = &BTRFS_I(page->mapping->host)->io_tree;
682         if (!(current->flags & PF_MEMALLOC)) {
683                 return extent_write_full_page(tree, page,
684                                               btree_get_extent, wbc);
685         }
686
687         redirty_page_for_writepage(wbc, page);
688         eb = btrfs_find_tree_block(root, page_offset(page),
689                                       PAGE_CACHE_SIZE);
690         WARN_ON(!eb);
691
692         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
693         if (!was_dirty) {
694                 spin_lock(&root->fs_info->delalloc_lock);
695                 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
696                 spin_unlock(&root->fs_info->delalloc_lock);
697         }
698         free_extent_buffer(eb);
699
700         unlock_page(page);
701         return 0;
702 }
703
704 static int btree_writepages(struct address_space *mapping,
705                             struct writeback_control *wbc)
706 {
707         struct extent_io_tree *tree;
708         tree = &BTRFS_I(mapping->host)->io_tree;
709         if (wbc->sync_mode == WB_SYNC_NONE) {
710                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
711                 u64 num_dirty;
712                 unsigned long thresh = 32 * 1024 * 1024;
713
714                 if (wbc->for_kupdate)
715                         return 0;
716
717                 /* this is a bit racy, but that's ok */
718                 num_dirty = root->fs_info->dirty_metadata_bytes;
719                 if (num_dirty < thresh)
720                         return 0;
721         }
722         return extent_writepages(tree, mapping, btree_get_extent, wbc);
723 }
724
725 static int btree_readpage(struct file *file, struct page *page)
726 {
727         struct extent_io_tree *tree;
728         tree = &BTRFS_I(page->mapping->host)->io_tree;
729         return extent_read_full_page(tree, page, btree_get_extent);
730 }
731
732 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
733 {
734         struct extent_io_tree *tree;
735         struct extent_map_tree *map;
736         int ret;
737
738         if (PageWriteback(page) || PageDirty(page))
739                 return 0;
740
741         tree = &BTRFS_I(page->mapping->host)->io_tree;
742         map = &BTRFS_I(page->mapping->host)->extent_tree;
743
744         ret = try_release_extent_state(map, tree, page, gfp_flags);
745         if (!ret)
746                 return 0;
747
748         ret = try_release_extent_buffer(tree, page);
749         if (ret == 1) {
750                 ClearPagePrivate(page);
751                 set_page_private(page, 0);
752                 page_cache_release(page);
753         }
754
755         return ret;
756 }
757
758 static void btree_invalidatepage(struct page *page, unsigned long offset)
759 {
760         struct extent_io_tree *tree;
761         tree = &BTRFS_I(page->mapping->host)->io_tree;
762         extent_invalidatepage(tree, page, offset);
763         btree_releasepage(page, GFP_NOFS);
764         if (PagePrivate(page)) {
765                 printk(KERN_WARNING "btrfs warning page private not zero "
766                        "on page %llu\n", (unsigned long long)page_offset(page));
767                 ClearPagePrivate(page);
768                 set_page_private(page, 0);
769                 page_cache_release(page);
770         }
771 }
772
773 static struct address_space_operations btree_aops = {
774         .readpage       = btree_readpage,
775         .writepage      = btree_writepage,
776         .writepages     = btree_writepages,
777         .releasepage    = btree_releasepage,
778         .invalidatepage = btree_invalidatepage,
779         .sync_page      = block_sync_page,
780 };
781
782 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
783                          u64 parent_transid)
784 {
785         struct extent_buffer *buf = NULL;
786         struct inode *btree_inode = root->fs_info->btree_inode;
787         int ret = 0;
788
789         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
790         if (!buf)
791                 return 0;
792         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
793                                  buf, 0, 0, btree_get_extent, 0);
794         free_extent_buffer(buf);
795         return ret;
796 }
797
798 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
799                                             u64 bytenr, u32 blocksize)
800 {
801         struct inode *btree_inode = root->fs_info->btree_inode;
802         struct extent_buffer *eb;
803         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
804                                 bytenr, blocksize, GFP_NOFS);
805         return eb;
806 }
807
808 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
809                                                  u64 bytenr, u32 blocksize)
810 {
811         struct inode *btree_inode = root->fs_info->btree_inode;
812         struct extent_buffer *eb;
813
814         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
815                                  bytenr, blocksize, NULL, GFP_NOFS);
816         return eb;
817 }
818
819
820 int btrfs_write_tree_block(struct extent_buffer *buf)
821 {
822         return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
823                                       buf->start + buf->len - 1, WB_SYNC_ALL);
824 }
825
826 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
827 {
828         return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
829                                   buf->start, buf->start + buf->len - 1);
830 }
831
832 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
833                                       u32 blocksize, u64 parent_transid)
834 {
835         struct extent_buffer *buf = NULL;
836         struct inode *btree_inode = root->fs_info->btree_inode;
837         struct extent_io_tree *io_tree;
838         int ret;
839
840         io_tree = &BTRFS_I(btree_inode)->io_tree;
841
842         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
843         if (!buf)
844                 return NULL;
845
846         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
847
848         if (ret == 0)
849                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
850         return buf;
851
852 }
853
854 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
855                      struct extent_buffer *buf)
856 {
857         struct inode *btree_inode = root->fs_info->btree_inode;
858         if (btrfs_header_generation(buf) ==
859             root->fs_info->running_transaction->transid) {
860                 btrfs_assert_tree_locked(buf);
861
862                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
863                         spin_lock(&root->fs_info->delalloc_lock);
864                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
865                                 root->fs_info->dirty_metadata_bytes -= buf->len;
866                         else
867                                 WARN_ON(1);
868                         spin_unlock(&root->fs_info->delalloc_lock);
869                 }
870
871                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
872                 btrfs_set_lock_blocking(buf);
873                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
874                                           buf);
875         }
876         return 0;
877 }
878
879 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
880                         u32 stripesize, struct btrfs_root *root,
881                         struct btrfs_fs_info *fs_info,
882                         u64 objectid)
883 {
884         root->node = NULL;
885         root->commit_root = NULL;
886         root->sectorsize = sectorsize;
887         root->nodesize = nodesize;
888         root->leafsize = leafsize;
889         root->stripesize = stripesize;
890         root->ref_cows = 0;
891         root->track_dirty = 0;
892
893         root->fs_info = fs_info;
894         root->objectid = objectid;
895         root->last_trans = 0;
896         root->highest_inode = 0;
897         root->last_inode_alloc = 0;
898         root->name = NULL;
899         root->in_sysfs = 0;
900         root->inode_tree.rb_node = NULL;
901
902         INIT_LIST_HEAD(&root->dirty_list);
903         INIT_LIST_HEAD(&root->orphan_list);
904         INIT_LIST_HEAD(&root->root_list);
905         spin_lock_init(&root->node_lock);
906         spin_lock_init(&root->list_lock);
907         spin_lock_init(&root->inode_lock);
908         mutex_init(&root->objectid_mutex);
909         mutex_init(&root->log_mutex);
910         init_rwsem(&root->commit_root_sem);
911         init_waitqueue_head(&root->log_writer_wait);
912         init_waitqueue_head(&root->log_commit_wait[0]);
913         init_waitqueue_head(&root->log_commit_wait[1]);
