Linux 2.6.31-rc6
[linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45 static atomic_t nr_task_counters __read_mostly;
46
47 /*
48  * perf counter paranoia level:
49  *  0 - not paranoid
50  *  1 - disallow cpu counters to unpriv
51  *  2 - disallow kernel profiling to unpriv
52  */
53 int sysctl_perf_counter_paranoid __read_mostly;
54
55 static inline bool perf_paranoid_cpu(void)
56 {
57         return sysctl_perf_counter_paranoid > 0;
58 }
59
60 static inline bool perf_paranoid_kernel(void)
61 {
62         return sysctl_perf_counter_paranoid > 1;
63 }
64
65 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
66
67 /*
68  * max perf counter sample rate
69  */
70 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
71
72 static atomic64_t perf_counter_id;
73
74 /*
75  * Lock for (sysadmin-configurable) counter reservations:
76  */
77 static DEFINE_SPINLOCK(perf_resource_lock);
78
79 /*
80  * Architecture provided APIs - weak aliases:
81  */
82 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
83 {
84         return NULL;
85 }
86
87 void __weak hw_perf_disable(void)               { barrier(); }
88 void __weak hw_perf_enable(void)                { barrier(); }
89
90 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
91 void __weak hw_perf_counter_setup_online(int cpu)       { barrier(); }
92
93 int __weak
94 hw_perf_group_sched_in(struct perf_counter *group_leader,
95                struct perf_cpu_context *cpuctx,
96                struct perf_counter_context *ctx, int cpu)
97 {
98         return 0;
99 }
100
101 void __weak perf_counter_print_debug(void)      { }
102
103 static DEFINE_PER_CPU(int, disable_count);
104
105 void __perf_disable(void)
106 {
107         __get_cpu_var(disable_count)++;
108 }
109
110 bool __perf_enable(void)
111 {
112         return !--__get_cpu_var(disable_count);
113 }
114
115 void perf_disable(void)
116 {
117         __perf_disable();
118         hw_perf_disable();
119 }
120
121 void perf_enable(void)
122 {
123         if (__perf_enable())
124                 hw_perf_enable();
125 }
126
127 static void get_ctx(struct perf_counter_context *ctx)
128 {
129         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
130 }
131
132 static void free_ctx(struct rcu_head *head)
133 {
134         struct perf_counter_context *ctx;
135
136         ctx = container_of(head, struct perf_counter_context, rcu_head);
137         kfree(ctx);
138 }
139
140 static void put_ctx(struct perf_counter_context *ctx)
141 {
142         if (atomic_dec_and_test(&ctx->refcount)) {
143                 if (ctx->parent_ctx)
144                         put_ctx(ctx->parent_ctx);
145                 if (ctx->task)
146                         put_task_struct(ctx->task);
147                 call_rcu(&ctx->rcu_head, free_ctx);
148         }
149 }
150
151 static void unclone_ctx(struct perf_counter_context *ctx)
152 {
153         if (ctx->parent_ctx) {
154                 put_ctx(ctx->parent_ctx);
155                 ctx->parent_ctx = NULL;
156         }
157 }
158
159 /*
160  * If we inherit counters we want to return the parent counter id
161  * to userspace.
162  */
163 static u64 primary_counter_id(struct perf_counter *counter)
164 {
165         u64 id = counter->id;
166
167         if (counter->parent)
168                 id = counter->parent->id;
169
170         return id;
171 }
172
173 /*
174  * Get the perf_counter_context for a task and lock it.
175  * This has to cope with with the fact that until it is locked,
176  * the context could get moved to another task.
177  */
178 static struct perf_counter_context *
179 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
180 {
181         struct perf_counter_context *ctx;
182
183         rcu_read_lock();
184  retry:
185         ctx = rcu_dereference(task->perf_counter_ctxp);
186         if (ctx) {
187                 /*
188                  * If this context is a clone of another, it might
189                  * get swapped for another underneath us by
190                  * perf_counter_task_sched_out, though the
191                  * rcu_read_lock() protects us from any context
192                  * getting freed.  Lock the context and check if it
193                  * got swapped before we could get the lock, and retry
194                  * if so.  If we locked the right context, then it
195                  * can't get swapped on us any more.
196                  */
197                 spin_lock_irqsave(&ctx->lock, *flags);
198                 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
199                         spin_unlock_irqrestore(&ctx->lock, *flags);
200                         goto retry;
201                 }
202
203                 if (!atomic_inc_not_zero(&ctx->refcount)) {
204                         spin_unlock_irqrestore(&ctx->lock, *flags);
205                         ctx = NULL;
206                 }
207         }
208         rcu_read_unlock();
209         return ctx;
210 }
211
212 /*
213  * Get the context for a task and increment its pin_count so it
214  * can't get swapped to another task.  This also increments its
215  * reference count so that the context can't get freed.
216  */
217 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
218 {
219         struct perf_counter_context *ctx;
220         unsigned long flags;
221
222         ctx = perf_lock_task_context(task, &flags);
223         if (ctx) {
224                 ++ctx->pin_count;
225                 spin_unlock_irqrestore(&ctx->lock, flags);
226         }
227         return ctx;
228 }
229
230 static void perf_unpin_context(struct perf_counter_context *ctx)
231 {
232         unsigned long flags;
233
234         spin_lock_irqsave(&ctx->lock, flags);
235         --ctx->pin_count;
236         spin_unlock_irqrestore(&ctx->lock, flags);
237         put_ctx(ctx);
238 }
239
240 /*
241  * Add a counter from the lists for its context.
242  * Must be called with ctx->mutex and ctx->lock held.
243  */
244 static void
245 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
246 {
247         struct perf_counter *group_leader = counter->group_leader;
248
249         /*
250          * Depending on whether it is a standalone or sibling counter,
251          * add it straight to the context's counter list, or to the group
252          * leader's sibling list:
253          */
254         if (group_leader == counter)
255                 list_add_tail(&counter->list_entry, &ctx->counter_list);
256         else {
257                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
258                 group_leader->nr_siblings++;
259         }
260
261         list_add_rcu(&counter->event_entry, &ctx->event_list);
262         ctx->nr_counters++;
263         if (counter->attr.inherit_stat)
264                 ctx->nr_stat++;
265 }
266
267 /*
268  * Remove a counter from the lists for its context.
269  * Must be called with ctx->mutex and ctx->lock held.
270  */
271 static void
272 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
273 {
274         struct perf_counter *sibling, *tmp;
275
276         if (list_empty(&counter->list_entry))
277                 return;
278         ctx->nr_counters--;
279         if (counter->attr.inherit_stat)
280                 ctx->nr_stat--;
281
282         list_del_init(&counter->list_entry);
283         list_del_rcu(&counter->event_entry);
284
285         if (counter->group_leader != counter)
286                 counter->group_leader->nr_siblings--;
287
288         /*
289          * If this was a group counter with sibling counters then
290          * upgrade the siblings to singleton counters by adding them
291          * to the context list directly:
292          */
293         list_for_each_entry_safe(sibling, tmp,
294                                  &counter->sibling_list, list_entry) {
295
296                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
297                 sibling->group_leader = sibling;
298         }
299 }
300
301 static void
302 counter_sched_out(struct perf_counter *counter,
303                   struct perf_cpu_context *cpuctx,
304                   struct perf_counter_context *ctx)
305 {
306         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
307                 return;
308
309         counter->state = PERF_COUNTER_STATE_INACTIVE;
310         if (counter->pending_disable) {
311                 counter->pending_disable = 0;
312                 counter->state = PERF_COUNTER_STATE_OFF;
313         }
314         counter->tstamp_stopped = ctx->time;
315         counter->pmu->disable(counter);
316         counter->oncpu = -1;
317
318         if (!is_software_counter(counter))
319                 cpuctx->active_oncpu--;
320         ctx->nr_active--;
321         if (counter->attr.exclusive || !cpuctx->active_oncpu)
322                 cpuctx->exclusive = 0;
323 }
324
325 static void
326 group_sched_out(struct perf_counter *group_counter,
327                 struct perf_cpu_context *cpuctx,
328                 struct perf_counter_context *ctx)
329 {
330         struct perf_counter *counter;
331
332         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
333                 return;
334
335         counter_sched_out(group_counter, cpuctx, ctx);
336
337         /*
338          * Schedule out siblings (if any):
339          */
340         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
341                 counter_sched_out(counter, cpuctx, ctx);
342
343         if (group_counter->attr.exclusive)
344                 cpuctx->exclusive = 0;
345 }
346
347 /*
348  * Cross CPU call to remove a performance counter
349  *
350  * We disable the counter on the hardware level first. After that we
351  * remove it from the context list.
352  */
353 static void __perf_counter_remove_from_context(void *info)
354 {
355         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
356         struct perf_counter *counter = info;
357         struct perf_counter_context *ctx = counter->ctx;
358
359         /*
360          * If this is a task context, we need to check whether it is
361          * the current task context of this cpu. If not it has been
362          * scheduled out before the smp call arrived.
363          */
364         if (ctx->task && cpuctx->task_ctx != ctx)
365                 return;
366
367         spin_lock(&ctx->lock);
368         /*
369          * Protect the list operation against NMI by disabling the
370          * counters on a global level.
371          */
372         perf_disable();
373
374         counter_sched_out(counter, cpuctx, ctx);
375
376         list_del_counter(counter, ctx);
377
378         if (!ctx->task) {
379                 /*
380                  * Allow more per task counters with respect to the
381                  * reservation:
382                  */
383                 cpuctx->max_pertask =
384                         min(perf_max_counters - ctx->nr_counters,
385                             perf_max_counters - perf_reserved_percpu);
386         }
387
388         perf_enable();
389         spin_unlock(&ctx->lock);
390 }
391
392
393 /*
394  * Remove the counter from a task's (or a CPU's) list of counters.
395  *
396  * Must be called with ctx->mutex held.
397  *
398  * CPU counters are removed with a smp call. For task counters we only
399  * call when the task is on a CPU.
400  *
401  * If counter->ctx is a cloned context, callers must make sure that
402  * every task struct that counter->ctx->task could possibly point to
403  * remains valid.  This is OK when called from perf_release since
404  * that only calls us on the top-level context, which can't be a clone.
405  * When called from perf_counter_exit_task, it's OK because the
406  * context has been detached from its task.
407  */
408 static void perf_counter_remove_from_context(struct perf_counter *counter)
409 {
410         struct perf_counter_context *ctx = counter->ctx;
411         struct task_struct *task = ctx->task;
412
413         if (!task) {
414                 /*
415                  * Per cpu counters are removed via an smp call and
416                  * the removal is always sucessful.
417                  */
418                 smp_call_function_single(counter->cpu,
419                                          __perf_counter_remove_from_context,
420                                          counter, 1);
421                 return;
422         }
423
424 retry:
425         task_oncpu_function_call(task, __perf_counter_remove_from_context,
426                                  counter);
427
428         spin_lock_irq(&ctx->lock);
429         /*
430          * If the context is active we need to retry the smp call.
431          */
432         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
433                 spin_unlock_irq(&ctx->lock);
434                 goto retry;
435         }
436
437         /*
438          * The lock prevents that this context is scheduled in so we
439          * can remove the counter safely, if the call above did not
440          * succeed.
441          */
442         if (!list_empty(&counter->list_entry)) {
443                 list_del_counter(counter, ctx);
444         }
445         spin_unlock_irq(&ctx->lock);
446 }
447
448 static inline u64 perf_clock(void)
449 {
450         return cpu_clock(smp_processor_id());
451 }
452
453 /*
454  * Update the record of the current time in a context.
455  */
456 static void update_context_time(struct perf_counter_context *ctx)
457 {
458         u64 now = perf_clock();
459
460         ctx->time += now - ctx->timestamp;
461         ctx->timestamp = now;
462 }
463
464 /*
465  * Update the total_time_enabled and total_time_running fields for a counter.
466  */
467 static void update_counter_times(struct perf_counter *counter)
468 {
469         struct perf_counter_context *ctx = counter->ctx;
470         u64 run_end;
471
472         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
473                 return;
474
475         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
476
477         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
478                 run_end = counter->tstamp_stopped;
479         else
480                 run_end = ctx->time;
481
482         counter->total_time_running = run_end - counter->tstamp_running;
483 }
484
485 /*
486  * Update total_time_enabled and total_time_running for all counters in a group.
487  */
488 static void update_group_times(struct perf_counter *leader)
489 {
490         struct perf_counter *counter;
491
492         update_counter_times(leader);
493         list_for_each_entry(counter, &leader->sibling_list, list_entry)
494                 update_counter_times(counter);
495 }
496
497 /*
498  * Cross CPU call to disable a performance counter
499  */
500 static void __perf_counter_disable(void *info)
501 {
502         struct perf_counter *counter = info;
503         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
504         struct perf_counter_context *ctx = counter->ctx;
505
506         /*
507          * If this is a per-task counter, need to check whether this
508          * counter's task is the current task on this cpu.
509          */
510         if (ctx->task && cpuctx->task_ctx != ctx)
511                 return;
512
513         spin_lock(&ctx->lock);
514
515         /*
516          * If the counter is on, turn it off.
517          * If it is in error state, leave it in error state.
518          */
519         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
520                 update_context_time(ctx);
521                 update_counter_times(counter);
522                 if (counter == counter->group_leader)
523                         group_sched_out(counter, cpuctx, ctx);
524                 else
525                         counter_sched_out(counter, cpuctx, ctx);
526                 counter->state = PERF_COUNTER_STATE_OFF;
527         }
528
529         spin_unlock(&ctx->lock);
530 }
531
532 /*
533  * Disable a counter.
534  *
535  * If counter->ctx is a cloned context, callers must make sure that
536  * every task struct that counter->ctx->task could possibly point to
537  * remains valid.  This condition is satisifed when called through
538  * perf_counter_for_each_child or perf_counter_for_each because they
539  * hold the top-level counter's child_mutex, so any descendant that
540  * goes to exit will block in sync_child_counter.
541  * When called from perf_pending_counter it's OK because counter->ctx
542  * is the current context on this CPU and preemption is disabled,
543  * hence we can't get into perf_counter_task_sched_out for this context.
544  */
545 static void perf_counter_disable(struct perf_counter *counter)
546 {
547         struct perf_counter_context *ctx = counter->ctx;
548         struct task_struct *task = ctx->task;
549
550         if (!task) {
551                 /*
552                  * Disable the counter on the cpu that it's on
553                  */
554                 smp_call_function_single(counter->cpu, __perf_counter_disable,
555                                          counter, 1);
556                 return;
557         }
558
559  retry:
560         task_oncpu_function_call(task, __perf_counter_disable, counter);
561
562         spin_lock_irq(&ctx->lock);
563         /*
564          * If the counter is still active, we need to retry the cross-call.
565          */
566         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
567                 spin_unlock_irq(&ctx->lock);
568                 goto retry;
569         }
570
571         /*
572          * Since we have the lock this context can't be scheduled
573          * in, so we can change the state safely.
574          */
575         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
576                 update_counter_times(counter);
577                 counter->state = PERF_COUNTER_STATE_OFF;
578         }
579
580         spin_unlock_irq(&ctx->lock);
581 }
582
583 static int
584 counter_sched_in(struct perf_counter *counter,
585                  struct perf_cpu_context *cpuctx,
586                  struct perf_counter_context *ctx,
587                  int cpu)
588 {
589         if (counter->state <= PERF_COUNTER_STATE_OFF)
590                 return 0;
591
592         counter->state = PERF_COUNTER_STATE_ACTIVE;
593         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
594         /*
595          * The new state must be visible before we turn it on in the hardware:
596          */
597         smp_wmb();
598
599         if (counter->pmu->enable(counter)) {
600                 counter->state = PERF_COUNTER_STATE_INACTIVE;
601                 counter->oncpu = -1;
602                 return -EAGAIN;
603         }
604
605         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
606
607         if (!is_software_counter(counter))
608                 cpuctx->active_oncpu++;
609         ctx->nr_active++;
610
611         if (counter->attr.exclusive)
612                 cpuctx->exclusive = 1;
613
614         return 0;
615 }
616
617 static int
618 group_sched_in(struct perf_counter *group_counter,
619                struct perf_cpu_context *cpuctx,
620                struct perf_counter_context *ctx,
621                int cpu)
622 {
623         struct perf_counter *counter, *partial_group;
624         int ret;
625
626         if (group_counter->state == PERF_COUNTER_STATE_OFF)
627                 return 0;
628
629         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
630         if (ret)
631                 return ret < 0 ? ret : 0;
632
633         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
634                 return -EAGAIN;
635
636         /*
637          * Schedule in siblings as one group (if any):
638          */
639         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
640                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
641                         partial_group = counter;
642                         goto group_error;
643                 }
644         }
645
646         return 0;
647
648 group_error:
649         /*
650          * Groups can be scheduled in as one unit only, so undo any
651          * partial group before returning:
652          */
653         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
654                 if (counter == partial_group)
655                         break;
656                 counter_sched_out(counter, cpuctx, ctx);
657         }
658         counter_sched_out(group_counter, cpuctx, ctx);
659
660         return -EAGAIN;
661 }
662
663 /*
664  * Return 1 for a group consisting entirely of software counters,
665  * 0 if the group contains any hardware counters.
