oprofile: remove unused components in struct oprofile_cpu_buffer
[linux-2.6] / drivers / oprofile / cpu_buffer.c
1 /**
2  * @file cpu_buffer.c
3  *
4  * @remark Copyright 2002 OProfile authors
5  * @remark Read the file COPYING
6  *
7  * @author John Levon <levon@movementarian.org>
8  * @author Barry Kasindorf <barry.kasindorf@amd.com>
9  *
10  * Each CPU has a local buffer that stores PC value/event
11  * pairs. We also log context switches when we notice them.
12  * Eventually each CPU's buffer is processed into the global
13  * event buffer by sync_buffer().
14  *
15  * We use a local buffer for two reasons: an NMI or similar
16  * interrupt cannot synchronise, and high sampling rates
17  * would lead to catastrophic global synchronisation if
18  * a global buffer was used.
19  */
20
21 #include <linux/sched.h>
22 #include <linux/oprofile.h>
23 #include <linux/vmalloc.h>
24 #include <linux/errno.h>
25
26 #include "event_buffer.h"
27 #include "cpu_buffer.h"
28 #include "buffer_sync.h"
29 #include "oprof.h"
30
31 #define OP_BUFFER_FLAGS 0
32
33 /*
34  * Read and write access is using spin locking. Thus, writing to the
35  * buffer by NMI handler (x86) could occur also during critical
36  * sections when reading the buffer. To avoid this, there are 2
37  * buffers for independent read and write access. Read access is in
38  * process context only, write access only in the NMI handler. If the
39  * read buffer runs empty, both buffers are swapped atomically. There
40  * is potentially a small window during swapping where the buffers are
41  * disabled and samples could be lost.
42  *
43  * Using 2 buffers is a little bit overhead, but the solution is clear
44  * and does not require changes in the ring buffer implementation. It
45  * can be changed to a single buffer solution when the ring buffer
46  * access is implemented as non-locking atomic code.
47  */
48 static struct ring_buffer *op_ring_buffer_read;
49 static struct ring_buffer *op_ring_buffer_write;
50 DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
51
52 static void wq_sync_buffer(struct work_struct *work);
53
54 #define DEFAULT_TIMER_EXPIRE (HZ / 10)
55 static int work_enabled;
56
57 unsigned long oprofile_get_cpu_buffer_size(void)
58 {
59         return oprofile_cpu_buffer_size;
60 }
61
62 void oprofile_cpu_buffer_inc_smpl_lost(void)
63 {
64         struct oprofile_cpu_buffer *cpu_buf
65                 = &__get_cpu_var(cpu_buffer);
66
67         cpu_buf->sample_lost_overflow++;
68 }
69
70 void free_cpu_buffers(void)
71 {
72         if (op_ring_buffer_read)
73                 ring_buffer_free(op_ring_buffer_read);
74         op_ring_buffer_read = NULL;
75         if (op_ring_buffer_write)
76                 ring_buffer_free(op_ring_buffer_write);
77         op_ring_buffer_write = NULL;
78 }
79
80 int alloc_cpu_buffers(void)
81 {
82         int i;
83
84         unsigned long buffer_size = oprofile_cpu_buffer_size;
85
86         op_ring_buffer_read = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS);
87         if (!op_ring_buffer_read)
88                 goto fail;
89         op_ring_buffer_write = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS);
90         if (!op_ring_buffer_write)
91                 goto fail;
92
93         for_each_possible_cpu(i) {
94                 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
95
96                 b->last_task = NULL;
97                 b->last_is_kernel = -1;
98                 b->tracing = 0;
99                 b->buffer_size = buffer_size;
100                 b->sample_received = 0;
101                 b->sample_lost_overflow = 0;
102                 b->backtrace_aborted = 0;
103                 b->sample_invalid_eip = 0;
104                 b->cpu = i;
105                 INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
106         }
107         return 0;
108
109 fail:
110         free_cpu_buffers();
111         return -ENOMEM;
112 }
113
114 void start_cpu_work(void)
115 {
116         int i;
117
118         work_enabled = 1;
119
120         for_each_online_cpu(i) {
121                 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
122
123                 /*
124                  * Spread the work by 1 jiffy per cpu so they dont all
125                  * fire at once.