914         atomic_set(&root->log_commit[0], 0);
915         atomic_set(&root->log_commit[1], 0);
916         atomic_set(&root->log_writers, 0);
917         root->log_batch = 0;
918         root->log_transid = 0;
919         extent_io_tree_init(&root->dirty_log_pages,
920                              fs_info->btree_inode->i_mapping, GFP_NOFS);
921
922         memset(&root->root_key, 0, sizeof(root->root_key));
923         memset(&root->root_item, 0, sizeof(root->root_item));
924         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
925         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
926         root->defrag_trans_start = fs_info->generation;
927         init_completion(&root->kobj_unregister);
928         root->defrag_running = 0;
929         root->defrag_level = 0;
930         root->root_key.objectid = objectid;
931         root->anon_super.s_root = NULL;
932         root->anon_super.s_dev = 0;
933         INIT_LIST_HEAD(&root->anon_super.s_list);
934         INIT_LIST_HEAD(&root->anon_super.s_instances);
935         init_rwsem(&root->anon_super.s_umount);
936
937         return 0;
938 }
939
940 static int find_and_setup_root(struct btrfs_root *tree_root,
941                                struct btrfs_fs_info *fs_info,
942                                u64 objectid,
943                                struct btrfs_root *root)
944 {
945         int ret;
946         u32 blocksize;
947         u64 generation;
948
949         __setup_root(tree_root->nodesize, tree_root->leafsize,
950                      tree_root->sectorsize, tree_root->stripesize,
951                      root, fs_info, objectid);
952         ret = btrfs_find_last_root(tree_root, objectid,
953                                    &root->root_item, &root->root_key);
954         BUG_ON(ret);
955
956         generation = btrfs_root_generation(&root->root_item);
957         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
958         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
959                                      blocksize, generation);
960         root->commit_root = btrfs_root_node(root);
961         BUG_ON(!root->node);
962         return 0;
963 }
964
965 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
966                              struct btrfs_fs_info *fs_info)
967 {
968         struct extent_buffer *eb;
969         struct btrfs_root *log_root_tree = fs_info->log_root_tree;
970         u64 start = 0;
971         u64 end = 0;
972         int ret;
973
974         if (!log_root_tree)
975                 return 0;
976
977         while (1) {
978                 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
979                                     0, &start, &end, EXTENT_DIRTY);
980                 if (ret)
981                         break;
982
983                 clear_extent_dirty(&log_root_tree->dirty_log_pages,
984                                    start, end, GFP_NOFS);
985         }
986         eb = fs_info->log_root_tree->node;
987
988         WARN_ON(btrfs_header_level(eb) != 0);
989         WARN_ON(btrfs_header_nritems(eb) != 0);
990
991         ret = btrfs_free_reserved_extent(fs_info->tree_root,
992                                 eb->start, eb->len);
993         BUG_ON(ret);
994
995         free_extent_buffer(eb);
996         kfree(fs_info->log_root_tree);
997         fs_info->log_root_tree = NULL;
998         return 0;
999 }
1000
1001 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1002                                          struct btrfs_fs_info *fs_info)
1003 {
1004         struct btrfs_root *root;
1005         struct btrfs_root *tree_root = fs_info->tree_root;
1006         struct extent_buffer *leaf;
1007
1008         root = kzalloc(sizeof(*root), GFP_NOFS);
1009         if (!root)
1010                 return ERR_PTR(-ENOMEM);
1011
1012         __setup_root(tree_root->nodesize, tree_root->leafsize,
1013                      tree_root->sectorsize, tree_root->stripesize,
1014                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1015
1016         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1017         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1018         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1019         /*
1020          * log trees do not get reference counted because they go away
1021          * before a real commit is actually done.  They do store pointers
1022          * to file data extents, and those reference counts still get
1023          * updated (along with back refs to the log tree).
1024          */
1025         root->ref_cows = 0;
1026
1027         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1028                                       BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1029         if (IS_ERR(leaf)) {
1030                 kfree(root);
1031                 return ERR_CAST(leaf);
1032         }
1033
1034         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1035         btrfs_set_header_bytenr(leaf, leaf->start);
1036         btrfs_set_header_generation(leaf, trans->transid);
1037         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1038         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1039         root->node = leaf;
1040
1041         write_extent_buffer(root->node, root->fs_info->fsid,
1042                             (unsigned long)btrfs_header_fsid(root->node),
1043                             BTRFS_FSID_SIZE);
1044         btrfs_mark_buffer_dirty(root->node);
1045         btrfs_tree_unlock(root->node);
1046         return root;
1047 }
1048
1049 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1050                              struct btrfs_fs_info *fs_info)
1051 {
1052         struct btrfs_root *log_root;
1053
1054         log_root = alloc_log_tree(trans, fs_info);
1055         if (IS_ERR(log_root))
1056                 return PTR_ERR(log_root);
1057         WARN_ON(fs_info->log_root_tree);
1058         fs_info->log_root_tree = log_root;
1059         return 0;
1060 }
1061
1062 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1063                        struct btrfs_root *root)
1064 {
1065         struct btrfs_root *log_root;
1066         struct btrfs_inode_item *inode_item;
1067
1068         log_root = alloc_log_tree(trans, root->fs_info);
1069         if (IS_ERR(log_root))
1070                 return PTR_ERR(log_root);
1071
1072         log_root->last_trans = trans->transid;
1073         log_root->root_key.offset = root->root_key.objectid;
1074
1075         inode_item = &log_root->root_item.inode;
1076         inode_item->generation = cpu_to_le64(1);
1077         inode_item->size = cpu_to_le64(3);
1078         inode_item->nlink = cpu_to_le32(1);
1079         inode_item->nbytes = cpu_to_le64(root->leafsize);
1080         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1081
1082         btrfs_set_root_node(&log_root->root_item, log_root->node);
1083
1084         WARN_ON(root->log_root);
1085         root->log_root = log_root;
1086         root->log_transid = 0;
1087         return 0;
1088 }
1089
1090 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1091                                                struct btrfs_key *location)
1092 {
1093         struct btrfs_root *root;
1094         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1095         struct btrfs_path *path;
1096         struct extent_buffer *l;
1097         u64 highest_inode;
1098         u64 generation;
1099         u32 blocksize;
1100         int ret = 0;
1101
1102         root = kzalloc(sizeof(*root), GFP_NOFS);
1103         if (!root)
1104                 return ERR_PTR(-ENOMEM);
1105         if (location->offset == (u64)-1) {
1106                 ret = find_and_setup_root(tree_root, fs_info,
1107                                           location->objectid, root);
1108                 if (ret) {
1109                         kfree(root);
1110                         return ERR_PTR(ret);
1111                 }
1112                 goto insert;
1113         }
1114
1115         __setup_root(tree_root->nodesize, tree_root->leafsize,
1116                      tree_root->sectorsize, tree_root->stripesize,
1117                      root, fs_info, location->objectid);
1118
1119         path = btrfs_alloc_path();
1120         BUG_ON(!path);
1121         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1122         if (ret != 0) {
1123                 if (ret > 0)
1124                         ret = -ENOENT;
1125                 goto out;
1126         }
1127         l = path->nodes[0];
1128         read_extent_buffer(l, &root->root_item,
1129                btrfs_item_ptr_offset(l, path->slots[0]),
1130                sizeof(root->root_item));
1131         memcpy(&root->root_key, location, sizeof(*location));
1132         ret = 0;
1133 out:
1134         btrfs_release_path(root, path);