666  */
667 static int is_software_only_group(struct perf_counter *leader)
668 {
669         struct perf_counter *counter;
670
671         if (!is_software_counter(leader))
672                 return 0;
673
674         list_for_each_entry(counter, &leader->sibling_list, list_entry)
675                 if (!is_software_counter(counter))
676                         return 0;
677
678         return 1;
679 }
680
681 /*
682  * Work out whether we can put this counter group on the CPU now.
683  */
684 static int group_can_go_on(struct perf_counter *counter,
685                            struct perf_cpu_context *cpuctx,
686                            int can_add_hw)
687 {
688         /*
689          * Groups consisting entirely of software counters can always go on.
690          */
691         if (is_software_only_group(counter))
692                 return 1;
693         /*
694          * If an exclusive group is already on, no other hardware
695          * counters can go on.
696          */
697         if (cpuctx->exclusive)
698                 return 0;
699         /*
700          * If this group is exclusive and there are already
701          * counters on the CPU, it can't go on.
702          */
703         if (counter->attr.exclusive && cpuctx->active_oncpu)
704                 return 0;
705         /*
706          * Otherwise, try to add it if all previous groups were able
707          * to go on.
708          */
709         return can_add_hw;
710 }
711
712 static void add_counter_to_ctx(struct perf_counter *counter,
713                                struct perf_counter_context *ctx)
714 {
715         list_add_counter(counter, ctx);
716         counter->tstamp_enabled = ctx->time;
717         counter->tstamp_running = ctx->time;
718         counter->tstamp_stopped = ctx->time;
719 }
720
721 /*
722  * Cross CPU call to install and enable a performance counter
723  *
724  * Must be called with ctx->mutex held
725  */
726 static void __perf_install_in_context(void *info)
727 {
728         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
729         struct perf_counter *counter = info;
730         struct perf_counter_context *ctx = counter->ctx;
731         struct perf_counter *leader = counter->group_leader;
732         int cpu = smp_processor_id();
733         int err;
734
735         /*
736          * If this is a task context, we need to check whether it is
737          * the current task context of this cpu. If not it has been
738          * scheduled out before the smp call arrived.
739          * Or possibly this is the right context but it isn't
740          * on this cpu because it had no counters.
741          */
742         if (ctx->task && cpuctx->task_ctx != ctx) {
743                 if (cpuctx->task_ctx || ctx->task != current)
744                         return;
745                 cpuctx->task_ctx = ctx;
746         }
747
748         spin_lock(&ctx->lock);
749         ctx->is_active = 1;
750         update_context_time(ctx);
751
752         /*
753          * Protect the list operation against NMI by disabling the
754          * counters on a global level. NOP for non NMI based counters.
755          */
756         perf_disable();
757
758         add_counter_to_ctx(counter, ctx);
759
760         /*
761          * Don't put the counter on if it is disabled or if
762          * it is in a group and the group isn't on.
763          */
764         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
765             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
766                 goto unlock;
767
768         /*
769          * An exclusive counter can't go on if there are already active
770          * hardware counters, and no hardware counter can go on if there
771          * is already an exclusive counter on.
772          */
773         if (!group_can_go_on(counter, cpuctx, 1))
774                 err = -EEXIST;
775         else
776                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
777
778         if (err) {
779                 /*
780                  * This counter couldn't go on.  If it is in a group
781                  * then we have to pull the whole group off.
782                  * If the counter group is pinned then put it in error state.
783                  */
784                 if (leader != counter)
785                         group_sched_out(leader, cpuctx, ctx);
786                 if (leader->attr.pinned) {
787                         update_group_times(leader);
788                         leader->state = PERF_COUNTER_STATE_ERROR;
789                 }
790         }
791
792         if (!err && !ctx->task && cpuctx->max_pertask)
793                 cpuctx->max_pertask--;
794
795  unlock:
796         perf_enable();
797
798         spin_unlock(&ctx->lock);
799 }
800
801 /*
802  * Attach a performance counter to a context
803  *
804  * First we add the counter to the list with the hardware enable bit
805  * in counter->hw_config cleared.
806  *
807  * If the counter is attached to a task which is on a CPU we use a smp
808  * call to enable it in the task context. The task might have been
809  * scheduled away, but we check this in the smp call again.
810  *
811  * Must be called with ctx->mutex held.
812  */
813 static void
814 perf_install_in_context(struct perf_counter_context *ctx,
815                         struct perf_counter *counter,
816                         int cpu)
817 {
818         struct task_struct *task = ctx->task;
819
820         if (!task) {
821                 /*
822                  * Per cpu counters are installed via an smp call and
823                  * the install is always sucessful.
824                  */
825                 smp_call_function_single(cpu, __perf_install_in_context,
826                                          counter, 1);
827                 return;
828         }
829
830 retry:
831         task_oncpu_function_call(task, __perf_install_in_context,
832                                  counter);
833
834         spin_lock_irq(&ctx->lock);
835         /*
836          * we need to retry the smp call.
837          */
838         if (ctx->is_active && list_empty(&counter->list_entry)) {
839                 spin_unlock_irq(&ctx->lock);
840                 goto retry;
841         }
842
843         /*
844          * The lock prevents that this context is scheduled in so we
845          * can add the counter safely, if it the call above did not
846          * succeed.
847          */
848         if (list_empty(&counter->list_entry))
849                 add_counter_to_ctx(counter, ctx);
850         spin_unlock_irq(&ctx->lock);
851 }
852
853 /*
854  * Cross CPU call to enable a performance counter
855  */
856 static void __perf_counter_enable(void *info)
857 {
858         struct perf_counter *counter = info;
859         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
860         struct perf_counter_context *ctx = counter->ctx;
861         struct perf_counter *leader = counter->group_leader;
862         int err;
863
864         /*
865          * If this is a per-task counter, need to check whether this
866          * counter's task is the current task on this cpu.
867          */
868         if (ctx->task && cpuctx->task_ctx != ctx) {
869                 if (cpuctx->task_ctx || ctx->task != current)
870                         return;
871                 cpuctx->task_ctx = ctx;
872         }
873
874         spin_lock(&ctx->lock);
875         ctx->is_active = 1;
876         update_context_time(ctx);
877
878         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
879                 goto unlock;
880         counter->state = PERF_COUNTER_STATE_INACTIVE;
881         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
882
883         /*
884          * If the counter is in a group and isn't the group leader,
885          * then don't put it on unless the group is on.
886          */
887         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
888                 goto unlock;
889
890         if (!group_can_go_on(counter, cpuctx, 1)) {
891                 err = -EEXIST;
892         } else {
893                 perf_disable();
894                 if (counter == leader)
895                         err = group_sched_in(counter, cpuctx, ctx,
896                                              smp_processor_id());
897                 else
898                         err = counter_sched_in(counter, cpuctx, ctx,
899                                                smp_processor_id());
900                 perf_enable();
901         }
902
903         if (err) {
904                 /*
905                  * If this counter can't go on and it's part of a
906                  * group, then the whole group has to come off.
907                  */
908                 if (leader != counter)
909                         group_sched_out(leader, cpuctx, ctx);
910                 if (leader->attr.pinned) {
911                         update_group_times(leader);
912                         leader->state = PERF_COUNTER_STATE_ERROR;
913                 }
914         }
915
916  unlock:
917         spin_unlock(&ctx->lock);
918 }
919
920 /*
921  * Enable a counter.
922  *
923  * If counter->ctx is a cloned context, callers must make sure that
924  * every task struct that counter->ctx->task could possibly point to
925  * remains valid.  This condition is satisfied when called through
926  * perf_counter_for_each_child or perf_counter_for_each as described
927  * for perf_counter_disable.
928  */
929 static void perf_counter_enable(struct perf_counter *counter)
930 {
931         struct perf_counter_context *ctx = counter->ctx;
932         struct task_struct *task = ctx->task;
933
934         if (!task) {
935                 /*
936                  * Enable the counter on the cpu that it's on
937                  */
938                 smp_call_function_single(counter->cpu, __perf_counter_enable,
939                                          counter, 1);
940                 return;
941         }
942
943         spin_lock_irq(&ctx->lock);
944         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
945                 goto out;
946
947         /*
948          * If the counter is in error state, clear that first.
949          * That way, if we see the counter in error state below, we
950          * know that it has gone back into error state, as distinct
951          * from the task having been scheduled away before the
952          * cross-call arrived.
953          */
954         if (counter->state == PERF_COUNTER_STATE_ERROR)
955                 counter->state = PERF_COUNTER_STATE_OFF;
956
957  retry:
958         spin_unlock_irq(&ctx->lock);
959         task_oncpu_function_call(task, __perf_counter_enable, counter);
960
961         spin_lock_irq(&ctx->lock);
962
963         /*
964          * If the context is active and the counter is still off,
965          * we need to retry the cross-call.
966          */
967         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
968                 goto retry;
969
970         /*
971          * Since we have the lock this context can't be scheduled
972          * in, so we can change the state safely.
973          */
974         if (counter->state == PERF_COUNTER_STATE_OFF) {
975                 counter->state = PERF_COUNTER_STATE_INACTIVE;
976                 counter->tstamp_enabled =
977                         ctx->time - counter->total_time_enabled;
978         }
979  out:
980         spin_unlock_irq(&ctx->lock);
981 }
982
983 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
984 {
985         /*
986          * not supported on inherited counters
987          */
988         if (counter->attr.inherit)
989                 return -EINVAL;
990
991         atomic_add(refresh, &counter->event_limit);
992         perf_counter_enable(counter);
993
994         return 0;
995 }
996
997 void __perf_counter_sched_out(struct perf_counter_context *ctx,
998                               struct perf_cpu_context *cpuctx)
999 {
1000         struct perf_counter *counter;
1001
1002         spin_lock(&ctx->lock);
1003         ctx->is_active = 0;
1004         if (likely(!ctx->nr_counters))
1005                 goto out;
1006         update_context_time(ctx);
1007
1008         perf_disable();
1009         if (ctx->nr_active) {
1010                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1011                         if (counter != counter->group_leader)
1012                                 counter_sched_out(counter, cpuctx, ctx);
1013                         else
1014                                 group_sched_out(counter, cpuctx, ctx);
1015                 }
1016         }
1017         perf_enable();
1018  out:
1019         spin_unlock(&ctx->lock);
1020 }
1021
1022 /*
1023  * Test whether two contexts are equivalent, i.e. whether they
1024  * have both been cloned from the same version of the same context
1025  * and they both have the same number of enabled counters.
1026  * If the number of enabled counters is the same, then the set
1027  * of enabled counters should be the same, because these are both
1028  * inherited contexts, therefore we can't access individual counters
1029  * in them directly with an fd; we can only enable/disable all
1030  * counters via prctl, or enable/disable all counters in a family
1031  * via ioctl, which will have the same effect on both contexts.
1032  */
1033 static int context_equiv(struct perf_counter_context *ctx1,
1034                          struct perf_counter_context *ctx2)
1035 {
1036         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1037                 && ctx1->parent_gen == ctx2->parent_gen
1038                 && !ctx1->pin_count && !ctx2->pin_count;
1039 }
1040
1041 static void __perf_counter_read(void *counter);
1042
1043 static void __perf_counter_sync_stat(struct perf_counter *counter,
1044                                      struct perf_counter *next_counter)
1045 {
1046         u64 value;
1047
1048         if (!counter->attr.inherit_stat)
1049                 return;
1050
1051         /*
1052          * Update the counter value, we cannot use perf_counter_read()
1053          * because we're in the middle of a context switch and have IRQs
1054          * disabled, which upsets smp_call_function_single(), however
1055          * we know the counter must be on the current CPU, therefore we
1056          * don't need to use it.
1057          */
1058         switch (counter->state) {
1059         case PERF_COUNTER_STATE_ACTIVE:
1060                 __perf_counter_read(counter);
1061                 break;
1062
1063         case PERF_COUNTER_STATE_INACTIVE:
1064                 update_counter_times(counter);
1065                 break;
1066
1067         default:
1068                 break;
1069         }
1070
1071         /*
1072          * In order to keep per-task stats reliable we need to flip the counter
1073          * values when we flip the contexts.
1074          */
1075         value = atomic64_read(&next_counter->count);
1076         value = atomic64_xchg(&counter->count, value);
1077         atomic64_set(&next_counter->count, value);
1078
1079         swap(counter->total_time_enabled, next_counter->total_time_enabled);
1080         swap(counter->total_time_running, next_counter->total_time_running);
1081
1082         /*
1083          * Since we swizzled the values, update the user visible data too.
1084          */
1085         perf_counter_update_userpage(counter);
1086         perf_counter_update_userpage(next_counter);
1087 }
1088
1089 #define list_next_entry(pos, member) \
1090         list_entry(pos->member.next, typeof(*pos), member)
1091
1092 static void perf_counter_sync_stat(struct perf_counter_context *ctx,
1093                                    struct perf_counter_context *next_ctx)
1094 {
1095         struct perf_counter *counter, *next_counter;
1096
1097         if (!ctx->nr_stat)
1098                 return;
1099
1100         counter = list_first_entry(&ctx->event_list,
1101                                    struct perf_counter, event_entry);
1102
1103         next_counter = list_first_entry(&next_ctx->event_list,
1104                                         struct perf_counter, event_entry);
1105
1106         while (&counter->event_entry != &ctx->event_list &&
1107                &next_counter->event_entry != &next_ctx->event_list) {
1108
1109                 __perf_counter_sync_stat(counter, next_counter);
1110
1111                 counter = list_next_entry(counter, event_entry);
1112                 next_counter = list_next_entry(next_counter, event_entry);
1113         }
1114 }
1115
1116 /*
1117  * Called from scheduler to remove the counters of the current task,
1118  * with interrupts disabled.
1119  *
1120  * We stop each counter and update the counter value in counter->count.
1121  *
1122  * This does not protect us against NMI, but disable()
1123  * sets the disabled bit in the control field of counter _before_
1124  * accessing the counter control register. If a NMI hits, then it will
1125  * not restart the counter.
1126  */
1127 void perf_counter_task_sched_out(struct task_struct *task,
1128                                  struct task_struct *next, int cpu)
1129 {
1130         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1131         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1132         struct perf_counter_context *next_ctx;
1133         struct perf_counter_context *parent;
1134         struct pt_regs *regs;
1135         int do_switch = 1;
1136
1137         regs = task_pt_regs(task);
1138         perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1139
1140         if (likely(!ctx || !cpuctx->task_ctx))
1141                 return;
1142
1143         update_context_time(ctx);
1144
1145         rcu_read_lock();
1146         parent = rcu_dereference(ctx->parent_ctx);
1147         next_ctx = next->perf_counter_ctxp;
1148         if (parent && next_ctx &&
1149             rcu_dereference(next_ctx->parent_ctx) == parent) {
1150                 /*
1151                  * Looks like the two contexts are clones, so we might be
1152                  * able to optimize the context switch.  We lock both
1153                  * contexts and check that they are clones under the
1154                  * lock (including re-checking that neither has been
1155                  * uncloned in the meantime).  It doesn't matter which
1156                  * order we take the locks because no other cpu could
1157                  * be trying to lock both of these tasks.
1158                  */
1159                 spin_lock(&ctx->lock);
1160                 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1161                 if (context_equiv(ctx, next_ctx)) {
1162                         /*
1163                          * XXX do we need a memory barrier of sorts
1164                          * wrt to rcu_dereference() of perf_counter_ctxp
1165                          */
1166                         task->perf_counter_ctxp = next_ctx;
1167                         next->perf_counter_ctxp = ctx;
1168                         ctx->task = next;
1169                         next_ctx->task = task;
1170                         do_switch = 0;
1171
1172                         perf_counter_sync_stat(ctx, next_ctx);
1173                 }
1174                 spin_unlock(&next_ctx->lock);
1175                 spin_unlock(&ctx->lock);
1176         }
1177         rcu_read_unlock();
1178
1179         if (do_switch) {
1180                 __perf_counter_sched_out(ctx, cpuctx);
1181                 cpuctx->task_ctx = NULL;
1182         }
1183 }
1184
1185 /*
1186  * Called with IRQs disabled
1187  */
1188 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1189 {
1190         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1191
1192         if (!cpuctx->task_ctx)
1193                 return;
1194
1195         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1196                 return;
1197
1198         __perf_counter_sched_out(ctx, cpuctx);
1199         cpuctx->task_ctx = NULL;
1200 }
1201
1202 /*
1203  * Called with IRQs disabled
1204  */
1205 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1206 {
1207         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1208 }
1209
1210 static void
1211 __perf_counter_sched_in(struct perf_counter_context *ctx,
1212                         struct perf_cpu_context *cpuctx, int cpu)
1213 {
1214         struct perf_counter *counter;
1215         int can_add_hw = 1;
1216
1217         spin_lock(&ctx->lock);
1218         ctx->is_active = 1;
1219         if (likely(!ctx->nr_counters))
1220                 goto out;
1221
1222         ctx->timestamp = perf_clock();
1223
1224         perf_disable();
1225
1226         /*
1227          * First go through the list and put on any pinned groups
1228          * in order to give them the best chance of going on.