126                  */
127                 schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
128         }
129 }
130
131 void end_cpu_work(void)
132 {
133         int i;
134
135         work_enabled = 0;
136
137         for_each_online_cpu(i) {
138                 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
139
140                 cancel_delayed_work(&b->work);
141         }
142
143         flush_scheduled_work();
144 }
145
146 int op_cpu_buffer_write_entry(struct op_entry *entry)
147 {
148         entry->event = ring_buffer_lock_reserve(op_ring_buffer_write,
149                                                 sizeof(struct op_sample),
150                                                 &entry->irq_flags);
151         if (entry->event)
152                 entry->sample = ring_buffer_event_data(entry->event);
153         else
154                 entry->sample = NULL;
155
156         if (!entry->sample)
157                 return -ENOMEM;
158
159         return 0;
160 }
161
162 int op_cpu_buffer_write_commit(struct op_entry *entry)
163 {
164         return ring_buffer_unlock_commit(op_ring_buffer_write, entry->event,
165                                          entry->irq_flags);
166 }
167
168 struct op_sample *op_cpu_buffer_read_entry(int cpu)
169 {
170         struct ring_buffer_event *e;
171         e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
172         if (e)
173                 return ring_buffer_event_data(e);
174         if (ring_buffer_swap_cpu(op_ring_buffer_read,
175                                  op_ring_buffer_write,
176                                  cpu))
177                 return NULL;
178         e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
179         if (e)
180                 return ring_buffer_event_data(e);
181         return NULL;
182 }
183
184 unsigned long op_cpu_buffer_entries(int cpu)
185 {
186         return ring_buffer_entries_cpu(op_ring_buffer_read, cpu)
187                 + ring_buffer_entries_cpu(op_ring_buffer_write, cpu);
188 }
189
190 static inline int
191 add_sample(struct oprofile_cpu_buffer *cpu_buf,
192            unsigned long pc, unsigned long event)
193 {
194         struct op_entry entry;
195         int ret;
196
197         ret = op_cpu_buffer_write_entry(&entry);
198         if (ret)
199                 return ret;
200
201         entry.sample->eip = pc;
202         entry.sample->event = event;
203
204         return op_cpu_buffer_write_commit(&entry);
205 }
206
207 static inline int
208 add_code(struct oprofile_cpu_buffer *buffer, unsigned long value)
209 {
210         return add_sample(buffer, ESCAPE_CODE, value);
211 }
212
213 /* This must be safe from any context. It's safe writing here
214  * because of the head/tail separation of the writer and reader
215  * of the CPU buffer.
216  *
217  * is_kernel is needed because on some architectures you cannot
218  * tell if you are in kernel or user space simply by looking at
219  * pc. We tag this in the buffer by generating kernel enter/exit
220  * events whenever is_kernel changes
221  */
222 static int log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
223                       int is_kernel, unsigned long event)
224 {
225         struct task_struct *task;
226
227         cpu_buf->sample_received++;
228
229         if (pc == ESCAPE_CODE) {
230                 cpu_buf->sample_invalid_eip++;
231                 return 0;
232         }
233
234         is_kernel = !!is_kernel;
235
236         task = current;
237
238         /* notice a switch from user->kernel or vice versa */
239         if (cpu_buf->last_is_kernel != is_kernel) {
240                 cpu_buf->last_is_kernel = is_kernel;
241                 if (add_code(cpu_buf, is_kernel))
242                         goto fail;
243         }
244
245         /* notice a task switch */
246         if (cpu_buf->last_task != task) {
247                 cpu_buf->last_task = task;
248                 if (add_code(cpu_buf, (unsigned long)task))
249                         goto fail;
250         }
251
252         if (add_sample(cpu_buf, pc, event))
253                 goto fail;
254
255         return 1;
256
257 fail:
258         cpu_buf->sample_lost_overflow++;
259         return 0;
260 }
261
262 static inline void oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
263 {
264         add_code(cpu_buf, CPU_TRACE_BEGIN);
265         cpu_buf->tracing = 1;
266 }
267
268 static inline void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf)
269 {
270         cpu_buf->tracing = 0;
271 }
272
273 static inline void
274 __oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
275                           unsigned long event, int is_kernel)
276 {
277         struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
278
279         if (!oprofile_backtrace_depth) {