1135         btrfs_free_path(path);
1136         if (ret) {
1137                 kfree(root);
1138                 return ERR_PTR(ret);
1139         }
1140         generation = btrfs_root_generation(&root->root_item);
1141         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1142         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1143                                      blocksize, generation);
1144         root->commit_root = btrfs_root_node(root);
1145         BUG_ON(!root->node);
1146 insert:
1147         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1148                 root->ref_cows = 1;
1149                 ret = btrfs_find_highest_inode(root, &highest_inode);
1150                 if (ret == 0) {
1151                         root->highest_inode = highest_inode;
1152                         root->last_inode_alloc = highest_inode;
1153                 }
1154         }
1155         return root;
1156 }
1157
1158 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1159                                         u64 root_objectid)
1160 {
1161         struct btrfs_root *root;
1162
1163         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1164                 return fs_info->tree_root;
1165         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1166                 return fs_info->extent_root;
1167
1168         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1169                                  (unsigned long)root_objectid);
1170         return root;
1171 }
1172
1173 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1174                                               struct btrfs_key *location)
1175 {
1176         struct btrfs_root *root;
1177         int ret;
1178
1179         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1180                 return fs_info->tree_root;
1181         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1182                 return fs_info->extent_root;
1183         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1184                 return fs_info->chunk_root;
1185         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1186                 return fs_info->dev_root;
1187         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1188                 return fs_info->csum_root;
1189
1190         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1191                                  (unsigned long)location->objectid);
1192         if (root)
1193                 return root;
1194
1195         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1196         if (IS_ERR(root))
1197                 return root;
1198
1199         set_anon_super(&root->anon_super, NULL);
1200
1201         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1202                                 (unsigned long)root->root_key.objectid,
1203                                 root);
1204         if (ret) {
1205                 free_extent_buffer(root->node);
1206                 kfree(root);
1207                 return ERR_PTR(ret);
1208         }
1209         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1210                 ret = btrfs_find_dead_roots(fs_info->tree_root,
1211                                             root->root_key.objectid);
1212                 BUG_ON(ret);
1213                 btrfs_orphan_cleanup(root);
1214         }
1215         return root;
1216 }
1217
1218 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1219                                       struct btrfs_key *location,
1220                                       const char *name, int namelen)
1221 {
1222         struct btrfs_root *root;
1223         int ret;
1224
1225         root = btrfs_read_fs_root_no_name(fs_info, location);
1226         if (!root)
1227                 return NULL;
1228
1229         if (root->in_sysfs)
1230                 return root;
1231
1232         ret = btrfs_set_root_name(root, name, namelen);
1233         if (ret) {
1234                 free_extent_buffer(root->node);
1235                 kfree(root);
1236                 return ERR_PTR(ret);
1237         }
1238 #if 0
1239         ret = btrfs_sysfs_add_root(root);
1240         if (ret) {
1241                 free_extent_buffer(root->node);
1242                 kfree(root->name);
1243                 kfree(root);
1244                 return ERR_PTR(ret);
1245         }
1246 #endif
1247         root->in_sysfs = 1;
1248         return root;
1249 }
1250
1251 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1252 {
1253         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1254         int ret = 0;
1255         struct btrfs_device *device;
1256         struct backing_dev_info *bdi;
1257
1258         list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1259                 if (!device->bdev)
1260                         continue;
1261                 bdi = blk_get_backing_dev_info(device->bdev);
1262                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1263                         ret = 1;
1264                         break;
1265                 }
1266         }
1267         return ret;
1268 }
1269
1270 /*
1271  * this unplugs every device on the box, and it is only used when page
1272  * is null
1273  */
1274 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1275 {
1276         struct btrfs_device *device;
1277         struct btrfs_fs_info *info;
1278
1279         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1280         list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1281                 if (!device->bdev)
1282                         continue;
1283
1284                 bdi = blk_get_backing_dev_info(device->bdev);
1285                 if (bdi->unplug_io_fn)
1286                         bdi->unplug_io_fn(bdi, page);
1287         }
1288 }
1289
1290 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1291 {
1292         struct inode *inode;
1293         struct extent_map_tree *em_tree;
1294         struct extent_map *em;
1295         struct address_space *mapping;
1296         u64 offset;
1297
1298         /* the generic O_DIRECT read code does this */
1299         if (1 || !page) {
1300                 __unplug_io_fn(bdi, page);
1301                 return;
1302         }
1303
1304         /*
1305          * page->mapping may change at any time.  Get a consistent copy
1306          * and use that for everything below
1307          */
1308         smp_mb();
1309         mapping = page->mapping;
1310         if (!mapping)
1311                 return;
1312
1313         inode = mapping->host;
1314
1315         /*
1316          * don't do the expensive searching for a small number of
1317          * devices
1318          */
1319         if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1320                 __unplug_io_fn(bdi, page);
1321                 return;
1322         }
1323
1324         offset = page_offset(page);
1325
1326         em_tree = &BTRFS_I(inode)->extent_tree;
1327         spin_lock(&em_tree->lock);
1328         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1329         spin_unlock(&em_tree->lock);
1330         if (!em) {
1331                 __unplug_io_fn(bdi, page);
1332                 return;
1333         }
1334
1335         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1336                 free_extent_map(em);
1337                 __unplug_io_fn(bdi, page);
1338                 return;
1339         }
1340         offset = offset - em->start;
1341         btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1342                           em->block_start + offset, page);
1343         free_extent_map(em);
1344 }
1345
1346 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1347 {
1348         bdi_init(bdi);
1349         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1350         bdi->state              = 0;
1351         bdi->capabilities       = default_backing_dev_info.capabilities;
1352         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
1353         bdi->unplug_io_data     = info;
1354         bdi->congested_fn       = btrfs_congested_fn;
1355         bdi->congested_data     = info;
1356         return 0;
1357 }
1358
1359 static int bio_ready_for_csum(struct bio *bio)
1360 {
1361         u64 length = 0;
1362         u64 buf_len = 0;
1363         u64 start = 0;
1364         struct page *page;
1365         struct extent_io_tree *io_tree = NULL;
1366         struct btrfs_fs_info *info = NULL;
1367         struct bio_vec *bvec;
1368         int i;
1369         int ret;
1370
1371         bio_for_each_segment(bvec, bio, i) {
1372                 page = bvec->bv_page;
1373                 if (page->private == EXTENT_PAGE_PRIVATE) {
1374                         length += bvec->bv_len;
1375                         continue;
1376                 }
1377                 if (!page->private) {