1229          */
1230         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1231                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1232                     !counter->attr.pinned)
1233                         continue;
1234                 if (counter->cpu != -1 && counter->cpu != cpu)
1235                         continue;
1236
1237                 if (counter != counter->group_leader)
1238                         counter_sched_in(counter, cpuctx, ctx, cpu);
1239                 else {
1240                         if (group_can_go_on(counter, cpuctx, 1))
1241                                 group_sched_in(counter, cpuctx, ctx, cpu);
1242                 }
1243
1244                 /*
1245                  * If this pinned group hasn't been scheduled,
1246                  * put it in error state.
1247                  */
1248                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1249                         update_group_times(counter);
1250                         counter->state = PERF_COUNTER_STATE_ERROR;
1251                 }
1252         }
1253
1254         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1255                 /*
1256                  * Ignore counters in OFF or ERROR state, and
1257                  * ignore pinned counters since we did them already.
1258                  */
1259                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1260                     counter->attr.pinned)
1261                         continue;
1262
1263                 /*
1264                  * Listen to the 'cpu' scheduling filter constraint
1265                  * of counters:
1266                  */
1267                 if (counter->cpu != -1 && counter->cpu != cpu)
1268                         continue;
1269
1270                 if (counter != counter->group_leader) {
1271                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1272                                 can_add_hw = 0;
1273                 } else {
1274                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1275                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1276                                         can_add_hw = 0;
1277                         }
1278                 }
1279         }
1280         perf_enable();
1281  out:
1282         spin_unlock(&ctx->lock);
1283 }
1284
1285 /*
1286  * Called from scheduler to add the counters of the current task
1287  * with interrupts disabled.
1288  *
1289  * We restore the counter value and then enable it.
1290  *
1291  * This does not protect us against NMI, but enable()
1292  * sets the enabled bit in the control field of counter _before_
1293  * accessing the counter control register. If a NMI hits, then it will
1294  * keep the counter running.
1295  */
1296 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1297 {
1298         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1299         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1300
1301         if (likely(!ctx))
1302                 return;
1303         if (cpuctx->task_ctx == ctx)
1304                 return;
1305         __perf_counter_sched_in(ctx, cpuctx, cpu);
1306         cpuctx->task_ctx = ctx;
1307 }
1308
1309 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1310 {
1311         struct perf_counter_context *ctx = &cpuctx->ctx;
1312
1313         __perf_counter_sched_in(ctx, cpuctx, cpu);
1314 }
1315
1316 #define MAX_INTERRUPTS (~0ULL)
1317
1318 static void perf_log_throttle(struct perf_counter *counter, int enable);
1319
1320 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1321 {
1322         struct hw_perf_counter *hwc = &counter->hw;
1323         u64 period, sample_period;
1324         s64 delta;
1325
1326         events *= hwc->sample_period;
1327         period = div64_u64(events, counter->attr.sample_freq);
1328
1329         delta = (s64)(period - hwc->sample_period);
1330         delta = (delta + 7) / 8; /* low pass filter */
1331
1332         sample_period = hwc->sample_period + delta;
1333
1334         if (!sample_period)
1335                 sample_period = 1;
1336
1337         hwc->sample_period = sample_period;
1338 }
1339
1340 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1341 {
1342         struct perf_counter *counter;
1343         struct hw_perf_counter *hwc;
1344         u64 interrupts, freq;
1345
1346         spin_lock(&ctx->lock);
1347         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1348                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1349                         continue;
1350
1351                 hwc = &counter->hw;
1352
1353                 interrupts = hwc->interrupts;
1354                 hwc->interrupts = 0;
1355
1356                 /*
1357                  * unthrottle counters on the tick
1358                  */
1359                 if (interrupts == MAX_INTERRUPTS) {
1360                         perf_log_throttle(counter, 1);
1361                         counter->pmu->unthrottle(counter);
1362                         interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1363                 }
1364
1365                 if (!counter->attr.freq || !counter->attr.sample_freq)
1366                         continue;
1367
1368                 /*
1369                  * if the specified freq < HZ then we need to skip ticks
1370                  */
1371                 if (counter->attr.sample_freq < HZ) {
1372                         freq = counter->attr.sample_freq;
1373
1374                         hwc->freq_count += freq;
1375                         hwc->freq_interrupts += interrupts;
1376
1377                         if (hwc->freq_count < HZ)
1378                                 continue;
1379
1380                         interrupts = hwc->freq_interrupts;
1381                         hwc->freq_interrupts = 0;
1382                         hwc->freq_count -= HZ;
1383                 } else
1384                         freq = HZ;
1385
1386                 perf_adjust_period(counter, freq * interrupts);
1387
1388                 /*
1389                  * In order to avoid being stalled by an (accidental) huge
1390                  * sample period, force reset the sample period if we didn't
1391                  * get any events in this freq period.
1392                  */
1393                 if (!interrupts) {
1394                         perf_disable();
1395                         counter->pmu->disable(counter);
1396                         atomic64_set(&hwc->period_left, 0);
1397                         counter->pmu->enable(counter);
1398                         perf_enable();
1399                 }
1400         }
1401         spin_unlock(&ctx->lock);
1402 }
1403
1404 /*
1405  * Round-robin a context's counters:
1406  */
1407 static void rotate_ctx(struct perf_counter_context *ctx)
1408 {
1409         struct perf_counter *counter;
1410
1411         if (!ctx->nr_counters)
1412                 return;
1413
1414         spin_lock(&ctx->lock);
1415         /*
1416          * Rotate the first entry last (works just fine for group counters too):
1417          */
1418         perf_disable();
1419         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1420                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1421                 break;
1422         }
1423         perf_enable();
1424
1425         spin_unlock(&ctx->lock);
1426 }
1427
1428 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1429 {
1430         struct perf_cpu_context *cpuctx;
1431         struct perf_counter_context *ctx;
1432
1433         if (!atomic_read(&nr_counters))
1434                 return;
1435
1436         cpuctx = &per_cpu(perf_cpu_context, cpu);
1437         ctx = curr->perf_counter_ctxp;
1438
1439         perf_ctx_adjust_freq(&cpuctx->ctx);
1440         if (ctx)
1441                 perf_ctx_adjust_freq(ctx);
1442
1443         perf_counter_cpu_sched_out(cpuctx);
1444         if (ctx)
1445                 __perf_counter_task_sched_out(ctx);
1446
1447         rotate_ctx(&cpuctx->ctx);
1448         if (ctx)
1449                 rotate_ctx(ctx);
1450
1451         perf_counter_cpu_sched_in(cpuctx, cpu);
1452         if (ctx)
1453                 perf_counter_task_sched_in(curr, cpu);
1454 }
1455
1456 /*
1457  * Enable all of a task's counters that have been marked enable-on-exec.
1458  * This expects task == current.
1459  */
1460 static void perf_counter_enable_on_exec(struct task_struct *task)
1461 {
1462         struct perf_counter_context *ctx;
1463         struct perf_counter *counter;
1464         unsigned long flags;
1465         int enabled = 0;
1466
1467         local_irq_save(flags);
1468         ctx = task->perf_counter_ctxp;
1469         if (!ctx || !ctx->nr_counters)
1470                 goto out;
1471
1472         __perf_counter_task_sched_out(ctx);
1473
1474         spin_lock(&ctx->lock);
1475
1476         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1477                 if (!counter->attr.enable_on_exec)
1478                         continue;
1479                 counter->attr.enable_on_exec = 0;
1480                 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
1481                         continue;
1482                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1483                 counter->tstamp_enabled =
1484                         ctx->time - counter->total_time_enabled;
1485                 enabled = 1;
1486         }
1487
1488         /*
1489          * Unclone this context if we enabled any counter.
1490          */
1491         if (enabled)
1492                 unclone_ctx(ctx);
1493
1494         spin_unlock(&ctx->lock);
1495
1496         perf_counter_task_sched_in(task, smp_processor_id());
1497  out:
1498         local_irq_restore(flags);
1499 }
1500
1501 /*
1502  * Cross CPU call to read the hardware counter
1503  */
1504 static void __perf_counter_read(void *info)
1505 {
1506         struct perf_counter *counter = info;
1507         struct perf_counter_context *ctx = counter->ctx;
1508         unsigned long flags;
1509
1510         local_irq_save(flags);
1511         if (ctx->is_active)
1512                 update_context_time(ctx);
1513         counter->pmu->read(counter);
1514         update_counter_times(counter);
1515         local_irq_restore(flags);
1516 }
1517
1518 static u64 perf_counter_read(struct perf_counter *counter)
1519 {
1520         /*
1521          * If counter is enabled and currently active on a CPU, update the
1522          * value in the counter structure:
1523          */
1524         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1525                 smp_call_function_single(counter->oncpu,
1526                                          __perf_counter_read, counter, 1);
1527         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1528                 update_counter_times(counter);
1529         }
1530
1531         return atomic64_read(&counter->count);
1532 }
1533
1534 /*
1535  * Initialize the perf_counter context in a task_struct:
1536  */
1537 static void
1538 __perf_counter_init_context(struct perf_counter_context *ctx,
1539                             struct task_struct *task)
1540 {
1541         memset(ctx, 0, sizeof(*ctx));
1542         spin_lock_init(&ctx->lock);
1543         mutex_init(&ctx->mutex);
1544         INIT_LIST_HEAD(&ctx->counter_list);
1545         INIT_LIST_HEAD(&ctx->event_list);
1546         atomic_set(&ctx->refcount, 1);
1547         ctx->task = task;
1548 }
1549
1550 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1551 {
1552         struct perf_counter_context *ctx;
1553         struct perf_cpu_context *cpuctx;
1554         struct task_struct *task;
1555         unsigned long flags;
1556         int err;
1557
1558         /*
1559          * If cpu is not a wildcard then this is a percpu counter:
1560          */
1561         if (cpu != -1) {
1562                 /* Must be root to operate on a CPU counter: */
1563                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1564                         return ERR_PTR(-EACCES);
1565
1566                 if (cpu < 0 || cpu > num_possible_cpus())
1567                         return ERR_PTR(-EINVAL);
1568
1569                 /*
1570                  * We could be clever and allow to attach a counter to an
1571                  * offline CPU and activate it when the CPU comes up, but
1572                  * that's for later.
1573                  */
1574                 if (!cpu_isset(cpu, cpu_online_map))
1575                         return ERR_PTR(-ENODEV);
1576
1577                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1578                 ctx = &cpuctx->ctx;
1579                 get_ctx(ctx);
1580
1581                 return ctx;
1582         }
1583
1584         rcu_read_lock();
1585         if (!pid)
1586                 task = current;
1587         else
1588                 task = find_task_by_vpid(pid);
1589         if (task)
1590                 get_task_struct(task);
1591         rcu_read_unlock();
1592
1593         if (!task)
1594                 return ERR_PTR(-ESRCH);
1595
1596         /*
1597          * Can't attach counters to a dying task.
1598          */
1599         err = -ESRCH;
1600         if (task->flags & PF_EXITING)
1601                 goto errout;
1602
1603         /* Reuse ptrace permission checks for now. */
1604         err = -EACCES;
1605         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1606                 goto errout;
1607
1608  retry:
1609         ctx = perf_lock_task_context(task, &flags);
1610         if (ctx) {
1611                 unclone_ctx(ctx);
1612                 spin_unlock_irqrestore(&ctx->lock, flags);
1613         }
1614
1615         if (!ctx) {
1616                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1617                 err = -ENOMEM;
1618                 if (!ctx)
1619                         goto errout;
1620                 __perf_counter_init_context(ctx, task);
1621                 get_ctx(ctx);
1622                 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1623                         /*
1624                          * We raced with some other task; use
1625                          * the context they set.
1626                          */
1627                         kfree(ctx);
1628                         goto retry;
1629                 }
1630                 get_task_struct(task);
1631         }
1632
1633         put_task_struct(task);
1634         return ctx;
1635
1636  errout:
1637         put_task_struct(task);
1638         return ERR_PTR(err);
1639 }
1640
1641 static void free_counter_rcu(struct rcu_head *head)
1642 {
1643         struct perf_counter *counter;
1644
1645         counter = container_of(head, struct perf_counter, rcu_head);
1646         if (counter->ns)
1647                 put_pid_ns(counter->ns);
1648         kfree(counter);
1649 }
1650
1651 static void perf_pending_sync(struct perf_counter *counter);
1652
1653 static void free_counter(struct perf_counter *counter)
1654 {
1655         perf_pending_sync(counter);
1656
1657         if (!counter->parent) {
1658                 atomic_dec(&nr_counters);
1659                 if (counter->attr.mmap)
1660                         atomic_dec(&nr_mmap_counters);
1661                 if (counter->attr.comm)
1662                         atomic_dec(&nr_comm_counters);
1663                 if (counter->attr.task)
1664                         atomic_dec(&nr_task_counters);
1665         }
1666
1667         if (counter->destroy)
1668                 counter->destroy(counter);
1669
1670         put_ctx(counter->ctx);
1671         call_rcu(&counter->rcu_head, free_counter_rcu);
1672 }
1673
1674 /*
1675  * Called when the last reference to the file is gone.
1676  */
1677 static int perf_release(struct inode *inode, struct file *file)
1678 {
1679         struct perf_counter *counter = file->private_data;
1680         struct perf_counter_context *ctx = counter->ctx;
1681
1682         file->private_data = NULL;
1683
1684         WARN_ON_ONCE(ctx->parent_ctx);
1685         mutex_lock(&ctx->mutex);
1686         perf_counter_remove_from_context(counter);
1687         mutex_unlock(&ctx->mutex);
1688
1689         mutex_lock(&counter->owner->perf_counter_mutex);
1690         list_del_init(&counter->owner_entry);
1691         mutex_unlock(&counter->owner->perf_counter_mutex);
1692         put_task_struct(counter->owner);
1693
1694         free_counter(counter);
1695
1696         return 0;
1697 }
1698
1699 static int perf_counter_read_size(struct perf_counter *counter)
1700 {
1701         int entry = sizeof(u64); /* value */
1702         int size = 0;
1703         int nr = 1;
1704
1705         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1706                 size += sizeof(u64);
1707
1708         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1709                 size += sizeof(u64);
1710
1711         if (counter->attr.read_format & PERF_FORMAT_ID)
1712                 entry += sizeof(u64);
1713
1714         if (counter->attr.read_format & PERF_FORMAT_GROUP) {
1715                 nr += counter->group_leader->nr_siblings;
1716                 size += sizeof(u64);
1717         }
1718
1719         size += entry * nr;
1720
1721         return size;
1722 }
1723
1724 static u64 perf_counter_read_value(struct perf_counter *counter)
1725 {
1726         struct perf_counter *child;
1727         u64 total = 0;
1728
1729         total += perf_counter_read(counter);
1730         list_for_each_entry(child, &counter->child_list, child_list)
1731                 total += perf_counter_read(child);
1732
1733         return total;
1734 }
1735
1736 static int perf_counter_read_entry(struct perf_counter *counter,
1737                                    u64 read_format, char __user *buf)
1738 {
1739         int n = 0, count = 0;
1740         u64 values[2];
1741
1742         values[n++] = perf_counter_read_value(counter);
1743         if (read_format & PERF_FORMAT_ID)
1744                 values[n++] = primary_counter_id(counter);
1745
1746         count = n * sizeof(u64);
1747
1748         if (copy_to_user(buf, values, count))
1749                 return -EFAULT;
1750
1751         return count;
1752 }
1753
1754 static int perf_counter_read_group(struct perf_counter *counter,
1755                                    u64 read_format, char __user *buf)
1756 {
1757         struct perf_counter *leader = counter->group_leader, *sub;
1758         int n = 0, size = 0, err = -EFAULT;
1759         u64 values[3];
1760
1761         values[n++] = 1 + leader->nr_siblings;
1762         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1763                 values[n++] = leader->total_time_enabled +
1764                         atomic64_read(&leader->child_total_time_enabled);
1765         }
1766         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1767                 values[n++] = leader->total_time_running +
1768                         atomic64_read(&leader->child_total_time_running);
1769         }
1770
1771         size = n * sizeof(u64);
1772
1773         if (copy_to_user(buf, values, size))
1774                 return -EFAULT;
1775
1776         err = perf_counter_read_entry(leader, read_format, buf + size);
1777         if (err < 0)
1778                 return err;
1779
1780         size += err;
1781
1782         list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1783                 err = perf_counter_read_entry(counter, read_format,
1784                                 buf + size);
1785                 if (err < 0)
1786                         return err;
1787
1788                 size += err;
1789         }
1790
1791         return size;
1792 }
1793
1794 static int perf_counter_read_one(struct perf_counter *counter,
1795                                  u64 read_format, char __user *buf)
1796 {
1797         u64 values[4];
1798         int n = 0;
1799
1800         values[n++] = perf_counter_read_value(counter);
1801         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1802                 values[n++] = counter->total_time_enabled +
1803                         atomic64_read(&counter->child_total_time_enabled);
1804         }
1805         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1806                 values[n++] = counter->total_time_running +
1807                         atomic64_read(&counter->child_total_time_running);
1808         }
1809         if (read_format & PERF_FORMAT_ID)
1810                 values[n++] = primary_counter_id(counter);
1811
1812         if (copy_to_user(buf, values, n * sizeof(u64)))
1813                 return -EFAULT;
1814
1815         return n * sizeof(u64);
1816 }
1817
1818 /*
1819  * Read the performance counter - simple non blocking version for now
1820  */
1821 static ssize_t
1822 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1823 {
1824         u64 read_format = counter->attr.read_format;
1825         int ret;
1826
1827         /*
1828          * Return end-of-file for a read on a counter that is in
1829          * error state (i.e. because it was pinned but it couldn't be
1830          * scheduled on to the CPU at some point).