280                 log_sample(cpu_buf, pc, is_kernel, event);
281                 return;
282         }
283
284         oprofile_begin_trace(cpu_buf);
285
286         /*
287          * if log_sample() fail we can't backtrace since we lost the
288          * source of this event
289          */
290         if (log_sample(cpu_buf, pc, is_kernel, event))
291                 oprofile_ops.backtrace(regs, oprofile_backtrace_depth);
292
293         oprofile_end_trace(cpu_buf);
294 }
295
296 void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
297                              unsigned long event, int is_kernel)
298 {
299         __oprofile_add_ext_sample(pc, regs, event, is_kernel);
300 }
301
302 void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
303 {
304         int is_kernel = !user_mode(regs);
305         unsigned long pc = profile_pc(regs);
306
307         __oprofile_add_ext_sample(pc, regs, event, is_kernel);
308 }
309
310 #ifdef CONFIG_OPROFILE_IBS
311
312 #define MAX_IBS_SAMPLE_SIZE 14
313
314 void oprofile_add_ibs_sample(struct pt_regs * const regs,
315                              unsigned int * const ibs_sample, int ibs_code)
316 {
317         int is_kernel = !user_mode(regs);
318         struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
319         struct task_struct *task;
320         int fail = 0;
321
322         cpu_buf->sample_received++;
323
324         /* notice a switch from user->kernel or vice versa */
325         if (cpu_buf->last_is_kernel != is_kernel) {
326                 if (add_code(cpu_buf, is_kernel))
327                         goto fail;
328                 cpu_buf->last_is_kernel = is_kernel;
329         }
330
331         /* notice a task switch */
332         if (!is_kernel) {
333                 task = current;
334                 if (cpu_buf->last_task != task) {
335                         if (add_code(cpu_buf, (unsigned long)task))
336                                 goto fail;
337                         cpu_buf->last_task = task;
338                 }
339         }
340
341         fail = fail || add_code(cpu_buf, ibs_code);
342         fail = fail || add_sample(cpu_buf, ibs_sample[0], ibs_sample[1]);
343         fail = fail || add_sample(cpu_buf, ibs_sample[2], ibs_sample[3]);
344         fail = fail || add_sample(cpu_buf, ibs_sample[4], ibs_sample[5]);
345
346         if (ibs_code == IBS_OP_BEGIN) {
347                 fail = fail || add_sample(cpu_buf, ibs_sample[6], ibs_sample[7]);
348                 fail = fail || add_sample(cpu_buf, ibs_sample[8], ibs_sample[9]);
349                 fail = fail || add_sample(cpu_buf, ibs_sample[10], ibs_sample[11]);
350         }
351
352         if (fail)
353                 goto fail;
354
355         if (oprofile_backtrace_depth)
356                 oprofile_ops.backtrace(regs, oprofile_backtrace_depth);
357
358         return;
359
360 fail:
361         cpu_buf->sample_lost_overflow++;
362         return;
363 }
364
365 #endif
366
367 void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
368 {
369         struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
370         log_sample(cpu_buf, pc, is_kernel, event);
371 }
372
373 void oprofile_add_trace(unsigned long pc)
374 {
375         struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
376
377         if (!cpu_buf->tracing)
378                 return;
379
380         /*
381          * broken frame can give an eip with the same value as an
382          * escape code, abort the trace if we get it
383          */
384         if (pc == ESCAPE_CODE)
385                 goto fail;
386
387         if (add_sample(cpu_buf, pc, 0))
388                 goto fail;
389
390         return;
391 fail:
392         cpu_buf->tracing = 0;
393         cpu_buf->backtrace_aborted++;
394         return;
395 }
396
397 /*
398  * This serves to avoid cpu buffer overflow, and makes sure
399  * the task mortuary progresses
400  *
401  * By using schedule_delayed_work_on and then schedule_delayed_work
402  * we guarantee this will stay on the correct cpu
403  */
404 static void wq_sync_buffer(struct work_struct *work)
405 {
406         struct oprofile_cpu_buffer *b =
407                 container_of(work, struct oprofile_cpu_buffer, work.work);
408         if (b->cpu != smp_processor_id()) {
409                 printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n",
410                        smp_processor_id(), b->cpu);
411
412                 if (!cpu_online(b->cpu)) {
413                         cancel_delayed_work(&b->work);
414                         return;
415                 }
416         }
417         sync_buffer(b->cpu);
418
419         /* don't re-add the work if we're shutting down */
420         if (work_enabled)
421                 schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
422 }