1378                         length += bvec->bv_len;
1379                         continue;
1380                 }
1381                 length = bvec->bv_len;
1382                 buf_len = page->private >> 2;
1383                 start = page_offset(page) + bvec->bv_offset;
1384                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1385                 info = BTRFS_I(page->mapping->host)->root->fs_info;
1386         }
1387         /* are we fully contained in this bio? */
1388         if (buf_len <= length)
1389                 return 1;
1390
1391         ret = extent_range_uptodate(io_tree, start + length,
1392                                     start + buf_len - 1);
1393         return ret;
1394 }
1395
1396 /*
1397  * called by the kthread helper functions to finally call the bio end_io
1398  * functions.  This is where read checksum verification actually happens
1399  */
1400 static void end_workqueue_fn(struct btrfs_work *work)
1401 {
1402         struct bio *bio;
1403         struct end_io_wq *end_io_wq;
1404         struct btrfs_fs_info *fs_info;
1405         int error;
1406
1407         end_io_wq = container_of(work, struct end_io_wq, work);
1408         bio = end_io_wq->bio;
1409         fs_info = end_io_wq->info;
1410
1411         /* metadata bio reads are special because the whole tree block must
1412          * be checksummed at once.  This makes sure the entire block is in
1413          * ram and up to date before trying to verify things.  For
1414          * blocksize <= pagesize, it is basically a noop
1415          */
1416         if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1417             !bio_ready_for_csum(bio)) {
1418                 btrfs_queue_worker(&fs_info->endio_meta_workers,
1419                                    &end_io_wq->work);
1420                 return;
1421         }
1422         error = end_io_wq->error;
1423         bio->bi_private = end_io_wq->private;
1424         bio->bi_end_io = end_io_wq->end_io;
1425         kfree(end_io_wq);
1426         bio_endio(bio, error);
1427 }
1428
1429 static int cleaner_kthread(void *arg)
1430 {
1431         struct btrfs_root *root = arg;
1432
1433         do {
1434                 smp_mb();
1435                 if (root->fs_info->closing)
1436                         break;
1437
1438                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1439                 mutex_lock(&root->fs_info->cleaner_mutex);
1440                 btrfs_clean_old_snapshots(root);
1441                 mutex_unlock(&root->fs_info->cleaner_mutex);
1442
1443                 if (freezing(current)) {
1444                         refrigerator();
1445                 } else {
1446                         smp_mb();
1447                         if (root->fs_info->closing)
1448                                 break;
1449                         set_current_state(TASK_INTERRUPTIBLE);
1450                         schedule();
1451                         __set_current_state(TASK_RUNNING);
1452                 }
1453         } while (!kthread_should_stop());
1454         return 0;
1455 }
1456
1457 static int transaction_kthread(void *arg)
1458 {
1459         struct btrfs_root *root = arg;
1460         struct btrfs_trans_handle *trans;
1461         struct btrfs_transaction *cur;
1462         unsigned long now;
1463         unsigned long delay;
1464         int ret;
1465
1466         do {
1467                 smp_mb();
1468                 if (root->fs_info->closing)
1469                         break;
1470
1471                 delay = HZ * 30;
1472                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1473                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1474
1475                 mutex_lock(&root->fs_info->trans_mutex);
1476                 cur = root->fs_info->running_transaction;
1477                 if (!cur) {
1478                         mutex_unlock(&root->fs_info->trans_mutex);
1479                         goto sleep;
1480                 }
1481
1482                 now = get_seconds();
1483                 if (now < cur->start_time || now - cur->start_time < 30) {
1484                         mutex_unlock(&root->fs_info->trans_mutex);
1485                         delay = HZ * 5;
1486                         goto sleep;
1487                 }
1488                 mutex_unlock(&root->fs_info->trans_mutex);
1489                 trans = btrfs_start_transaction(root, 1);
1490                 ret = btrfs_commit_transaction(trans, root);
1491
1492 sleep:
1493                 wake_up_process(root->fs_info->cleaner_kthread);
1494                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1495
1496                 if (freezing(current)) {
1497                         refrigerator();
1498                 } else {
1499                         if (root->fs_info->closing)
1500                                 break;
1501                         set_current_state(TASK_INTERRUPTIBLE);
1502                         schedule_timeout(delay);
1503                         __set_current_state(TASK_RUNNING);
1504                 }
1505         } while (!kthread_should_stop());
1506         return 0;
1507 }
1508
1509 struct btrfs_root *open_ctree(struct super_block *sb,
1510                               struct btrfs_fs_devices *fs_devices,
1511                               char *options)
1512 {
1513         u32 sectorsize;
1514         u32 nodesize;
1515         u32 leafsize;
1516         u32 blocksize;
1517         u32 stripesize;
1518         u64 generation;
1519         u64 features;
1520         struct btrfs_key location;
1521         struct buffer_head *bh;
1522         struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1523                                                  GFP_NOFS);
1524         struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1525                                                  GFP_NOFS);
1526         struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1527                                                GFP_NOFS);
1528         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1529                                                 GFP_NOFS);
1530         struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1531                                                 GFP_NOFS);
1532         struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1533                                               GFP_NOFS);
1534         struct btrfs_root *log_tree_root;
1535
1536         int ret;
1537         int err = -EINVAL;
1538
1539         struct btrfs_super_block *disk_super;
1540
1541         if (!extent_root || !tree_root || !fs_info ||
1542             !chunk_root || !dev_root || !csum_root) {
1543                 err = -ENOMEM;
1544                 goto fail;
1545         }
1546         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1547         INIT_LIST_HEAD(&fs_info->trans_list);
1548         INIT_LIST_HEAD(&fs_info->dead_roots);
1549         INIT_LIST_HEAD(&fs_info->hashers);
1550         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1551         INIT_LIST_HEAD(&fs_info->ordered_operations);
1552         spin_lock_init(&fs_info->delalloc_lock);
1553         spin_lock_init(&fs_info->new_trans_lock);
1554         spin_lock_init(&fs_info->ref_cache_lock);
1555
1556         init_completion(&fs_info->kobj_unregister);
1557         fs_info->tree_root = tree_root;
1558         fs_info->extent_root = extent_root;
1559         fs_info->csum_root = csum_root;
1560         fs_info->chunk_root = chunk_root;
1561         fs_info->dev_root = dev_root;
1562         fs_info->fs_devices = fs_devices;
1563         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1564         INIT_LIST_HEAD(&fs_info->space_info);
1565         btrfs_mapping_init(&fs_info->mapping_tree);
1566         atomic_set(&fs_info->nr_async_submits, 0);
1567         atomic_set(&fs_info->async_delalloc_pages, 0);
1568         atomic_set(&fs_info->async_submit_draining, 0);
1569         atomic_set(&fs_info->nr_async_bios, 0);
1570         fs_info->sb = sb;
1571         fs_info->max_extent = (u64)-1;
1572         fs_info->max_inline = 8192 * 1024;
1573         setup_bdi(fs_info, &fs_info->bdi);
1574         fs_info->btree_inode = new_inode(sb);
1575         fs_info->btree_inode->i_ino = 1;
1576         fs_info->btree_inode->i_nlink = 1;
1577         fs_info->metadata_ratio = 8;
1578
1579         fs_info->thread_pool_size = min_t(unsigned long,
1580                                           num_online_cpus() + 2, 8);
1581
1582         INIT_LIST_HEAD(&fs_info->ordered_extents);
1583         spin_lock_init(&fs_info->ordered_extent_lock);
1584
1585         sb->s_blocksize = 4096;
1586         sb->s_blocksize_bits = blksize_bits(4096);
1587
1588         /*
1589          * we set the i_size on the btree inode to the max possible int.