1831          */
1832         if (counter->state == PERF_COUNTER_STATE_ERROR)
1833                 return 0;
1834
1835         if (count < perf_counter_read_size(counter))
1836                 return -ENOSPC;
1837
1838         WARN_ON_ONCE(counter->ctx->parent_ctx);
1839         mutex_lock(&counter->child_mutex);
1840         if (read_format & PERF_FORMAT_GROUP)
1841                 ret = perf_counter_read_group(counter, read_format, buf);
1842         else
1843                 ret = perf_counter_read_one(counter, read_format, buf);
1844         mutex_unlock(&counter->child_mutex);
1845
1846         return ret;
1847 }
1848
1849 static ssize_t
1850 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1851 {
1852         struct perf_counter *counter = file->private_data;
1853
1854         return perf_read_hw(counter, buf, count);
1855 }
1856
1857 static unsigned int perf_poll(struct file *file, poll_table *wait)
1858 {
1859         struct perf_counter *counter = file->private_data;
1860         struct perf_mmap_data *data;
1861         unsigned int events = POLL_HUP;
1862
1863         rcu_read_lock();
1864         data = rcu_dereference(counter->data);
1865         if (data)
1866                 events = atomic_xchg(&data->poll, 0);
1867         rcu_read_unlock();
1868
1869         poll_wait(file, &counter->waitq, wait);
1870
1871         return events;
1872 }
1873
1874 static void perf_counter_reset(struct perf_counter *counter)
1875 {
1876         (void)perf_counter_read(counter);
1877         atomic64_set(&counter->count, 0);
1878         perf_counter_update_userpage(counter);
1879 }
1880
1881 /*
1882  * Holding the top-level counter's child_mutex means that any
1883  * descendant process that has inherited this counter will block
1884  * in sync_child_counter if it goes to exit, thus satisfying the
1885  * task existence requirements of perf_counter_enable/disable.
1886  */
1887 static void perf_counter_for_each_child(struct perf_counter *counter,
1888                                         void (*func)(struct perf_counter *))
1889 {
1890         struct perf_counter *child;
1891
1892         WARN_ON_ONCE(counter->ctx->parent_ctx);
1893         mutex_lock(&counter->child_mutex);
1894         func(counter);
1895         list_for_each_entry(child, &counter->child_list, child_list)
1896                 func(child);
1897         mutex_unlock(&counter->child_mutex);
1898 }
1899
1900 static void perf_counter_for_each(struct perf_counter *counter,
1901                                   void (*func)(struct perf_counter *))
1902 {
1903         struct perf_counter_context *ctx = counter->ctx;
1904         struct perf_counter *sibling;
1905
1906         WARN_ON_ONCE(ctx->parent_ctx);
1907         mutex_lock(&ctx->mutex);
1908         counter = counter->group_leader;
1909
1910         perf_counter_for_each_child(counter, func);
1911         func(counter);
1912         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1913                 perf_counter_for_each_child(counter, func);
1914         mutex_unlock(&ctx->mutex);
1915 }
1916
1917 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1918 {
1919         struct perf_counter_context *ctx = counter->ctx;
1920         unsigned long size;
1921         int ret = 0;
1922         u64 value;
1923
1924         if (!counter->attr.sample_period)
1925                 return -EINVAL;
1926
1927         size = copy_from_user(&value, arg, sizeof(value));
1928         if (size != sizeof(value))
1929                 return -EFAULT;
1930
1931         if (!value)
1932                 return -EINVAL;
1933
1934         spin_lock_irq(&ctx->lock);
1935         if (counter->attr.freq) {
1936                 if (value > sysctl_perf_counter_sample_rate) {
1937                         ret = -EINVAL;
1938                         goto unlock;
1939                 }
1940
1941                 counter->attr.sample_freq = value;
1942         } else {
1943                 counter->attr.sample_period = value;
1944                 counter->hw.sample_period = value;
1945         }
1946 unlock:
1947         spin_unlock_irq(&ctx->lock);
1948
1949         return ret;
1950 }
1951
1952 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1953 {
1954         struct perf_counter *counter = file->private_data;
1955         void (*func)(struct perf_counter *);
1956         u32 flags = arg;
1957
1958         switch (cmd) {
1959         case PERF_COUNTER_IOC_ENABLE:
1960                 func = perf_counter_enable;
1961                 break;
1962         case PERF_COUNTER_IOC_DISABLE:
1963                 func = perf_counter_disable;
1964                 break;
1965         case PERF_COUNTER_IOC_RESET:
1966                 func = perf_counter_reset;
1967                 break;
1968
1969         case PERF_COUNTER_IOC_REFRESH:
1970                 return perf_counter_refresh(counter, arg);
1971
1972         case PERF_COUNTER_IOC_PERIOD:
1973                 return perf_counter_period(counter, (u64 __user *)arg);
1974
1975         default:
1976                 return -ENOTTY;
1977         }
1978
1979         if (flags & PERF_IOC_FLAG_GROUP)
1980                 perf_counter_for_each(counter, func);
1981         else
1982                 perf_counter_for_each_child(counter, func);
1983
1984         return 0;
1985 }
1986
1987 int perf_counter_task_enable(void)
1988 {
1989         struct perf_counter *counter;
1990
1991         mutex_lock(&current->perf_counter_mutex);
1992         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1993                 perf_counter_for_each_child(counter, perf_counter_enable);
1994         mutex_unlock(&current->perf_counter_mutex);
1995
1996         return 0;
1997 }
1998
1999 int perf_counter_task_disable(void)
2000 {
2001         struct perf_counter *counter;
2002
2003         mutex_lock(&current->perf_counter_mutex);
2004         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
2005                 perf_counter_for_each_child(counter, perf_counter_disable);
2006         mutex_unlock(&current->perf_counter_mutex);
2007
2008         return 0;
2009 }
2010
2011 static int perf_counter_index(struct perf_counter *counter)
2012 {
2013         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2014                 return 0;
2015
2016         return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
2017 }
2018
2019 /*
2020  * Callers need to ensure there can be no nesting of this function, otherwise
2021  * the seqlock logic goes bad. We can not serialize this because the arch
2022  * code calls this from NMI context.
2023  */
2024 void perf_counter_update_userpage(struct perf_counter *counter)
2025 {
2026         struct perf_counter_mmap_page *userpg;
2027         struct perf_mmap_data *data;
2028
2029         rcu_read_lock();
2030         data = rcu_dereference(counter->data);
2031         if (!data)
2032                 goto unlock;
2033
2034         userpg = data->user_page;
2035
2036         /*
2037          * Disable preemption so as to not let the corresponding user-space
2038          * spin too long if we get preempted.
2039          */
2040         preempt_disable();
2041         ++userpg->lock;
2042         barrier();
2043         userpg->index = perf_counter_index(counter);
2044         userpg->offset = atomic64_read(&counter->count);
2045         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
2046                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
2047
2048         userpg->time_enabled = counter->total_time_enabled +
2049                         atomic64_read(&counter->child_total_time_enabled);
2050
2051         userpg->time_running = counter->total_time_running +
2052                         atomic64_read(&counter->child_total_time_running);
2053
2054         barrier();
2055         ++userpg->lock;
2056         preempt_enable();
2057 unlock:
2058         rcu_read_unlock();
2059 }
2060
2061 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2062 {
2063         struct perf_counter *counter = vma->vm_file->private_data;
2064         struct perf_mmap_data *data;
2065         int ret = VM_FAULT_SIGBUS;
2066
2067         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2068                 if (vmf->pgoff == 0)
2069                         ret = 0;
2070                 return ret;
2071         }
2072
2073         rcu_read_lock();
2074         data = rcu_dereference(counter->data);
2075         if (!data)
2076                 goto unlock;
2077
2078         if (vmf->pgoff == 0) {
2079                 vmf->page = virt_to_page(data->user_page);
2080         } else {
2081                 int nr = vmf->pgoff - 1;
2082
2083                 if ((unsigned)nr > data->nr_pages)
2084                         goto unlock;
2085
2086                 if (vmf->flags & FAULT_FLAG_WRITE)
2087                         goto unlock;
2088
2089                 vmf->page = virt_to_page(data->data_pages[nr]);
2090         }
2091
2092         get_page(vmf->page);
2093         vmf->page->mapping = vma->vm_file->f_mapping;
2094         vmf->page->index   = vmf->pgoff;
2095
2096         ret = 0;
2097 unlock:
2098         rcu_read_unlock();
2099
2100         return ret;
2101 }
2102
2103 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
2104 {
2105         struct perf_mmap_data *data;
2106         unsigned long size;
2107         int i;
2108
2109         WARN_ON(atomic_read(&counter->mmap_count));
2110
2111         size = sizeof(struct perf_mmap_data);
2112         size += nr_pages * sizeof(void *);
2113
2114         data = kzalloc(size, GFP_KERNEL);
2115         if (!data)
2116                 goto fail;
2117
2118         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2119         if (!data->user_page)
2120                 goto fail_user_page;
2121
2122         for (i = 0; i < nr_pages; i++) {
2123                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2124                 if (!data->data_pages[i])
2125                         goto fail_data_pages;
2126         }
2127
2128         data->nr_pages = nr_pages;
2129         atomic_set(&data->lock, -1);
2130
2131         rcu_assign_pointer(counter->data, data);
2132
2133         return 0;
2134
2135 fail_data_pages:
2136         for (i--; i >= 0; i--)
2137                 free_page((unsigned long)data->data_pages[i]);
2138
2139         free_page((unsigned long)data->user_page);
2140
2141 fail_user_page:
2142         kfree(data);
2143
2144 fail:
2145         return -ENOMEM;
2146 }
2147
2148 static void perf_mmap_free_page(unsigned long addr)
2149 {
2150         struct page *page = virt_to_page((void *)addr);
2151
2152         page->mapping = NULL;
2153         __free_page(page);
2154 }
2155
2156 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
2157 {
2158         struct perf_mmap_data *data;
2159         int i;
2160
2161         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2162
2163         perf_mmap_free_page((unsigned long)data->user_page);
2164         for (i = 0; i < data->nr_pages; i++)
2165                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2166
2167         kfree(data);
2168 }
2169
2170 static void perf_mmap_data_free(struct perf_counter *counter)
2171 {
2172         struct perf_mmap_data *data = counter->data;
2173
2174         WARN_ON(atomic_read(&counter->mmap_count));
2175
2176         rcu_assign_pointer(counter->data, NULL);
2177         call_rcu(&data->rcu_head, __perf_mmap_data_free);
2178 }
2179
2180 static void perf_mmap_open(struct vm_area_struct *vma)
2181 {
2182         struct perf_counter *counter = vma->vm_file->private_data;
2183
2184         atomic_inc(&counter->mmap_count);
2185 }
2186
2187 static void perf_mmap_close(struct vm_area_struct *vma)
2188 {
2189         struct perf_counter *counter = vma->vm_file->private_data;
2190
2191         WARN_ON_ONCE(counter->ctx->parent_ctx);
2192         if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2193                 struct user_struct *user = current_user();
2194
2195                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2196                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
2197                 perf_mmap_data_free(counter);
2198                 mutex_unlock(&counter->mmap_mutex);
2199         }
2200 }
2201
2202 static struct vm_operations_struct perf_mmap_vmops = {
2203         .open           = perf_mmap_open,
2204         .close          = perf_mmap_close,
2205         .fault          = perf_mmap_fault,
2206         .page_mkwrite   = perf_mmap_fault,
2207 };
2208
2209 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2210 {
2211         struct perf_counter *counter = file->private_data;
2212         unsigned long user_locked, user_lock_limit;
2213         struct user_struct *user = current_user();
2214         unsigned long locked, lock_limit;
2215         unsigned long vma_size;
2216         unsigned long nr_pages;
2217         long user_extra, extra;
2218         int ret = 0;
2219
2220         if (!(vma->vm_flags & VM_SHARED))
2221                 return -EINVAL;
2222
2223         vma_size = vma->vm_end - vma->vm_start;
2224         nr_pages = (vma_size / PAGE_SIZE) - 1;
2225
2226         /*
2227          * If we have data pages ensure they're a power-of-two number, so we
2228          * can do bitmasks instead of modulo.
2229          */
2230         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2231                 return -EINVAL;
2232
2233         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2234                 return -EINVAL;
2235
2236         if (vma->vm_pgoff != 0)
2237                 return -EINVAL;
2238
2239         WARN_ON_ONCE(counter->ctx->parent_ctx);
2240         mutex_lock(&counter->mmap_mutex);
2241         if (atomic_inc_not_zero(&counter->mmap_count)) {
2242                 if (nr_pages != counter->data->nr_pages)
2243                         ret = -EINVAL;
2244                 goto unlock;
2245         }
2246
2247         user_extra = nr_pages + 1;
2248         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
2249
2250         /*
2251          * Increase the limit linearly with more CPUs:
2252          */
2253         user_lock_limit *= num_online_cpus();
2254
2255         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2256
2257         extra = 0;
2258         if (user_locked > user_lock_limit)
2259                 extra = user_locked - user_lock_limit;
2260
2261         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2262         lock_limit >>= PAGE_SHIFT;
2263         locked = vma->vm_mm->locked_vm + extra;
2264
2265         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
2266                 ret = -EPERM;
2267                 goto unlock;
2268         }
2269
2270         WARN_ON(counter->data);
2271         ret = perf_mmap_data_alloc(counter, nr_pages);
2272         if (ret)
2273                 goto unlock;
2274
2275         atomic_set(&counter->mmap_count, 1);
2276         atomic_long_add(user_extra, &user->locked_vm);
2277         vma->vm_mm->locked_vm += extra;
2278         counter->data->nr_locked = extra;
2279         if (vma->vm_flags & VM_WRITE)
2280                 counter->data->writable = 1;
2281
2282 unlock:
2283         mutex_unlock(&counter->mmap_mutex);
2284
2285         vma->vm_flags |= VM_RESERVED;
2286         vma->vm_ops = &perf_mmap_vmops;
2287
2288         return ret;
2289 }
2290
2291 static int perf_fasync(int fd, struct file *filp, int on)
2292 {
2293         struct inode *inode = filp->f_path.dentry->d_inode;
2294         struct perf_counter *counter = filp->private_data;
2295         int retval;
2296
2297         mutex_lock(&inode->i_mutex);
2298         retval = fasync_helper(fd, filp, on, &counter->fasync);
2299         mutex_unlock(&inode->i_mutex);
2300
2301         if (retval < 0)
2302                 return retval;
2303
2304         return 0;
2305 }
2306
2307 static const struct file_operations perf_fops = {
2308         .release                = perf_release,
2309         .read                   = perf_read,
2310         .poll                   = perf_poll,
2311         .unlocked_ioctl         = perf_ioctl,
2312         .compat_ioctl           = perf_ioctl,
2313         .mmap                   = perf_mmap,
2314         .fasync                 = perf_fasync,
2315 };
2316
2317 /*
2318  * Perf counter wakeup
2319  *
2320  * If there's data, ensure we set the poll() state and publish everything
2321  * to user-space before waking everybody up.
2322  */
2323
2324 void perf_counter_wakeup(struct perf_counter *counter)
2325 {
2326         wake_up_all(&counter->waitq);
2327
2328         if (counter->pending_kill) {
2329                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2330                 counter->pending_kill = 0;
2331         }
2332 }
2333
2334 /*
2335  * Pending wakeups
2336  *
2337  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2338  *
2339  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2340  * single linked list and use cmpxchg() to add entries lockless.