1590          * the real end of the address space is determined by all of
1591          * the devices in the system
1592          */
1593         fs_info->btree_inode->i_size = OFFSET_MAX;
1594         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1595         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1596
1597         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1598         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1599                              fs_info->btree_inode->i_mapping,
1600                              GFP_NOFS);
1601         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1602                              GFP_NOFS);
1603
1604         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1605
1606         spin_lock_init(&fs_info->block_group_cache_lock);
1607         fs_info->block_group_cache_tree.rb_node = NULL;
1608
1609         extent_io_tree_init(&fs_info->pinned_extents,
1610                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1611         fs_info->do_barriers = 1;
1612
1613         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1614         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1615                sizeof(struct btrfs_key));
1616         insert_inode_hash(fs_info->btree_inode);
1617
1618         mutex_init(&fs_info->trans_mutex);
1619         mutex_init(&fs_info->ordered_operations_mutex);
1620         mutex_init(&fs_info->tree_log_mutex);
1621         mutex_init(&fs_info->drop_mutex);
1622         mutex_init(&fs_info->chunk_mutex);
1623         mutex_init(&fs_info->transaction_kthread_mutex);
1624         mutex_init(&fs_info->cleaner_mutex);
1625         mutex_init(&fs_info->volume_mutex);
1626         mutex_init(&fs_info->tree_reloc_mutex);
1627
1628         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1629         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1630
1631         init_waitqueue_head(&fs_info->transaction_throttle);
1632         init_waitqueue_head(&fs_info->transaction_wait);
1633         init_waitqueue_head(&fs_info->async_submit_wait);
1634
1635         __setup_root(4096, 4096, 4096, 4096, tree_root,
1636                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1637
1638
1639         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1640         if (!bh)
1641                 goto fail_iput;
1642
1643         memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1644         memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1645                sizeof(fs_info->super_for_commit));
1646         brelse(bh);
1647
1648         memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1649
1650         disk_super = &fs_info->super_copy;
1651         if (!btrfs_super_root(disk_super))
1652                 goto fail_iput;
1653
1654         ret = btrfs_parse_options(tree_root, options);
1655         if (ret) {
1656                 err = ret;
1657                 goto fail_iput;
1658         }
1659
1660         features = btrfs_super_incompat_flags(disk_super) &
1661                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1662         if (features) {
1663                 printk(KERN_ERR "BTRFS: couldn't mount because of "
1664                        "unsupported optional features (%Lx).\n",
1665                        (unsigned long long)features);
1666                 err = -EINVAL;
1667                 goto fail_iput;
1668         }
1669
1670         features = btrfs_super_incompat_flags(disk_super);
1671         if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1672                 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1673                 btrfs_set_super_incompat_flags(disk_super, features);
1674         }
1675
1676         features = btrfs_super_compat_ro_flags(disk_super) &
1677                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1678         if (!(sb->s_flags & MS_RDONLY) && features) {
1679                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1680                        "unsupported option features (%Lx).\n",
1681                        (unsigned long long)features);
1682                 err = -EINVAL;
1683                 goto fail_iput;
1684         }
1685
1686         /*
1687          * we need to start all the end_io workers up front because the
1688          * queue work function gets called at interrupt time, and so it
1689          * cannot dynamically grow.
1690          */
1691         btrfs_init_workers(&fs_info->workers, "worker",
1692                            fs_info->thread_pool_size);
1693
1694         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1695                            fs_info->thread_pool_size);
1696
1697         btrfs_init_workers(&fs_info->submit_workers, "submit",
1698                            min_t(u64, fs_devices->num_devices,
1699                            fs_info->thread_pool_size));
1700
1701         /* a higher idle thresh on the submit workers makes it much more
1702          * likely that bios will be send down in a sane order to the
1703          * devices
1704          */
1705         fs_info->submit_workers.idle_thresh = 64;
1706
1707         fs_info->workers.idle_thresh = 16;
1708         fs_info->workers.ordered = 1;
1709
1710         fs_info->delalloc_workers.idle_thresh = 2;
1711         fs_info->delalloc_workers.ordered = 1;
1712
1713         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1714         btrfs_init_workers(&fs_info->endio_workers, "endio",
1715                            fs_info->thread_pool_size);
1716         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1717                            fs_info->thread_pool_size);
1718         btrfs_init_workers(&fs_info->endio_meta_write_workers,
1719                            "endio-meta-write", fs_info->thread_pool_size);
1720         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1721                            fs_info->thread_pool_size);
1722
1723         /*
1724          * endios are largely parallel and should have a very
1725          * low idle thresh
1726          */
1727         fs_info->endio_workers.idle_thresh = 4;
1728         fs_info->endio_meta_workers.idle_thresh = 4;
1729
1730         fs_info->endio_write_workers.idle_thresh = 64;
1731         fs_info->endio_meta_write_workers.idle_thresh = 64;
1732
1733         btrfs_start_workers(&fs_info->workers, 1);
1734         btrfs_start_workers(&fs_info->submit_workers, 1);
1735         btrfs_start_workers(&fs_info->delalloc_workers, 1);
1736         btrfs_start_workers(&fs_info->fixup_workers, 1);
1737         btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1738         btrfs_start_workers(&fs_info->endio_meta_workers,
1739                             fs_info->thread_pool_size);
1740         btrfs_start_workers(&fs_info->endio_meta_write_workers,
1741                             fs_info->thread_pool_size);
1742         btrfs_start_workers(&fs_info->endio_write_workers,
1743                             fs_info->thread_pool_size);
1744
1745         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1746         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1747                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1748
1749         nodesize = btrfs_super_nodesize(disk_super);
1750         leafsize = btrfs_super_leafsize(disk_super);
1751         sectorsize = btrfs_super_sectorsize(disk_super);
1752         stripesize = btrfs_super_stripesize(disk_super);
1753         tree_root->nodesize = nodesize;
1754         tree_root->leafsize = leafsize;
1755         tree_root->sectorsize = sectorsize;
1756         tree_root->stripesize = stripesize;
1757
1758         sb->s_blocksize = sectorsize;
1759         sb->s_blocksize_bits = blksize_bits(sectorsize);
1760
1761         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1762                     sizeof(disk_super->magic))) {
1763                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1764                 goto fail_sb_buffer;
1765         }
1766
1767         mutex_lock(&fs_info->chunk_mutex);
1768         ret = btrfs_read_sys_array(tree_root);
1769         mutex_unlock(&fs_info->chunk_mutex);
1770         if (ret) {
1771                 printk(KERN_WARNING "btrfs: failed to read the system "
1772                        "array on %s\n", sb->s_id);
1773                 goto fail_sb_buffer;
1774         }
1775
1776         blocksize = btrfs_level_size(tree_root,
1777                                      btrfs_super_chunk_root_level(disk_super));
1778         generation = btrfs_super_chunk_root_generation(disk_super);
1779
1780         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1781                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1782
1783         chunk_root->node = read_tree_block(chunk_root,
1784                                            btrfs_super_chunk_root(disk_super),
1785                                            blocksize, generation);
1786         BUG_ON(!chunk_root->node);
1787         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1788                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1789                        sb->s_id);
1790                 goto fail_chunk_root;
1791         }
1792         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1793         chunk_root->commit_root = btrfs_root_node(chunk_root);
1794
1795         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1796            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1797            BTRFS_UUID_SIZE);
1798
1799         mutex_lock(&fs_info->chunk_mutex);
1800         ret = btrfs_read_chunk_tree(chunk_root);
1801         mutex_unlock(&fs_info->chunk_mutex);
1802         if (ret) {