2341  */
2342
2343 static void perf_pending_counter(struct perf_pending_entry *entry)
2344 {
2345         struct perf_counter *counter = container_of(entry,
2346                         struct perf_counter, pending);
2347
2348         if (counter->pending_disable) {
2349                 counter->pending_disable = 0;
2350                 __perf_counter_disable(counter);
2351         }
2352
2353         if (counter->pending_wakeup) {
2354                 counter->pending_wakeup = 0;
2355                 perf_counter_wakeup(counter);
2356         }
2357 }
2358
2359 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2360
2361 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2362         PENDING_TAIL,
2363 };
2364
2365 static void perf_pending_queue(struct perf_pending_entry *entry,
2366                                void (*func)(struct perf_pending_entry *))
2367 {
2368         struct perf_pending_entry **head;
2369
2370         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2371                 return;
2372
2373         entry->func = func;
2374
2375         head = &get_cpu_var(perf_pending_head);
2376
2377         do {
2378                 entry->next = *head;
2379         } while (cmpxchg(head, entry->next, entry) != entry->next);
2380
2381         set_perf_counter_pending();
2382
2383         put_cpu_var(perf_pending_head);
2384 }
2385
2386 static int __perf_pending_run(void)
2387 {
2388         struct perf_pending_entry *list;
2389         int nr = 0;
2390
2391         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2392         while (list != PENDING_TAIL) {
2393                 void (*func)(struct perf_pending_entry *);
2394                 struct perf_pending_entry *entry = list;
2395
2396                 list = list->next;
2397
2398                 func = entry->func;
2399                 entry->next = NULL;
2400                 /*
2401                  * Ensure we observe the unqueue before we issue the wakeup,
2402                  * so that we won't be waiting forever.
2403                  * -- see perf_not_pending().
2404                  */
2405                 smp_wmb();
2406
2407                 func(entry);
2408                 nr++;
2409         }
2410
2411         return nr;
2412 }
2413
2414 static inline int perf_not_pending(struct perf_counter *counter)
2415 {
2416         /*
2417          * If we flush on whatever cpu we run, there is a chance we don't
2418          * need to wait.
2419          */
2420         get_cpu();
2421         __perf_pending_run();
2422         put_cpu();
2423
2424         /*
2425          * Ensure we see the proper queue state before going to sleep
2426          * so that we do not miss the wakeup. -- see perf_pending_handle()
2427          */
2428         smp_rmb();
2429         return counter->pending.next == NULL;
2430 }
2431
2432 static void perf_pending_sync(struct perf_counter *counter)
2433 {
2434         wait_event(counter->waitq, perf_not_pending(counter));
2435 }
2436
2437 void perf_counter_do_pending(void)
2438 {
2439         __perf_pending_run();
2440 }
2441
2442 /*
2443  * Callchain support -- arch specific
2444  */
2445
2446 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2447 {
2448         return NULL;
2449 }
2450
2451 /*
2452  * Output
2453  */
2454
2455 struct perf_output_handle {
2456         struct perf_counter     *counter;
2457         struct perf_mmap_data   *data;
2458         unsigned long           head;
2459         unsigned long           offset;
2460         int                     nmi;
2461         int                     sample;
2462         int                     locked;
2463         unsigned long           flags;
2464 };
2465
2466 static bool perf_output_space(struct perf_mmap_data *data,
2467                               unsigned int offset, unsigned int head)
2468 {
2469         unsigned long tail;
2470         unsigned long mask;
2471
2472         if (!data->writable)
2473                 return true;
2474
2475         mask = (data->nr_pages << PAGE_SHIFT) - 1;
2476         /*
2477          * Userspace could choose to issue a mb() before updating the tail
2478          * pointer. So that all reads will be completed before the write is
2479          * issued.
2480          */
2481         tail = ACCESS_ONCE(data->user_page->data_tail);
2482         smp_rmb();
2483
2484         offset = (offset - tail) & mask;
2485         head   = (head   - tail) & mask;
2486
2487         if ((int)(head - offset) < 0)
2488                 return false;
2489
2490         return true;
2491 }
2492
2493 static void perf_output_wakeup(struct perf_output_handle *handle)
2494 {
2495         atomic_set(&handle->data->poll, POLL_IN);
2496
2497         if (handle->nmi) {
2498                 handle->counter->pending_wakeup = 1;
2499                 perf_pending_queue(&handle->counter->pending,
2500                                    perf_pending_counter);
2501         } else
2502                 perf_counter_wakeup(handle->counter);
2503 }
2504
2505 /*
2506  * Curious locking construct.
2507  *
2508  * We need to ensure a later event doesn't publish a head when a former
2509  * event isn't done writing. However since we need to deal with NMIs we
2510  * cannot fully serialize things.
2511  *
2512  * What we do is serialize between CPUs so we only have to deal with NMI
2513  * nesting on a single CPU.
2514  *
2515  * We only publish the head (and generate a wakeup) when the outer-most
2516  * event completes.
2517  */
2518 static void perf_output_lock(struct perf_output_handle *handle)
2519 {
2520         struct perf_mmap_data *data = handle->data;
2521         int cpu;
2522
2523         handle->locked = 0;
2524
2525         local_irq_save(handle->flags);
2526         cpu = smp_processor_id();
2527
2528         if (in_nmi() && atomic_read(&data->lock) == cpu)
2529                 return;
2530
2531         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2532                 cpu_relax();
2533
2534         handle->locked = 1;
2535 }
2536
2537 static void perf_output_unlock(struct perf_output_handle *handle)
2538 {
2539         struct perf_mmap_data *data = handle->data;
2540         unsigned long head;
2541         int cpu;
2542
2543         data->done_head = data->head;
2544
2545         if (!handle->locked)
2546                 goto out;
2547
2548 again:
2549         /*
2550          * The xchg implies a full barrier that ensures all writes are done
2551          * before we publish the new head, matched by a rmb() in userspace when
2552          * reading this position.
2553          */
2554         while ((head = atomic_long_xchg(&data->done_head, 0)))
2555                 data->user_page->data_head = head;
2556
2557         /*
2558          * NMI can happen here, which means we can miss a done_head update.
2559          */
2560
2561         cpu = atomic_xchg(&data->lock, -1);
2562         WARN_ON_ONCE(cpu != smp_processor_id());
2563
2564         /*
2565          * Therefore we have to validate we did not indeed do so.
2566          */
2567         if (unlikely(atomic_long_read(&data->done_head))) {
2568                 /*
2569                  * Since we had it locked, we can lock it again.
2570                  */
2571                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2572                         cpu_relax();
2573
2574                 goto again;
2575         }
2576
2577         if (atomic_xchg(&data->wakeup, 0))
2578                 perf_output_wakeup(handle);
2579 out:
2580         local_irq_restore(handle->flags);
2581 }
2582
2583 static void perf_output_copy(struct perf_output_handle *handle,
2584                              const void *buf, unsigned int len)
2585 {
2586         unsigned int pages_mask;
2587         unsigned int offset;
2588         unsigned int size;
2589         void **pages;
2590
2591         offset          = handle->offset;
2592         pages_mask      = handle->data->nr_pages - 1;
2593         pages           = handle->data->data_pages;
2594
2595         do {
2596                 unsigned int page_offset;
2597                 int nr;
2598
2599                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2600                 page_offset = offset & (PAGE_SIZE - 1);
2601                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2602
2603                 memcpy(pages[nr] + page_offset, buf, size);
2604
2605                 len         -= size;
2606                 buf         += size;
2607                 offset      += size;
2608         } while (len);
2609
2610         handle->offset = offset;
2611
2612         /*
2613          * Check we didn't copy past our reservation window, taking the
2614          * possible unsigned int wrap into account.
2615          */
2616         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2617 }
2618
2619 #define perf_output_put(handle, x) \
2620         perf_output_copy((handle), &(x), sizeof(x))
2621
2622 static int perf_output_begin(struct perf_output_handle *handle,
2623                              struct perf_counter *counter, unsigned int size,
2624                              int nmi, int sample)
2625 {
2626         struct perf_mmap_data *data;
2627         unsigned int offset, head;
2628         int have_lost;
2629         struct {
2630                 struct perf_event_header header;
2631                 u64                      id;
2632                 u64                      lost;
2633         } lost_event;
2634
2635         /*
2636          * For inherited counters we send all the output towards the parent.
2637          */
2638         if (counter->parent)
2639                 counter = counter->parent;
2640
2641         rcu_read_lock();
2642         data = rcu_dereference(counter->data);
2643         if (!data)
2644                 goto out;
2645
2646         handle->data    = data;
2647         handle->counter = counter;
2648         handle->nmi     = nmi;
2649         handle->sample  = sample;
2650
2651         if (!data->nr_pages)
2652                 goto fail;
2653
2654         have_lost = atomic_read(&data->lost);
2655         if (have_lost)
2656                 size += sizeof(lost_event);
2657
2658         perf_output_lock(handle);
2659
2660         do {
2661                 offset = head = atomic_long_read(&data->head);
2662                 head += size;
2663                 if (unlikely(!perf_output_space(data, offset, head)))
2664                         goto fail;
2665         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2666
2667         handle->offset  = offset;
2668         handle->head    = head;
2669
2670         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2671                 atomic_set(&data->wakeup, 1);
2672
2673         if (have_lost) {
2674                 lost_event.header.type = PERF_EVENT_LOST;
2675                 lost_event.header.misc = 0;
2676                 lost_event.header.size = sizeof(lost_event);
2677                 lost_event.id          = counter->id;
2678                 lost_event.lost        = atomic_xchg(&data->lost, 0);
2679
2680                 perf_output_put(handle, lost_event);
2681         }
2682
2683         return 0;
2684
2685 fail:
2686         atomic_inc(&data->lost);
2687         perf_output_unlock(handle);
2688 out:
2689         rcu_read_unlock();
2690
2691         return -ENOSPC;
2692 }
2693
2694 static void perf_output_end(struct perf_output_handle *handle)
2695 {
2696         struct perf_counter *counter = handle->counter;
2697         struct perf_mmap_data *data = handle->data;
2698
2699         int wakeup_events = counter->attr.wakeup_events;
2700
2701         if (handle->sample && wakeup_events) {
2702                 int events = atomic_inc_return(&data->events);
2703                 if (events >= wakeup_events) {
2704                         atomic_sub(wakeup_events, &data->events);
2705                         atomic_set(&data->wakeup, 1);
2706                 }
2707         }
2708
2709         perf_output_unlock(handle);
2710         rcu_read_unlock();
2711 }
2712
2713 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2714 {
2715         /*
2716          * only top level counters have the pid namespace they were created in
2717          */
2718         if (counter->parent)
2719                 counter = counter->parent;
2720
2721         return task_tgid_nr_ns(p, counter->ns);
2722 }
2723
2724 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2725 {
2726         /*
2727          * only top level counters have the pid namespace they were created in
2728          */
2729         if (counter->parent)
2730                 counter = counter->parent;
2731
2732         return task_pid_nr_ns(p, counter->ns);
2733 }
2734
2735 static void perf_output_read_one(struct perf_output_handle *handle,
2736                                  struct perf_counter *counter)
2737 {
2738         u64 read_format = counter->attr.read_format;
2739         u64 values[4];
2740         int n = 0;
2741
2742         values[n++] = atomic64_read(&counter->count);
2743         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2744                 values[n++] = counter->total_time_enabled +
2745                         atomic64_read(&counter->child_total_time_enabled);
2746         }
2747         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2748                 values[n++] = counter->total_time_running +
2749                         atomic64_read(&counter->child_total_time_running);
2750         }
2751         if (read_format & PERF_FORMAT_ID)
2752                 values[n++] = primary_counter_id(counter);
2753
2754         perf_output_copy(handle, values, n * sizeof(u64));
2755 }
2756
2757 /*
2758  * XXX PERF_FORMAT_GROUP vs inherited counters seems difficult.