1803                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1804                        sb->s_id);
1805                 goto fail_chunk_root;
1806         }
1807
1808         btrfs_close_extra_devices(fs_devices);
1809
1810         blocksize = btrfs_level_size(tree_root,
1811                                      btrfs_super_root_level(disk_super));
1812         generation = btrfs_super_generation(disk_super);
1813
1814         tree_root->node = read_tree_block(tree_root,
1815                                           btrfs_super_root(disk_super),
1816                                           blocksize, generation);
1817         if (!tree_root->node)
1818                 goto fail_chunk_root;
1819         if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1820                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1821                        sb->s_id);
1822                 goto fail_tree_root;
1823         }
1824         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1825         tree_root->commit_root = btrfs_root_node(tree_root);
1826
1827         ret = find_and_setup_root(tree_root, fs_info,
1828                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1829         if (ret)
1830                 goto fail_tree_root;
1831         extent_root->track_dirty = 1;
1832
1833         ret = find_and_setup_root(tree_root, fs_info,
1834                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1835         if (ret)
1836                 goto fail_extent_root;
1837         dev_root->track_dirty = 1;
1838
1839         ret = find_and_setup_root(tree_root, fs_info,
1840                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
1841         if (ret)
1842                 goto fail_dev_root;
1843
1844         csum_root->track_dirty = 1;
1845
1846         btrfs_read_block_groups(extent_root);
1847
1848         fs_info->generation = generation;
1849         fs_info->last_trans_committed = generation;
1850         fs_info->data_alloc_profile = (u64)-1;
1851         fs_info->metadata_alloc_profile = (u64)-1;
1852         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1853         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1854                                                "btrfs-cleaner");
1855         if (IS_ERR(fs_info->cleaner_kthread))
1856                 goto fail_csum_root;
1857
1858         fs_info->transaction_kthread = kthread_run(transaction_kthread,
1859                                                    tree_root,
1860                                                    "btrfs-transaction");
1861         if (IS_ERR(fs_info->transaction_kthread))
1862                 goto fail_cleaner;
1863
1864         if (!btrfs_test_opt(tree_root, SSD) &&
1865             !btrfs_test_opt(tree_root, NOSSD) &&
1866             !fs_info->fs_devices->rotating) {
1867                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1868                        "mode\n");
1869                 btrfs_set_opt(fs_info->mount_opt, SSD);
1870         }
1871
1872         if (btrfs_super_log_root(disk_super) != 0) {
1873                 u64 bytenr = btrfs_super_log_root(disk_super);
1874
1875                 if (fs_devices->rw_devices == 0) {
1876                         printk(KERN_WARNING "Btrfs log replay required "
1877                                "on RO media\n");
1878                         err = -EIO;
1879                         goto fail_trans_kthread;
1880                 }
1881                 blocksize =
1882                      btrfs_level_size(tree_root,
1883                                       btrfs_super_log_root_level(disk_super));
1884
1885                 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1886                                                       GFP_NOFS);
1887
1888                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1889                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1890
1891                 log_tree_root->node = read_tree_block(tree_root, bytenr,
1892                                                       blocksize,
1893                                                       generation + 1);
1894                 ret = btrfs_recover_log_trees(log_tree_root);
1895                 BUG_ON(ret);
1896
1897                 if (sb->s_flags & MS_RDONLY) {
1898                         ret =  btrfs_commit_super(tree_root);
1899                         BUG_ON(ret);
1900                 }
1901         }
1902
1903         if (!(sb->s_flags & MS_RDONLY)) {
1904                 ret = btrfs_recover_relocation(tree_root);
1905                 BUG_ON(ret);
1906         }
1907
1908         location.objectid = BTRFS_FS_TREE_OBJECTID;
1909         location.type = BTRFS_ROOT_ITEM_KEY;
1910         location.offset = (u64)-1;
1911
1912         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1913         if (!fs_info->fs_root)
1914                 goto fail_trans_kthread;
1915
1916         return tree_root;
1917
1918 fail_trans_kthread:
1919         kthread_stop(fs_info->transaction_kthread);
1920 fail_cleaner:
1921         kthread_stop(fs_info->cleaner_kthread);
1922
1923         /*
1924          * make sure we're done with the btree inode before we stop our
1925          * kthreads
1926          */
1927         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1928         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1929
1930 fail_csum_root:
1931         free_extent_buffer(csum_root->node);
1932         free_extent_buffer(csum_root->commit_root);
1933 fail_dev_root:
1934         free_extent_buffer(dev_root->node);
1935         free_extent_buffer(dev_root->commit_root);
1936 fail_extent_root:
1937         free_extent_buffer(extent_root->node);
1938         free_extent_buffer(extent_root->commit_root);
1939 fail_tree_root:
1940         free_extent_buffer(tree_root->node);
1941         free_extent_buffer(tree_root->commit_root);
1942 fail_chunk_root:
1943         free_extent_buffer(chunk_root->node);
1944         free_extent_buffer(chunk_root->commit_root);
1945 fail_sb_buffer:
1946         btrfs_stop_workers(&fs_info->fixup_workers);
1947         btrfs_stop_workers(&fs_info->delalloc_workers);
1948         btrfs_stop_workers(&fs_info->workers);
1949         btrfs_stop_workers(&fs_info->endio_workers);
1950         btrfs_stop_workers(&fs_info->endio_meta_workers);
1951         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1952         btrfs_stop_workers(&fs_info->endio_write_workers);
1953         btrfs_stop_workers(&fs_info->submit_workers);
1954 fail_iput:
1955         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1956         iput(fs_info->btree_inode);
1957
1958         btrfs_close_devices(fs_info->fs_devices);
1959         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1960         bdi_destroy(&fs_info->bdi);
1961
1962 fail:
1963         kfree(extent_root);
1964         kfree(tree_root);
1965         kfree(fs_info);
1966         kfree(chunk_root);
1967         kfree(dev_root);
1968         kfree(csum_root);
1969         return ERR_PTR(err);
1970 }
1971
1972 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1973 {
1974         char b[BDEVNAME_SIZE];
1975
1976         if (uptodate) {
1977                 set_buffer_uptodate(bh);
1978         } else {
1979                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1980                         printk(KERN_WARNING "lost page write due to "
1981                                         "I/O error on %s\n",
1982                                        bdevname(bh->b_bdev, b));
1983                 }
1984                 /* note, we dont' set_buffer_write_io_error because we have
1985                  * our own ways of dealing with the IO errors
1986                  */
1987                 clear_buffer_uptodate(bh);
1988         }
1989         unlock_buffer(bh);
1990         put_bh(bh);
1991 }
1992
1993 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
1994 {
1995         struct buffer_head *bh;
1996         struct buffer_head *latest = NULL;
1997         struct btrfs_super_block *super;
1998         int i;
1999         u64 transid = 0;
2000         u64 bytenr;
2001
2002         /* we would like to check all the supers, but that would make
2003          * a btrfs mount succeed after a mkfs from a different FS.
2004          * So, we need to add a special mount option to scan for
2005          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2006          */
2007         for (i = 0; i < 1; i++) {
2008                 bytenr = btrfs_sb_offset(i);
2009                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2010                         break;
2011                 bh = __bread(bdev, bytenr / 4096, 4096);
2012                 if (!bh)
2013                         continue;
2014
2015                 super = (struct btrfs_super_block *)bh->b_data;
2016                 if (btrfs_super_bytenr(super) != bytenr ||
2017                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2018                             sizeof(super->magic))) {
2019                         brelse(bh);
2020                         continue;
2021                 }
2022
2023                 if (!latest || btrfs_super_generation(super) > transid) {
2024                         brelse(latest);
2025                         latest = bh;
2026                         transid = btrfs_super_generation(super);
2027                 } else {
2028                         brelse(bh);
2029                 }
2030         }
2031         return latest;
2032 }
2033
2034 /*
2035  * this should be called twice, once with wait == 0 and
2036  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2037  * we write are pinned.
2038  *
2039  * They are released when wait == 1 is done.
2040  * max_mirrors must be the same for both runs, and it indicates how
2041  * many supers on this one device should be written.
2042  *
2043  * max_mirrors == 0 means to write them all.
2044  */
2045 static int write_dev_supers(struct btrfs_device *device,
2046                             struct btrfs_super_block *sb,
2047                             int do_barriers, int wait, int max_mirrors)
2048 {
2049         struct buffer_head *bh;
2050         int i;
2051         int ret;
2052         int errors = 0;
2053         u32 crc;
2054         u64 bytenr;
2055         int last_barrier = 0;
2056
2057         if (max_mirrors == 0)
2058                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2059
2060         /* make sure only the last submit_bh does a barrier */
2061         if (do_barriers) {
2062                 for (i = 0; i < max_mirrors; i++) {
2063                         bytenr = btrfs_sb_offset(i);
2064                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2065                             device->total_bytes)
2066                                 break;
2067                         last_barrier = i;
2068                 }
2069         }
2070
2071         for (i = 0; i < max_mirrors; i++) {
2072                 bytenr = btrfs_sb_offset(i);
2073                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2074                         break;
2075
2076                 if (wait) {
2077                         bh = __find_get_block(device->bdev, bytenr / 4096,
2078                                               BTRFS_SUPER_INFO_SIZE);
2079                         BUG_ON(!bh);
2080                         wait_on_buffer(bh);
2081                         if (!buffer_uptodate(bh))
2082                                 errors++;
2083
2084                         /* drop our reference */
2085                         brelse(bh);
2086
2087                         /* drop the reference from the wait == 0 run */
2088                         brelse(bh);
2089                         continue;
2090                 } else {
2091                         btrfs_set_super_bytenr(sb, bytenr);
2092
2093                         crc = ~(u32)0;
2094                         crc = btrfs_csum_data(NULL, (char *)sb +
2095                                               BTRFS_CSUM_SIZE, crc,
2096                                               BTRFS_SUPER_INFO_SIZE -
2097                                               BTRFS_CSUM_SIZE);
2098                         btrfs_csum_final(crc, sb->csum);
2099
2100                         /*
2101                          * one reference for us, and we leave it for the
2102                          * caller
2103                          */
2104                         bh = __getblk(device->bdev, bytenr / 4096,
2105                                       BTRFS_SUPER_INFO_SIZE);
2106                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2107
2108                         /* one reference for submit_bh */
2109                         get_bh(bh);
2110
2111                         set_buffer_uptodate(bh);
2112                         lock_buffer(bh);
2113                         bh->b_end_io = btrfs_end_buffer_write_sync;
2114                 }
2115
2116                 if (i == last_barrier && do_barriers && device->barriers) {
2117                         ret = submit_bh(WRITE_BARRIER, bh);
2118                         if (ret == -EOPNOTSUPP) {
2119                                 printk("btrfs: disabling barriers on dev %s\n",
2120                                        device->name);
2121                                 set_buffer_uptodate(bh);
2122                                 device->barriers = 0;
2123                                 /* one reference for submit_bh */
2124                                 get_bh(bh);
2125                                 lock_buffer(bh);
2126                                 ret = submit_bh(WRITE_SYNC, bh);
2127                         }
2128                 } else {
2129                         ret = submit_bh(WRITE_SYNC, bh);
2130                 }
2131
2132                 if (ret)
2133                         errors++;
2134         }
2135         return errors < i ? 0 : -1;
2136 }
2137
2138 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2139 {
2140         struct list_head *head;
2141         struct btrfs_device *dev;
2142         struct btrfs_super_block *sb;
2143         struct btrfs_dev_item *dev_item;
2144         int ret;
2145         int do_barriers;
2146         int max_errors;
2147         int total_errors = 0;
2148         u64 flags;
2149
2150         max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2151         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2152
2153         sb = &root->fs_info->super_for_commit;
2154         dev_item = &sb->dev_item;
2155
2156         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2157         head = &root->fs_info->fs_devices->devices;
2158         list_for_each_entry(dev, head, dev_list) {
2159                 if (!dev->bdev) {
2160                         total_errors++;
2161                         continue;
2162                 }
2163                 if (!dev->in_fs_metadata || !dev->writeable)
2164                         continue;
2165
2166                 btrfs_set_stack_device_generation(dev_item, 0);
2167                 btrfs_set_stack_device_type(dev_item, dev->type);
2168                 btrfs_set_stack_device_id(dev_item, dev->devid);
2169                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2170                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2171                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2172                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2173                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2174                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2175                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2176
2177                 flags = btrfs_super_flags(sb);
2178                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2179
2180                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2181                 if (ret)
2182                         total_errors++;
2183         }
2184         if (total_errors > max_errors) {
2185                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2186                        total_errors);
2187                 BUG();
2188         }
2189
2190         total_errors = 0;
2191         list_for_each_entry(dev, head, dev_list) {
2192                 if (!dev->bdev)
2193                         continue;
2194                 if (!dev->in_fs_metadata || !dev->writeable)
2195                         continue;
2196
2197                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2198                 if (ret)
2199                         total_errors++;
2200         }
2201         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2202         if (total_errors > max_errors) {
2203                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2204                        total_errors);
2205                 BUG();
2206         }
2207         return 0;
2208 }
2209
2210 int write_ctree_super(struct btrfs_trans_handle *trans,
2211                       struct btrfs_root *root, int max_mirrors)
2212 {
2213         int ret;
2214
2215         ret = write_all_supers(root, max_mirrors);
2216         return ret;
2217 }
2218
2219 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2220 {
2221         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2222         radix_tree_delete(&fs_info->fs_roots_radix,
2223                           (unsigned long)root->root_key.objectid);
2224         if (root->anon_super.s_dev) {
2225                 down_write(&root->anon_super.s_umount);
2226                 kill_anon_super(&root->anon_super);
2227         }
2228         if (root->node)
2229                 free_extent_buffer(root->node);
2230         if (root->commit_root)
2231                 free_extent_buffer(root->commit_root);
2232         kfree(root->name);
2233         kfree(root);
2234         return 0;
2235 }
2236
2237 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2238 {
2239         int ret;
2240         struct btrfs_root *gang[8];
2241         int i;
2242
2243         while (1) {
2244                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2245                                              (void **)gang, 0,
2246                                              ARRAY_SIZE(gang));
2247                 if (!ret)
2248                         break;
2249                 for (i = 0; i < ret; i++)
2250                         btrfs_free_fs_root(fs_info, gang[i]);
2251         }
2252         return 0;
2253 }
2254
2255 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2256 {
2257         u64 root_objectid = 0;
2258         struct btrfs_root *gang[8];
2259         int i;