2759  */
2760 static void perf_output_read_group(struct perf_output_handle *handle,
2761                             struct perf_counter *counter)
2762 {
2763         struct perf_counter *leader = counter->group_leader, *sub;
2764         u64 read_format = counter->attr.read_format;
2765         u64 values[5];
2766         int n = 0;
2767
2768         values[n++] = 1 + leader->nr_siblings;
2769
2770         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2771                 values[n++] = leader->total_time_enabled;
2772
2773         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2774                 values[n++] = leader->total_time_running;
2775
2776         if (leader != counter)
2777                 leader->pmu->read(leader);
2778
2779         values[n++] = atomic64_read(&leader->count);
2780         if (read_format & PERF_FORMAT_ID)
2781                 values[n++] = primary_counter_id(leader);
2782
2783         perf_output_copy(handle, values, n * sizeof(u64));
2784
2785         list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2786                 n = 0;
2787
2788                 if (sub != counter)
2789                         sub->pmu->read(sub);
2790
2791                 values[n++] = atomic64_read(&sub->count);
2792                 if (read_format & PERF_FORMAT_ID)
2793                         values[n++] = primary_counter_id(sub);
2794
2795                 perf_output_copy(handle, values, n * sizeof(u64));
2796         }
2797 }
2798
2799 static void perf_output_read(struct perf_output_handle *handle,
2800                              struct perf_counter *counter)
2801 {
2802         if (counter->attr.read_format & PERF_FORMAT_GROUP)
2803                 perf_output_read_group(handle, counter);
2804         else
2805                 perf_output_read_one(handle, counter);
2806 }
2807
2808 void perf_counter_output(struct perf_counter *counter, int nmi,
2809                                 struct perf_sample_data *data)
2810 {
2811         int ret;
2812         u64 sample_type = counter->attr.sample_type;
2813         struct perf_output_handle handle;
2814         struct perf_event_header header;
2815         u64 ip;
2816         struct {
2817                 u32 pid, tid;
2818         } tid_entry;
2819         struct perf_callchain_entry *callchain = NULL;
2820         int callchain_size = 0;
2821         u64 time;
2822         struct {
2823                 u32 cpu, reserved;
2824         } cpu_entry;
2825
2826         header.type = PERF_EVENT_SAMPLE;
2827         header.size = sizeof(header);
2828
2829         header.misc = 0;
2830         header.misc |= perf_misc_flags(data->regs);
2831
2832         if (sample_type & PERF_SAMPLE_IP) {
2833                 ip = perf_instruction_pointer(data->regs);
2834                 header.size += sizeof(ip);
2835         }
2836
2837         if (sample_type & PERF_SAMPLE_TID) {
2838                 /* namespace issues */
2839                 tid_entry.pid = perf_counter_pid(counter, current);
2840                 tid_entry.tid = perf_counter_tid(counter, current);
2841
2842                 header.size += sizeof(tid_entry);
2843         }
2844
2845         if (sample_type & PERF_SAMPLE_TIME) {
2846                 /*
2847                  * Maybe do better on x86 and provide cpu_clock_nmi()
2848                  */
2849                 time = sched_clock();
2850
2851                 header.size += sizeof(u64);
2852         }
2853
2854         if (sample_type & PERF_SAMPLE_ADDR)
2855                 header.size += sizeof(u64);
2856
2857         if (sample_type & PERF_SAMPLE_ID)
2858                 header.size += sizeof(u64);
2859
2860         if (sample_type & PERF_SAMPLE_STREAM_ID)
2861                 header.size += sizeof(u64);
2862
2863         if (sample_type & PERF_SAMPLE_CPU) {
2864                 header.size += sizeof(cpu_entry);
2865
2866                 cpu_entry.cpu = raw_smp_processor_id();
2867                 cpu_entry.reserved = 0;
2868         }
2869
2870         if (sample_type & PERF_SAMPLE_PERIOD)
2871                 header.size += sizeof(u64);
2872
2873         if (sample_type & PERF_SAMPLE_READ)
2874                 header.size += perf_counter_read_size(counter);
2875
2876         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2877                 callchain = perf_callchain(data->regs);
2878
2879                 if (callchain) {
2880                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2881                         header.size += callchain_size;
2882                 } else
2883                         header.size += sizeof(u64);
2884         }
2885
2886         if (sample_type & PERF_SAMPLE_RAW) {
2887                 int size = sizeof(u32);
2888
2889                 if (data->raw)
2890                         size += data->raw->size;
2891                 else
2892                         size += sizeof(u32);
2893
2894                 WARN_ON_ONCE(size & (sizeof(u64)-1));
2895                 header.size += size;
2896         }
2897
2898         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2899         if (ret)
2900                 return;
2901
2902         perf_output_put(&handle, header);
2903
2904         if (sample_type & PERF_SAMPLE_IP)
2905                 perf_output_put(&handle, ip);
2906
2907         if (sample_type & PERF_SAMPLE_TID)
2908                 perf_output_put(&handle, tid_entry);
2909
2910         if (sample_type & PERF_SAMPLE_TIME)
2911                 perf_output_put(&handle, time);
2912
2913         if (sample_type & PERF_SAMPLE_ADDR)
2914                 perf_output_put(&handle, data->addr);
2915
2916         if (sample_type & PERF_SAMPLE_ID) {
2917                 u64 id = primary_counter_id(counter);
2918
2919                 perf_output_put(&handle, id);
2920         }
2921
2922         if (sample_type & PERF_SAMPLE_STREAM_ID)
2923                 perf_output_put(&handle, counter->id);
2924
2925         if (sample_type & PERF_SAMPLE_CPU)
2926                 perf_output_put(&handle, cpu_entry);
2927
2928         if (sample_type & PERF_SAMPLE_PERIOD)
2929                 perf_output_put(&handle, data->period);
2930
2931         if (sample_type & PERF_SAMPLE_READ)
2932                 perf_output_read(&handle, counter);
2933
2934         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2935                 if (callchain)
2936                         perf_output_copy(&handle, callchain, callchain_size);
2937                 else {
2938                         u64 nr = 0;
2939                         perf_output_put(&handle, nr);
2940                 }
2941         }
2942
2943         if (sample_type & PERF_SAMPLE_RAW) {
2944                 if (data->raw) {
2945                         perf_output_put(&handle, data->raw->size);
2946                         perf_output_copy(&handle, data->raw->data, data->raw->size);
2947                 } else {
2948                         struct {
2949                                 u32     size;
2950                                 u32     data;
2951                         } raw = {
2952                                 .size = sizeof(u32),
2953                                 .data = 0,
2954                         };
2955                         perf_output_put(&handle, raw);
2956                 }
2957         }
2958
2959         perf_output_end(&handle);
2960 }
2961
2962 /*
2963  * read event
2964  */
2965
2966 struct perf_read_event {
2967         struct perf_event_header        header;
2968
2969         u32                             pid;
2970         u32                             tid;
2971 };
2972
2973 static void
2974 perf_counter_read_event(struct perf_counter *counter,
2975                         struct task_struct *task)
2976 {
2977         struct perf_output_handle handle;
2978         struct perf_read_event event = {
2979                 .header = {
2980                         .type = PERF_EVENT_READ,
2981                         .misc = 0,
2982                         .size = sizeof(event) + perf_counter_read_size(counter),
2983                 },
2984                 .pid = perf_counter_pid(counter, task),
2985                 .tid = perf_counter_tid(counter, task),
2986         };
2987         int ret;
2988
2989         ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
2990         if (ret)
2991                 return;
2992
2993         perf_output_put(&handle, event);
2994         perf_output_read(&handle, counter);
2995
2996         perf_output_end(&handle);
2997 }
2998
2999 /*
3000  * task tracking -- fork/exit
3001  *
3002  * enabled by: attr.comm | attr.mmap | attr.task
3003  */
3004
3005 struct perf_task_event {
3006         struct task_struct              *task;
3007         struct perf_counter_context     *task_ctx;
3008
3009         struct {
3010                 struct perf_event_header        header;
3011
3012                 u32                             pid;
3013                 u32                             ppid;
3014                 u32                             tid;
3015                 u32                             ptid;
3016         } event;
3017 };
3018
3019 static void perf_counter_task_output(struct perf_counter *counter,
3020                                      struct perf_task_event *task_event)
3021 {
3022         struct perf_output_handle handle;
3023         int size = task_event->event.header.size;
3024         struct task_struct *task = task_event->task;
3025         int ret = perf_output_begin(&handle, counter, size, 0, 0);
3026
3027         if (ret)
3028                 return;
3029
3030         task_event->event.pid = perf_counter_pid(counter, task);
3031         task_event->event.ppid = perf_counter_pid(counter, current);
3032
3033         task_event->event.tid = perf_counter_tid(counter, task);
3034         task_event->event.ptid = perf_counter_tid(counter, current);
3035
3036         perf_output_put(&handle, task_event->event);
3037         perf_output_end(&handle);
3038 }
3039
3040 static int perf_counter_task_match(struct perf_counter *counter)
3041 {
3042         if (counter->attr.comm || counter->attr.mmap || counter->attr.task)
3043                 return 1;
3044
3045         return 0;
3046 }
3047
3048 static void perf_counter_task_ctx(struct perf_counter_context *ctx,
3049                                   struct perf_task_event *task_event)
3050 {
3051         struct perf_counter *counter;
3052
3053         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3054                 return;
3055
3056         rcu_read_lock();
3057         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3058                 if (perf_counter_task_match(counter))
3059                         perf_counter_task_output(counter, task_event);
3060         }
3061         rcu_read_unlock();
3062 }
3063
3064 static void perf_counter_task_event(struct perf_task_event *task_event)
3065 {
3066         struct perf_cpu_context *cpuctx;
3067         struct perf_counter_context *ctx = task_event->task_ctx;
3068
3069         cpuctx = &get_cpu_var(perf_cpu_context);
3070         perf_counter_task_ctx(&cpuctx->ctx, task_event);
3071         put_cpu_var(perf_cpu_context);
3072
3073         rcu_read_lock();
3074         if (!ctx)
3075                 ctx = rcu_dereference(task_event->task->perf_counter_ctxp);
3076         if (ctx)
3077                 perf_counter_task_ctx(ctx, task_event);
3078         rcu_read_unlock();
3079 }
3080
3081 static void perf_counter_task(struct task_struct *task,
3082                               struct perf_counter_context *task_ctx,
3083                               int new)
3084 {
3085         struct perf_task_event task_event;
3086
3087         if (!atomic_read(&nr_comm_counters) &&
3088             !atomic_read(&nr_mmap_counters) &&
3089             !atomic_read(&nr_task_counters))
3090                 return;
3091
3092         task_event = (struct perf_task_event){
3093                 .task     = task,
3094                 .task_ctx = task_ctx,
3095                 .event    = {
3096                         .header = {
3097                                 .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT,
3098                                 .misc = 0,
3099                                 .size = sizeof(task_event.event),
3100                         },
3101                         /* .pid  */
3102                         /* .ppid */
3103                         /* .tid  */
3104                         /* .ptid */
3105                 },
3106         };
3107
3108         perf_counter_task_event(&task_event);
3109 }
3110
3111 void perf_counter_fork(struct task_struct *task)
3112 {
3113         perf_counter_task(task, NULL, 1);
3114 }
3115
3116 /*
3117  * comm tracking
3118  */
3119
3120 struct perf_comm_event {
3121         struct task_struct      *task;
3122         char                    *comm;
3123         int                     comm_size;
3124
3125         struct {
3126                 struct perf_event_header        header;
3127
3128                 u32                             pid;
3129                 u32                             tid;
3130         } event;
3131 };
3132
3133 static void perf_counter_comm_output(struct perf_counter *counter,
3134                                      struct perf_comm_event *comm_event)
3135 {
3136         struct perf_output_handle handle;
3137         int size = comm_event->event.header.size;
3138         int ret = perf_output_begin(&handle, counter, size, 0, 0);
3139
3140         if (ret)
3141                 return;
3142
3143         comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
3144         comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
3145
3146         perf_output_put(&handle, comm_event->event);
3147         perf_output_copy(&handle, comm_event->comm,
3148                                    comm_event->comm_size);
3149         perf_output_end(&handle);
3150 }
3151
3152 static int perf_counter_comm_match(struct perf_counter *counter)
3153 {
3154         if (counter->attr.comm)
3155                 return 1;
3156
3157         return 0;
3158 }
3159
3160 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
3161                                   struct perf_comm_event *comm_event)
3162 {
3163         struct perf_counter *counter;
3164
3165         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3166                 return;
3167
3168         rcu_read_lock();
3169         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3170                 if (perf_counter_comm_match(counter))
3171                         perf_counter_comm_output(counter, comm_event);
3172         }
3173         rcu_read_unlock();
3174 }
3175
3176 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
3177 {
3178         struct perf_cpu_context *cpuctx;
3179         struct perf_counter_context *ctx;
3180         unsigned int size;
3181         char comm[TASK_COMM_LEN];
3182
3183         memset(comm, 0, sizeof(comm));
3184         strncpy(comm, comm_event->task->comm, sizeof(comm));
3185         size = ALIGN(strlen(comm)+1, sizeof(u64));
3186
3187         comm_event->comm = comm;
3188         comm_event->comm_size = size;
3189
3190         comm_event->event.header.size = sizeof(comm_event->event) + size;
3191
3192         cpuctx = &get_cpu_var(perf_cpu_context);
3193         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
3194         put_cpu_var(perf_cpu_context);
3195
3196         rcu_read_lock();
3197         /*
3198          * doesn't really matter which of the child contexts the
3199          * events ends up in.
3200          */
3201         ctx = rcu_dereference(current->perf_counter_ctxp);
3202         if (ctx)
3203                 perf_counter_comm_ctx(ctx, comm_event);
3204         rcu_read_unlock();
3205 }
3206
3207 void perf_counter_comm(struct task_struct *task)
3208 {
3209         struct perf_comm_event comm_event;
3210
3211         if (task->perf_counter_ctxp)
3212                 perf_counter_enable_on_exec(task);
3213
3214         if (!atomic_read(&nr_comm_counters))
3215                 return;
3216
3217         comm_event = (struct perf_comm_event){
3218                 .task   = task,
3219                 /* .comm      */
3220                 /* .comm_size */
3221                 .event  = {
3222                         .header = {
3223                                 .type = PERF_EVENT_COMM,
3224                                 .misc = 0,
3225                                 /* .size */
3226                         },
3227                         /* .pid */
3228                         /* .tid */
3229                 },
3230         };
3231
3232         perf_counter_comm_event(&comm_event);
3233 }
3234
3235 /*
3236  * mmap tracking
3237  */
3238
3239 struct perf_mmap_event {
3240         struct vm_area_struct   *vma;
3241
3242         const char              *file_name;
3243         int                     file_size;
3244
3245         struct {
3246                 struct perf_event_header        header;
3247
3248                 u32                             pid;
3249                 u32                             tid;
3250                 u64                             start;
3251                 u64                             len;
3252                 u64                             pgoff;
3253         } event;
3254 };
3255
3256 static void perf_counter_mmap_output(struct perf_counter *counter,
3257                                      struct perf_mmap_event *mmap_event)
3258 {
3259         struct perf_output_handle handle;
3260         int size = mmap_event->event.header.size;
3261         int ret = perf_output_begin(&handle, counter, size, 0, 0);
3262
3263         if (ret)
3264                 return;
3265
3266         mmap_event->event.pid = perf_counter_pid(counter, current);
3267         mmap_event->event.tid = perf_counter_tid(counter, current);
3268
3269         perf_output_put(&handle, mmap_event->event);
3270         perf_output_copy(&handle, mmap_event->file_name,
3271                                    mmap_event->file_size);
3272         perf_output_end(&handle);
3273 }
3274
3275 static int perf_counter_mmap_match(struct perf_counter *counter,
3276                                    struct perf_mmap_event *mmap_event)
3277 {
3278         if (counter->attr.mmap)
3279                 return 1;
3280
3281         return 0;
3282 }
3283
3284 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
3285                                   struct perf_mmap_event *mmap_event)
3286 {
3287         struct perf_counter *counter;
3288
3289         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3290                 return;
3291
3292         rcu_read_lock();
3293         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3294                 if (perf_counter_mmap_match(counter, mmap_event))
3295                         perf_counter_mmap_output(counter, mmap_event);
3296         }
3297         rcu_read_unlock();
3298 }
3299
3300 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
3301 {
3302         struct perf_cpu_context *cpuctx;
3303         struct perf_counter_context *ctx;
3304         struct vm_area_struct *vma = mmap_event->vma;
3305         struct file *file = vma->vm_file;
3306         unsigned int size;
3307         char tmp[16];
3308         char *buf = NULL;
3309         const char *name;
3310
3311         memset(tmp, 0, sizeof(tmp));
3312
3313         if (file) {
3314                 /*
3315                  * d_path works from the end of the buffer backwards, so we
3316                  * need to add enough zero bytes after the string to handle
3317                  * the 64bit alignment we do later.
3318                  */
3319                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3320                 if (!buf) {
3321                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3322                         goto got_name;
3323                 }
3324                 name = d_path(&file->f_path, buf, PATH_MAX);
3325                 if (IS_ERR(name)) {
3326                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3327                         goto got_name;
3328                 }
3329         } else {
3330                 if (arch_vma_name(mmap_event->vma)) {
3331                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3332                                        sizeof(tmp));
3333                         goto got_name;
3334                 }
3335
3336                 if (!vma->vm_mm) {
3337                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3338                         goto got_name;
3339                 }
3340
3341                 name = strncpy(tmp, "//anon", sizeof(tmp));
3342                 goto got_name;
3343         }
3344
3345 got_name:
3346         size = ALIGN(strlen(name)+1, sizeof(u64));
3347
3348         mmap_event->file_name = name;
3349         mmap_event->file_size = size;
3350
3351         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
3352
3353         cpuctx = &get_cpu_var(perf_cpu_context);
3354         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
3355         put_cpu_var(perf_cpu_context);
3356
3357         rcu_read_lock();
3358         /*
3359          * doesn't really matter which of the child contexts the
3360          * events ends up in.
3361          */
3362         ctx = rcu_dereference(current->perf_counter_ctxp);
3363         if (ctx)
3364                 perf_counter_mmap_ctx(ctx, mmap_event);
3365         rcu_read_unlock();
3366
3367         kfree(buf);
3368 }
3369
3370 void __perf_counter_mmap(struct vm_area_struct *vma)
3371 {
3372         struct perf_mmap_event mmap_event;
3373
3374         if (!atomic_read(&nr_mmap_counters))
3375                 return;
3376
3377         mmap_event = (struct perf_mmap_event){
3378                 .vma    = vma,
3379                 /* .file_name */
3380                 /* .file_size */
3381                 .event  = {
3382                         .header = {
3383                                 .type = PERF_EVENT_MMAP,
3384                                 .misc = 0,
3385                                 /* .size */
3386                         },
3387                         /* .pid */
3388                         /* .tid */
3389                         .start  = vma->vm_start,
3390                         .len    = vma->vm_end - vma->vm_start,
3391                         .pgoff  = vma->vm_pgoff,
3392                 },
3393         };
3394
3395         perf_counter_mmap_event(&mmap_event);
3396 }
3397
3398 /*
3399  * IRQ throttle logging
3400  */
3401
3402 static void perf_log_throttle(struct perf_counter *counter, int enable)
3403 {
3404         struct perf_output_handle handle;
3405         int ret;
3406
3407         struct {
3408                 struct perf_event_header        header;
3409                 u64                             time;
3410                 u64                             id;
3411                 u64                             stream_id;
3412         } throttle_event = {
3413                 .header = {
3414                         .type = PERF_EVENT_THROTTLE,
3415                         .misc = 0,
3416                         .size = sizeof(throttle_event),
3417                 },
3418                 .time           = sched_clock(),
3419                 .id             = primary_counter_id(counter),
3420                 .stream_id      = counter->id,
3421         };
3422
3423         if (enable)
3424                 throttle_event.header.type = PERF_EVENT_UNTHROTTLE;
3425
3426         ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3427         if (ret)
3428                 return;
3429
3430         perf_output_put(&handle, throttle_event);
3431         perf_output_end(&handle);
3432 }
3433
3434 /*
3435  * Generic counter overflow handling, sampling.
3436  */
3437
3438 int perf_counter_overflow(struct perf_counter *counter, int nmi,
3439                           struct perf_sample_data *data)
3440 {
3441         int events = atomic_read(&counter->event_limit);
3442         int throttle = counter->pmu->unthrottle != NULL;
3443         struct hw_perf_counter *hwc = &counter->hw;
3444         int ret = 0;
3445
3446         if (!throttle) {
3447                 hwc->interrupts++;
3448         } else {
3449                 if (hwc->interrupts != MAX_INTERRUPTS) {
3450                         hwc->interrupts++;
3451                         if (HZ * hwc->interrupts >
3452                                         (u64)sysctl_perf_counter_sample_rate) {
3453                                 hwc->interrupts = MAX_INTERRUPTS;
3454                                 perf_log_throttle(counter, 0);
3455                                 ret = 1;
3456                         }
3457                 } else {
3458                         /*
3459                          * Keep re-disabling counters even though on the previous
3460                          * pass we disabled it - just in case we raced with a
3461                          * sched-in and the counter got enabled again:
3462                          */
3463                         ret = 1;
3464                 }
3465         }
3466
3467         if (counter->attr.freq) {
3468                 u64 now = sched_clock();
3469                 s64 delta = now - hwc->freq_stamp;
3470
3471                 hwc->freq_stamp = now;
3472
3473                 if (delta > 0 && delta < TICK_NSEC)
3474                         perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3475         }
3476
3477         /*
3478          * XXX event_limit might not quite work as expected on inherited
3479          * counters
3480          */
3481
3482         counter->pending_kill = POLL_IN;
3483         if (events && atomic_dec_and_test(&counter->event_limit)) {
3484                 ret = 1;
3485                 counter->pending_kill = POLL_HUP;
3486                 if (nmi) {
3487                         counter->pending_disable = 1;
3488                         perf_pending_queue(&counter->pending,
3489                                            perf_pending_counter);
3490                 } else
3491                         perf_counter_disable(counter);
3492         }
3493
3494         perf_counter_output(counter, nmi, data);
3495         return ret;
3496 }
3497
3498 /*
3499  * Generic software counter infrastructure
3500  */
3501
3502 /*
3503  * We directly increment counter->count and keep a second value in
3504  * counter->hw.period_left to count intervals. This period counter
3505  * is kept in the range [-sample_period, 0] so that we can use the
3506  * sign as trigger.