2260         int ret;
2261
2262         while (1) {
2263                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2264                                              (void **)gang, root_objectid,
2265                                              ARRAY_SIZE(gang));
2266                 if (!ret)
2267                         break;
2268
2269                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2270                 for (i = 0; i < ret; i++) {
2271                         root_objectid = gang[i]->root_key.objectid;
2272                         ret = btrfs_find_dead_roots(fs_info->tree_root,
2273                                                     root_objectid);
2274                         BUG_ON(ret);
2275                         btrfs_orphan_cleanup(gang[i]);
2276                 }
2277                 root_objectid++;
2278         }
2279         return 0;
2280 }
2281
2282 int btrfs_commit_super(struct btrfs_root *root)
2283 {
2284         struct btrfs_trans_handle *trans;
2285         int ret;
2286
2287         mutex_lock(&root->fs_info->cleaner_mutex);
2288         btrfs_clean_old_snapshots(root);
2289         mutex_unlock(&root->fs_info->cleaner_mutex);
2290         trans = btrfs_start_transaction(root, 1);
2291         ret = btrfs_commit_transaction(trans, root);
2292         BUG_ON(ret);
2293         /* run commit again to drop the original snapshot */
2294         trans = btrfs_start_transaction(root, 1);
2295         btrfs_commit_transaction(trans, root);
2296         ret = btrfs_write_and_wait_transaction(NULL, root);
2297         BUG_ON(ret);
2298
2299         ret = write_ctree_super(NULL, root, 0);
2300         return ret;
2301 }
2302
2303 int close_ctree(struct btrfs_root *root)
2304 {
2305         struct btrfs_fs_info *fs_info = root->fs_info;
2306         int ret;
2307
2308         fs_info->closing = 1;
2309         smp_mb();
2310
2311         kthread_stop(root->fs_info->transaction_kthread);
2312         kthread_stop(root->fs_info->cleaner_kthread);
2313
2314         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2315                 ret =  btrfs_commit_super(root);
2316                 if (ret)
2317                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2318         }
2319
2320         if (fs_info->delalloc_bytes) {
2321                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2322                        (unsigned long long)fs_info->delalloc_bytes);
2323         }
2324         if (fs_info->total_ref_cache_size) {
2325                 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2326                        (unsigned long long)fs_info->total_ref_cache_size);
2327         }
2328
2329         free_extent_buffer(fs_info->extent_root->node);
2330         free_extent_buffer(fs_info->extent_root->commit_root);
2331         free_extent_buffer(fs_info->tree_root->node);
2332         free_extent_buffer(fs_info->tree_root->commit_root);
2333         free_extent_buffer(root->fs_info->chunk_root->node);
2334         free_extent_buffer(root->fs_info->chunk_root->commit_root);
2335         free_extent_buffer(root->fs_info->dev_root->node);
2336         free_extent_buffer(root->fs_info->dev_root->commit_root);
2337         free_extent_buffer(root->fs_info->csum_root->node);
2338         free_extent_buffer(root->fs_info->csum_root->commit_root);
2339
2340         btrfs_free_block_groups(root->fs_info);
2341         btrfs_free_pinned_extents(root->fs_info);
2342
2343         del_fs_roots(fs_info);
2344
2345         iput(fs_info->btree_inode);
2346
2347         btrfs_stop_workers(&fs_info->fixup_workers);
2348         btrfs_stop_workers(&fs_info->delalloc_workers);
2349         btrfs_stop_workers(&fs_info->workers);
2350         btrfs_stop_workers(&fs_info->endio_workers);
2351         btrfs_stop_workers(&fs_info->endio_meta_workers);
2352         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2353         btrfs_stop_workers(&fs_info->endio_write_workers);
2354         btrfs_stop_workers(&fs_info->submit_workers);
2355
2356         btrfs_close_devices(fs_info->fs_devices);
2357         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2358
2359         bdi_destroy(&fs_info->bdi);
2360
2361         kfree(fs_info->extent_root);
2362         kfree(fs_info->tree_root);
2363         kfree(fs_info->chunk_root);
2364         kfree(fs_info->dev_root);
2365         kfree(fs_info->csum_root);
2366         return 0;
2367 }
2368
2369 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2370 {
2371         int ret;
2372         struct inode *btree_inode = buf->first_page->mapping->host;
2373
2374         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2375         if (!ret)
2376                 return ret;
2377
2378         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2379                                     parent_transid);
2380         return !ret;
2381 }
2382
2383 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2384 {
2385         struct inode *btree_inode = buf->first_page->mapping->host;
2386         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2387                                           buf);
2388 }
2389
2390 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2391 {
2392         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2393         u64 transid = btrfs_header_generation(buf);
2394         struct inode *btree_inode = root->fs_info->btree_inode;
2395         int was_dirty;
2396
2397         btrfs_assert_tree_locked(buf);
2398         if (transid != root->fs_info->generation) {
2399                 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2400                        "found %llu running %llu\n",
2401                         (unsigned long long)buf->start,
2402                         (unsigned long long)transid,
2403                         (unsigned long long)root->fs_info->generation);
2404                 WARN_ON(1);
2405         }
2406         was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2407                                             buf);
2408         if (!was_dirty) {
2409                 spin_lock(&root->fs_info->delalloc_lock);
2410                 root->fs_info->dirty_metadata_bytes += buf->len;
2411                 spin_unlock(&root->fs_info->delalloc_lock);
2412         }
2413 }
2414
2415 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2416 {
2417         /*
2418          * looks as though older kernels can get into trouble with
2419          * this code, they end up stuck in balance_dirty_pages forever
2420          */
2421         u64 num_dirty;
2422         unsigned long thresh = 32 * 1024 * 1024;
2423
2424         if (current->flags & PF_MEMALLOC)
2425                 return;
2426
2427         num_dirty = root->fs_info->dirty_metadata_bytes;
2428
2429         if (num_dirty > thresh) {
2430                 balance_dirty_pages_ratelimited_nr(
2431                                    root->fs_info->btree_inode->i_mapping, 1);
2432         }
2433         return;
2434 }
2435
2436 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2437 {
2438         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2439         int ret;
2440         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2441         if (ret == 0)
2442                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2443         return ret;
2444 }
2445
2446 int btree_lock_page_hook(struct page *page)
2447 {
2448         struct inode *inode = page->mapping->host;
2449         struct btrfs_root *root = BTRFS_I(inode)->root;
2450         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2451         struct extent_buffer *eb;
2452         unsigned long len;
2453         u64 bytenr = page_offset(page);
2454
2455         if (page->private == EXTENT_PAGE_PRIVATE)
2456                 goto out;
2457
2458         len = page->private >> 2;
2459         eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2460         if (!eb)
2461                 goto out;
2462
2463         btrfs_tree_lock(eb);
2464         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2465
2466         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2467                 spin_lock(&root->fs_info->delalloc_lock);
2468                 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2469                         root->fs_info->dirty_metadata_bytes -= eb->len;
2470                 else
2471                         WARN_ON(1);
2472                 spin_unlock(&root->fs_info->delalloc_lock);
2473         }
2474
2475         btrfs_tree_unlock(eb);
2476         free_extent_buffer(eb);
2477 out:
2478         lock_page(page);
2479         return 0;
2480 }
2481
2482 static struct extent_io_ops btree_extent_io_ops = {
2483         .write_cache_pages_lock_hook = btree_lock_page_hook,
2484         .readpage_end_io_hook = btree_readpage_end_io_hook,
2485         .submit_bio_hook = btree_submit_bio_hook,
2486         /* note we're sharing with inode.c for the merge bio hook */
2487         .merge_bio_hook = btrfs_merge_bio_hook,
2488 };