3507  */
3508
3509 static u64 perf_swcounter_set_period(struct perf_counter *counter)
3510 {
3511         struct hw_perf_counter *hwc = &counter->hw;
3512         u64 period = hwc->last_period;
3513         u64 nr, offset;
3514         s64 old, val;
3515
3516         hwc->last_period = hwc->sample_period;
3517
3518 again:
3519         old = val = atomic64_read(&hwc->period_left);
3520         if (val < 0)
3521                 return 0;
3522
3523         nr = div64_u64(period + val, period);
3524         offset = nr * period;
3525         val -= offset;
3526         if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3527                 goto again;
3528
3529         return nr;
3530 }
3531
3532 static void perf_swcounter_overflow(struct perf_counter *counter,
3533                                     int nmi, struct perf_sample_data *data)
3534 {
3535         struct hw_perf_counter *hwc = &counter->hw;
3536         u64 overflow;
3537
3538         data->period = counter->hw.last_period;
3539         overflow = perf_swcounter_set_period(counter);
3540
3541         if (hwc->interrupts == MAX_INTERRUPTS)
3542                 return;
3543
3544         for (; overflow; overflow--) {
3545                 if (perf_counter_overflow(counter, nmi, data)) {
3546                         /*
3547                          * We inhibit the overflow from happening when
3548                          * hwc->interrupts == MAX_INTERRUPTS.
3549                          */
3550                         break;
3551                 }
3552         }
3553 }
3554
3555 static void perf_swcounter_unthrottle(struct perf_counter *counter)
3556 {
3557         /*
3558          * Nothing to do, we already reset hwc->interrupts.
3559          */
3560 }
3561
3562 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3563                                int nmi, struct perf_sample_data *data)
3564 {
3565         struct hw_perf_counter *hwc = &counter->hw;
3566
3567         atomic64_add(nr, &counter->count);
3568
3569         if (!hwc->sample_period)
3570                 return;
3571
3572         if (!data->regs)
3573                 return;
3574
3575         if (!atomic64_add_negative(nr, &hwc->period_left))
3576                 perf_swcounter_overflow(counter, nmi, data);
3577 }
3578
3579 static int perf_swcounter_is_counting(struct perf_counter *counter)
3580 {
3581         /*
3582          * The counter is active, we're good!
3583          */
3584         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3585                 return 1;
3586
3587         /*
3588          * The counter is off/error, not counting.
3589          */
3590         if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3591                 return 0;
3592
3593         /*
3594          * The counter is inactive, if the context is active
3595          * we're part of a group that didn't make it on the 'pmu',
3596          * not counting.
3597          */
3598         if (counter->ctx->is_active)
3599                 return 0;
3600
3601         /*
3602          * We're inactive and the context is too, this means the
3603          * task is scheduled out, we're counting events that happen
3604          * to us, like migration events.
3605          */
3606         return 1;
3607 }
3608
3609 static int perf_swcounter_match(struct perf_counter *counter,
3610                                 enum perf_type_id type,
3611                                 u32 event, struct pt_regs *regs)
3612 {
3613         if (!perf_swcounter_is_counting(counter))
3614                 return 0;
3615
3616         if (counter->attr.type != type)
3617                 return 0;
3618         if (counter->attr.config != event)
3619                 return 0;
3620
3621         if (regs) {
3622                 if (counter->attr.exclude_user && user_mode(regs))
3623                         return 0;
3624
3625                 if (counter->attr.exclude_kernel && !user_mode(regs))
3626                         return 0;
3627         }
3628
3629         return 1;
3630 }
3631
3632 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3633                                      enum perf_type_id type,
3634                                      u32 event, u64 nr, int nmi,
3635                                      struct perf_sample_data *data)
3636 {
3637         struct perf_counter *counter;
3638
3639         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3640                 return;
3641
3642         rcu_read_lock();
3643         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3644                 if (perf_swcounter_match(counter, type, event, data->regs))
3645                         perf_swcounter_add(counter, nr, nmi, data);
3646         }
3647         rcu_read_unlock();
3648 }
3649
3650 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3651 {
3652         if (in_nmi())
3653                 return &cpuctx->recursion[3];
3654
3655         if (in_irq())
3656                 return &cpuctx->recursion[2];
3657
3658         if (in_softirq())
3659                 return &cpuctx->recursion[1];
3660
3661         return &cpuctx->recursion[0];
3662 }
3663
3664 static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
3665                                     u64 nr, int nmi,
3666                                     struct perf_sample_data *data)
3667 {
3668         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3669         int *recursion = perf_swcounter_recursion_context(cpuctx);
3670         struct perf_counter_context *ctx;
3671
3672         if (*recursion)
3673                 goto out;
3674
3675         (*recursion)++;
3676         barrier();
3677
3678         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3679                                  nr, nmi, data);
3680         rcu_read_lock();
3681         /*
3682          * doesn't really matter which of the child contexts the
3683          * events ends up in.
3684          */
3685         ctx = rcu_dereference(current->perf_counter_ctxp);
3686         if (ctx)
3687                 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3688         rcu_read_unlock();
3689
3690         barrier();
3691         (*recursion)--;
3692
3693 out:
3694         put_cpu_var(perf_cpu_context);
3695 }
3696
3697 void __perf_swcounter_event(u32 event, u64 nr, int nmi,
3698                             struct pt_regs *regs, u64 addr)
3699 {
3700         struct perf_sample_data data = {
3701                 .regs = regs,
3702                 .addr = addr,
3703         };
3704
3705         do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3706 }
3707
3708 static void perf_swcounter_read(struct perf_counter *counter)
3709 {
3710 }
3711
3712 static int perf_swcounter_enable(struct perf_counter *counter)
3713 {
3714         struct hw_perf_counter *hwc = &counter->hw;
3715
3716         if (hwc->sample_period) {
3717                 hwc->last_period = hwc->sample_period;
3718                 perf_swcounter_set_period(counter);
3719         }
3720         return 0;
3721 }
3722
3723 static void perf_swcounter_disable(struct perf_counter *counter)
3724 {
3725 }
3726
3727 static const struct pmu perf_ops_generic = {
3728         .enable         = perf_swcounter_enable,
3729         .disable        = perf_swcounter_disable,
3730         .read           = perf_swcounter_read,
3731         .unthrottle     = perf_swcounter_unthrottle,
3732 };
3733
3734 /*
3735  * hrtimer based swcounter callback
3736  */
3737
3738 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3739 {
3740         enum hrtimer_restart ret = HRTIMER_RESTART;
3741         struct perf_sample_data data;
3742         struct perf_counter *counter;
3743         u64 period;
3744
3745         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3746         counter->pmu->read(counter);
3747
3748         data.addr = 0;
3749         data.regs = get_irq_regs();
3750         /*
3751          * In case we exclude kernel IPs or are somehow not in interrupt
3752          * context, provide the next best thing, the user IP.
3753          */
3754         if ((counter->attr.exclude_kernel || !data.regs) &&
3755                         !counter->attr.exclude_user)
3756                 data.regs = task_pt_regs(current);
3757
3758         if (data.regs) {
3759                 if (perf_counter_overflow(counter, 0, &data))
3760                         ret = HRTIMER_NORESTART;
3761         }
3762
3763         period = max_t(u64, 10000, counter->hw.sample_period);
3764         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3765
3766         return ret;
3767 }
3768
3769 /*
3770  * Software counter: cpu wall time clock
3771  */
3772
3773 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3774 {
3775         int cpu = raw_smp_processor_id();
3776         s64 prev;
3777         u64 now;
3778
3779         now = cpu_clock(cpu);
3780         prev = atomic64_read(&counter->hw.prev_count);
3781         atomic64_set(&counter->hw.prev_count, now);
3782         atomic64_add(now - prev, &counter->count);
3783 }
3784
3785 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3786 {
3787         struct hw_perf_counter *hwc = &counter->hw;
3788         int cpu = raw_smp_processor_id();
3789
3790         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3791         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3792         hwc->hrtimer.function = perf_swcounter_hrtimer;
3793         if (hwc->sample_period) {
3794                 u64 period = max_t(u64, 10000, hwc->sample_period);
3795                 __hrtimer_start_range_ns(&hwc->hrtimer,
3796                                 ns_to_ktime(period), 0,
3797                                 HRTIMER_MODE_REL, 0);
3798         }
3799
3800         return 0;
3801 }
3802
3803 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3804 {
3805         if (counter->hw.sample_period)
3806                 hrtimer_cancel(&counter->hw.hrtimer);
3807         cpu_clock_perf_counter_update(counter);
3808 }
3809
3810 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3811 {
3812         cpu_clock_perf_counter_update(counter);
3813 }
3814
3815 static const struct pmu perf_ops_cpu_clock = {
3816         .enable         = cpu_clock_perf_counter_enable,
3817         .disable        = cpu_clock_perf_counter_disable,
3818         .read           = cpu_clock_perf_counter_read,
3819 };
3820
3821 /*
3822  * Software counter: task time clock
3823  */
3824
3825 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3826 {
3827         u64 prev;
3828         s64 delta;
3829
3830         prev = atomic64_xchg(&counter->hw.prev_count, now);
3831         delta = now - prev;
3832         atomic64_add(delta, &counter->count);
3833 }
3834
3835 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3836 {
3837         struct hw_perf_counter *hwc = &counter->hw;
3838         u64 now;
3839
3840         now = counter->ctx->time;
3841
3842         atomic64_set(&hwc->prev_count, now);
3843         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3844         hwc->hrtimer.function = perf_swcounter_hrtimer;
3845         if (hwc->sample_period) {
3846                 u64 period = max_t(u64, 10000, hwc->sample_period);
3847                 __hrtimer_start_range_ns(&hwc->hrtimer,
3848                                 ns_to_ktime(period), 0,
3849                                 HRTIMER_MODE_REL, 0);
3850         }
3851
3852         return 0;
3853 }
3854
3855 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3856 {
3857         if (counter->hw.sample_period)
3858                 hrtimer_cancel(&counter->hw.hrtimer);
3859         task_clock_perf_counter_update(counter, counter->ctx->time);
3860
3861 }
3862
3863 static void task_clock_perf_counter_read(struct perf_counter *counter)
3864 {
3865         u64 time;
3866
3867         if (!in_nmi()) {
3868                 update_context_time(counter->ctx);
3869                 time = counter->ctx->time;
3870         } else {
3871                 u64 now = perf_clock();
3872                 u64 delta = now - counter->ctx->timestamp;
3873                 time = counter->ctx->time + delta;
3874         }
3875
3876         task_clock_perf_counter_update(counter, time);
3877 }
3878
3879 static const struct pmu perf_ops_task_clock = {
3880         .enable         = task_clock_perf_counter_enable,
3881         .disable        = task_clock_perf_counter_disable,
3882         .read           = task_clock_perf_counter_read,
3883 };
3884
3885 #ifdef CONFIG_EVENT_PROFILE
3886 void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record,
3887                           int entry_size)
3888 {
3889         struct perf_raw_record raw = {
3890                 .size = entry_size,
3891                 .data = record,
3892         };
3893
3894         struct perf_sample_data data = {
3895                 .regs = get_irq_regs(),
3896                 .addr = addr,
3897                 .raw = &raw,
3898         };
3899
3900         if (!data.regs)
3901                 data.regs = task_pt_regs(current);
3902
3903         do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, &data);
3904 }
3905 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3906
3907 extern int ftrace_profile_enable(int);
3908 extern void ftrace_profile_disable(int);
3909
3910 static void tp_perf_counter_destroy(struct perf_counter *counter)
3911 {
3912         ftrace_profile_disable(counter->attr.config);
3913 }
3914
3915 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3916 {
3917         /*
3918          * Raw tracepoint data is a severe data leak, only allow root to
3919          * have these.
3920          */
3921         if ((counter->attr.sample_type & PERF_SAMPLE_RAW) &&
3922                         !capable(CAP_SYS_ADMIN))
3923                 return ERR_PTR(-EPERM);
3924
3925         if (ftrace_profile_enable(counter->attr.config))
3926                 return NULL;
3927
3928         counter->destroy = tp_perf_counter_destroy;
3929
3930         return &perf_ops_generic;
3931 }
3932 #else
3933 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3934 {
3935         return NULL;
3936 }
3937 #endif
3938
3939 atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
3940
3941 static void sw_perf_counter_destroy(struct perf_counter *counter)
3942 {
3943         u64 event = counter->attr.config;
3944
3945         WARN_ON(counter->parent);
3946
3947         atomic_dec(&perf_swcounter_enabled[event]);
3948 }
3949
3950 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3951 {
3952         const struct pmu *pmu = NULL;
3953         u64 event = counter->attr.config;
3954
3955         /*
3956          * Software counters (currently) can't in general distinguish
3957          * between user, kernel and hypervisor events.
3958          * However, context switches and cpu migrations are considered
3959          * to be kernel events, and page faults are never hypervisor
3960          * events.
3961          */
3962         switch (event) {
3963         case PERF_COUNT_SW_CPU_CLOCK:
3964                 pmu = &perf_ops_cpu_clock;
3965
3966                 break;
3967         case PERF_COUNT_SW_TASK_CLOCK:
3968                 /*
3969                  * If the user instantiates this as a per-cpu counter,
3970                  * use the cpu_clock counter instead.
3971                  */
3972                 if (counter->ctx->task)
3973                         pmu = &perf_ops_task_clock;
3974                 else
3975                         pmu = &perf_ops_cpu_clock;
3976
3977                 break;
3978         case PERF_COUNT_SW_PAGE_FAULTS:
3979         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
3980         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
3981         case PERF_COUNT_SW_CONTEXT_SWITCHES:
3982         case PERF_COUNT_SW_CPU_MIGRATIONS:
3983                 if (!counter->parent) {
3984                         atomic_inc(&perf_swcounter_enabled[event]);
3985                         counter->destroy = sw_perf_counter_destroy;
3986                 }
3987                 pmu = &perf_ops_generic;
3988                 break;
3989         }
3990
3991         return pmu;
3992 }
3993
3994 /*
3995  * Allocate and initialize a counter structure
3996  */
3997 static struct perf_counter *
3998 perf_counter_alloc(struct perf_counter_attr *attr,
3999                    int cpu,
4000                    struct perf_counter_context *ctx,
4001                    struct perf_counter *group_leader,
4002                    struct perf_counter *parent_counter,
4003                    gfp_t gfpflags)
4004 {
4005         const struct pmu *pmu;
4006         struct perf_counter *counter;
4007         struct hw_perf_counter *hwc;
4008         long err;
4009
4010         counter = kzalloc(sizeof(*counter), gfpflags);
4011         if (!counter)
4012                 return ERR_PTR(-ENOMEM);
4013
4014         /*
4015          * Single counters are their own group leaders, with an
4016          * empty sibling list:
4017          */
4018         if (!group_leader)
4019                 group_leader = counter;
4020
4021         mutex_init(&counter->child_mutex);
4022         INIT_LIST_HEAD(&counter->child_list);
4023
4024         INIT_LIST_HEAD(&counter->list_entry);
4025         INIT_LIST_HEAD(&counter->event_entry);
4026         INIT_LIST_HEAD(&counter->sibling_list);
4027         init_waitqueue_head(&counter->waitq);
4028
4029         mutex_init(&counter->mmap_mutex);
4030
4031         counter->cpu            = cpu;
4032         counter->attr           = *attr;
4033         counter->group_leader   = group_leader;
4034         counter->pmu            = NULL;
4035         counter->ctx            = ctx;
4036         counter->oncpu          = -1;
4037
4038         counter->parent         = parent_counter;
4039
4040         counter->ns             = get_pid_ns(current->nsproxy->pid_ns);
4041         counter->id             = atomic64_inc_return(&perf_counter_id);
4042
4043         counter->state          = PERF_COUNTER_STATE_INACTIVE;
4044
4045         if (attr->disabled)
4046                 counter->state = PERF_COUNTER_STATE_OFF;
4047
4048         pmu = NULL;
4049
4050         hwc = &counter->hw;
4051         hwc->sample_period = attr->sample_period;
4052         if (attr->freq && attr->sample_freq)
4053                 hwc->sample_period = 1;
4054
4055         atomic64_set(&hwc->period_left, hwc->sample_period);
4056
4057         /*
4058          * we currently do not support PERF_FORMAT_GROUP on inherited counters
4059          */
4060         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4061                 goto done;
4062
4063         switch (attr->type) {
4064         case PERF_TYPE_RAW:
4065         case PERF_TYPE_HARDWARE:
4066         case PERF_TYPE_HW_CACHE:
4067                 pmu = hw_perf_counter_init(counter);
4068                 break;
4069
4070         case PERF_TYPE_SOFTWARE:
4071                 pmu = sw_perf_counter_init(counter);
4072                 break;
4073
4074         case PERF_TYPE_TRACEPOINT:
4075                 pmu = tp_perf_counter_init(counter);
4076                 break;
4077
4078         default:
4079                 break;
4080         }
4081 done:
4082         err = 0;
4083         if (!pmu)
4084                 err = -EINVAL;
4085         else if (IS_ERR(pmu))
4086                 err = PTR_ERR(pmu);
4087
4088         if (err) {
4089                 if (counter->ns)
4090                         put_pid_ns(counter->ns);
4091                 kfree(counter);
4092                 return ERR_PTR(err);
4093         }
4094
4095         counter->pmu = pmu;
4096
4097         if (!counter->parent) {
4098                 atomic_inc(&nr_counters);
4099                 if (counter->attr.mmap)
4100                         atomic_inc(&nr_mmap_counters);
4101                 if (counter->attr.comm)
4102                         atomic_inc(&nr_comm_counters);
4103                 if (counter->attr.task)
4104                         atomic_inc(&nr_task_counters);
4105         }
4106
4107         return counter;
4108 }
4109
4110 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
4111                           struct perf_counter_attr *attr)
4112 {
4113         int ret;
4114         u32 size;
4115
4116         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4117                 return -EFAULT;
4118
4119         /*
4120          * zero the full structure, so that a short copy will be nice.
4121          */
4122         memset(attr, 0, sizeof(*attr));
4123
4124         ret = get_user(size, &uattr->size);
4125         if (ret)
4126                 return ret;
4127
4128         if (size > PAGE_SIZE)   /* silly large */
4129                 goto err_size;
4130
4131         if (!size)              /* abi compat */
4132                 size = PERF_ATTR_SIZE_VER0;
4133
4134         if (size < PERF_ATTR_SIZE_VER0)
4135                 goto err_size;
4136
4137         /*
4138          * If we're handed a bigger struct than we know of,
4139          * ensure all the unknown bits are 0.
4140          */
4141         if (size > sizeof(*attr)) {
4142                 unsigned long val;
4143                 unsigned long __user *addr;
4144                 unsigned long __user *end;
4145
4146                 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
4147                                 sizeof(unsigned long));
4148                 end  = PTR_ALIGN((void __user *)uattr + size,
4149                                 sizeof(unsigned long));
4150
4151                 for (; addr < end; addr += sizeof(unsigned long)) {
4152                         ret = get_user(val, addr);
4153                         if (ret)
4154                                 return ret;
4155                         if (val)
4156                                 goto err_size;
4157                 }
4158         }
4159
4160         ret = copy_from_user(attr, uattr, size);
4161         if (ret)
4162                 return -EFAULT;
4163
4164         /*
4165          * If the type exists, the corresponding creation will verify
4166          * the attr->config.
4167          */
4168         if (attr->type >= PERF_TYPE_MAX)
4169                 return -EINVAL;
4170
4171         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4172                 return -EINVAL;
4173
4174         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4175                 return -EINVAL;
4176
4177         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4178                 return -EINVAL;
4179
4180 out:
4181         return ret;
4182
4183 err_size:
4184         put_user(sizeof(*attr), &uattr->size);
4185         ret = -E2BIG;
4186         goto out;
4187 }
4188
4189 /**
4190  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
4191  *
4192  * @attr_uptr:  event type attributes for monitoring/sampling
4193  * @pid:                target pid
4194  * @cpu:                target cpu
4195  * @group_fd:           group leader counter fd
4196  */
4197 SYSCALL_DEFINE5(perf_counter_open,
4198                 struct perf_counter_attr __user *, attr_uptr,
4199                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4200 {
4201         struct perf_counter *counter, *group_leader;
4202         struct perf_counter_attr attr;
4203         struct perf_counter_context *ctx;
4204         struct file *counter_file = NULL;
4205         struct file *group_file = NULL;
4206         int fput_needed = 0;
4207         int fput_needed2 = 0;
4208         int ret;
4209
4210         /* for future expandability... */
4211         if (flags)
4212                 return -EINVAL;
4213
4214         ret = perf_copy_attr(attr_uptr, &attr);
4215         if (ret)
4216                 return ret;
4217
4218         if (!attr.exclude_kernel) {
4219                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4220                         return -EACCES;
4221         }
4222
4223         if (attr.freq) {
4224                 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
4225                         return -EINVAL;
4226         }
4227
4228         /*
4229          * Get the target context (task or percpu):
4230          */
4231         ctx = find_get_context(pid, cpu);
4232         if (IS_ERR(ctx))
4233                 return PTR_ERR(ctx);
4234
4235         /*
4236          * Look up the group leader (we will attach this counter to it):
4237          */
4238         group_leader = NULL;
4239         if (group_fd != -1) {
4240                 ret = -EINVAL;
4241                 group_file = fget_light(group_fd, &fput_needed);
4242                 if (!group_file)
4243                         goto err_put_context;
4244                 if (group_file->f_op != &perf_fops)
4245                         goto err_put_context;
4246
4247                 group_leader = group_file->private_data;
4248                 /*
4249                  * Do not allow a recursive hierarchy (this new sibling
4250                  * becoming part of another group-sibling):
4251                  */
4252                 if (group_leader->group_leader != group_leader)
4253                         goto err_put_context;
4254                 /*
4255                  * Do not allow to attach to a group in a different
4256                  * task or CPU context:
4257                  */
4258                 if (group_leader->ctx != ctx)
4259                         goto err_put_context;
4260                 /*
4261                  * Only a group leader can be exclusive or pinned
4262                  */
4263                 if (attr.exclusive || attr.pinned)
4264                         goto err_put_context;
4265         }
4266
4267         counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4268                                      NULL, GFP_KERNEL);
4269         ret = PTR_ERR(counter);
4270         if (IS_ERR(counter))
4271                 goto err_put_context;
4272
4273         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
4274         if (ret < 0)
4275                 goto err_free_put_context;
4276
4277         counter_file = fget_light(ret, &fput_needed2);
4278         if (!counter_file)
4279                 goto err_free_put_context;
4280
4281         counter->filp = counter_file;
4282         WARN_ON_ONCE(ctx->parent_ctx);
4283         mutex_lock(&ctx->mutex);
4284         perf_install_in_context(ctx, counter, cpu);
4285         ++ctx->generation;
4286         mutex_unlock(&ctx->mutex);
4287
4288         counter->owner = current;
4289         get_task_struct(current);
4290         mutex_lock(&current->perf_counter_mutex);
4291         list_add_tail(&counter->owner_entry, &current->perf_counter_list);
4292         mutex_unlock(&current->perf_counter_mutex);
4293
4294         fput_light(counter_file, fput_needed2);
4295
4296 out_fput:
4297         fput_light(group_file, fput_needed);
4298
4299         return ret;
4300
4301 err_free_put_context:
4302         kfree(counter);
4303
4304 err_put_context:
4305         put_ctx(ctx);
4306
4307         goto out_fput;
4308 }
4309
4310 /*
4311  * inherit a counter from parent task to child task:
4312  */
4313 static struct perf_counter *
4314 inherit_counter(struct perf_counter *parent_counter,
4315               struct task_struct *parent,
4316               struct perf_counter_context *parent_ctx,
4317               struct task_struct *child,
4318               struct perf_counter *group_leader,
4319               struct perf_counter_context *child_ctx)
4320 {
4321         struct perf_counter *child_counter;
4322
4323         /*
4324          * Instead of creating recursive hierarchies of counters,
4325          * we link inherited counters back to the original parent,
4326          * which has a filp for sure, which we use as the reference
4327          * count:
4328          */
4329         if (parent_counter->parent)
4330                 parent_counter = parent_counter->parent;
4331
4332         child_counter = perf_counter_alloc(&parent_counter->attr,
4333                                            parent_counter->cpu, child_ctx,
4334                                            group_leader, parent_counter,
4335                                            GFP_KERNEL);
4336         if (IS_ERR(child_counter))
4337                 return child_counter;
4338         get_ctx(child_ctx);
4339
4340         /*
4341          * Make the child state follow the state of the parent counter,
4342          * not its attr.disabled bit.  We hold the parent's mutex,
4343          * so we won't race with perf_counter_{en, dis}able_family.
4344          */
4345         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
4346                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
4347         else
4348                 child_counter->state = PERF_COUNTER_STATE_OFF;
4349
4350         if (parent_counter->attr.freq)
4351                 child_counter->hw.sample_period = parent_counter->hw.sample_period;
4352
4353         /*
4354          * Link it up in the child's context:
4355          */
4356         add_counter_to_ctx(child_counter, child_ctx);
4357
4358         /*
4359          * Get a reference to the parent filp - we will fput it
4360          * when the child counter exits. This is safe to do because
4361          * we are in the parent and we know that the filp still
4362          * exists and has a nonzero count:
4363          */
4364         atomic_long_inc(&parent_counter->filp->f_count);
4365
4366         /*
4367          * Link this into the parent counter's child list
4368          */
4369         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4370         mutex_lock(&parent_counter->child_mutex);
4371         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4372         mutex_unlock(&parent_counter->child_mutex);
4373
4374         return child_counter;
4375 }
4376
4377 static int inherit_group(struct perf_counter *parent_counter,
4378               struct task_struct *parent,
4379               struct perf_counter_context *parent_ctx,
4380               struct task_struct *child,
4381               struct perf_counter_context *child_ctx)
4382 {
4383         struct perf_counter *leader;
4384         struct perf_counter *sub;
4385         struct perf_counter *child_ctr;
4386
4387         leader = inherit_counter(parent_counter, parent, parent_ctx,
4388                                  child, NULL, child_ctx);
4389         if (IS_ERR(leader))
4390                 return PTR_ERR(leader);
4391         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4392                 child_ctr = inherit_counter(sub, parent, parent_ctx,
4393                                             child, leader, child_ctx);
4394                 if (IS_ERR(child_ctr))
4395                         return PTR_ERR(child_ctr);
4396         }
4397         return 0;
4398 }
4399
4400 static void sync_child_counter(struct perf_counter *child_counter,
4401                                struct task_struct *child)
4402 {
4403         struct perf_counter *parent_counter = child_counter->parent;
4404         u64 child_val;
4405
4406         if (child_counter->attr.inherit_stat)
4407                 perf_counter_read_event(child_counter, child);
4408
4409         child_val = atomic64_read(&child_counter->count);
4410
4411         /*
4412          * Add back the child's count to the parent's count:
4413          */
4414         atomic64_add(child_val, &parent_counter->count);
4415         atomic64_add(child_counter->total_time_enabled,
4416                      &parent_counter->child_total_time_enabled);
4417         atomic64_add(child_counter->total_time_running,
4418                      &parent_counter->child_total_time_running);
4419
4420         /*
4421          * Remove this counter from the parent's list
4422          */
4423         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4424         mutex_lock(&parent_counter->child_mutex);
4425         list_del_init(&child_counter->child_list);
4426         mutex_unlock(&parent_counter->child_mutex);
4427
4428         /*
4429          * Release the parent counter, if this was the last
4430          * reference to it.
4431          */
4432         fput(parent_counter->filp);
4433 }
4434
4435 static void
4436 __perf_counter_exit_task(struct perf_counter *child_counter,
4437                          struct perf_counter_context *child_ctx,
4438                          struct task_struct *child)
4439 {
4440         struct perf_counter *parent_counter;
4441
4442         update_counter_times(child_counter);
4443         perf_counter_remove_from_context(child_counter);
4444
4445         parent_counter = child_counter->parent;
4446         /*
4447          * It can happen that parent exits first, and has counters
4448          * that are still around due to the child reference. These
4449          * counters need to be zapped - but otherwise linger.
4450          */
4451         if (parent_counter) {
4452                 sync_child_counter(child_counter, child);
4453                 free_counter(child_counter);
4454         }
4455 }
4456
4457 /*
4458  * When a child task exits, feed back counter values to parent counters.
4459  */
4460 void perf_counter_exit_task(struct task_struct *child)
4461 {
4462         struct perf_counter *child_counter, *tmp;
4463         struct perf_counter_context *child_ctx;
4464         unsigned long flags;
4465
4466         if (likely(!child->perf_counter_ctxp)) {
4467                 perf_counter_task(child, NULL, 0);
4468                 return;
4469         }
4470
4471         local_irq_save(flags);
4472         /*
4473          * We can't reschedule here because interrupts are disabled,
4474          * and either child is current or it is a task that can't be
4475          * scheduled, so we are now safe from rescheduling changing
4476          * our context.
4477          */
4478         child_ctx = child->perf_counter_ctxp;
4479         __perf_counter_task_sched_out(child_ctx);
4480
4481         /*
4482          * Take the context lock here so that if find_get_context is
4483          * reading child->perf_counter_ctxp, we wait until it has
4484          * incremented the context's refcount before we do put_ctx below.
4485          */
4486         spin_lock(&child_ctx->lock);
4487         child->perf_counter_ctxp = NULL;
4488         /*
4489          * If this context is a clone; unclone it so it can't get
4490          * swapped to another process while we're removing all
4491          * the counters from it.
4492          */
4493         unclone_ctx(child_ctx);
4494         spin_unlock_irqrestore(&child_ctx->lock, flags);
4495
4496         /*
4497          * Report the task dead after unscheduling the counters so that we
4498          * won't get any samples after PERF_EVENT_EXIT. We can however still
4499          * get a few PERF_EVENT_READ events.
4500          */
4501         perf_counter_task(child, child_ctx, 0);
4502
4503         /*
4504          * We can recurse on the same lock type through:
4505          *
4506          *   __perf_counter_exit_task()
4507          *     sync_child_counter()
4508          *       fput(parent_counter->filp)
4509          *         perf_release()
4510          *           mutex_lock(&ctx->mutex)
4511          *
4512          * But since its the parent context it won't be the same instance.
4513          */
4514         mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4515
4516 again:
4517         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4518                                  list_entry)
4519                 __perf_counter_exit_task(child_counter, child_ctx, child);
4520
4521         /*
4522          * If the last counter was a group counter, it will have appended all
4523          * its siblings to the list, but we obtained 'tmp' before that which
4524          * will still point to the list head terminating the iteration.
4525          */
4526         if (!list_empty(&child_ctx->counter_list))
4527                 goto again;
4528
4529         mutex_unlock(&child_ctx->mutex);
4530
4531         put_ctx(child_ctx);
4532 }
4533
4534 /*
4535  * free an unexposed, unused context as created by inheritance by
4536  * init_task below, used by fork() in case of fail.
4537  */
4538 void perf_counter_free_task(struct task_struct *task)
4539 {
4540         struct perf_counter_context *ctx = task->perf_counter_ctxp;
4541         struct perf_counter *counter, *tmp;
4542
4543         if (!ctx)
4544                 return;
4545
4546         mutex_lock(&ctx->mutex);
4547 again:
4548         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4549                 struct perf_counter *parent = counter->parent;
4550
4551                 if (WARN_ON_ONCE(!parent))
4552                         continue;
4553
4554                 mutex_lock(&parent->child_mutex);
4555                 list_del_init(&counter->child_list);
4556                 mutex_unlock(&parent->child_mutex);
4557
4558                 fput(parent->filp);
4559
4560                 list_del_counter(counter, ctx);
4561                 free_counter(counter);
4562         }
4563
4564         if (!list_empty(&ctx->counter_list))
4565                 goto again;
4566
4567         mutex_unlock(&ctx->mutex);
4568
4569         put_ctx(ctx);
4570 }
4571
4572 /*
4573  * Initialize the perf_counter context in task_struct
4574  */
4575 int perf_counter_init_task(struct task_struct *child)
4576 {
4577         struct perf_counter_context *child_ctx, *parent_ctx;
4578         struct perf_counter_context *cloned_ctx;
4579         struct perf_counter *counter;
4580         struct task_struct *parent = current;
4581         int inherited_all = 1;
4582         int ret = 0;
4583
4584         child->perf_counter_ctxp = NULL;
4585
4586         mutex_init(&child->perf_counter_mutex);
4587         INIT_LIST_HEAD(&child->perf_counter_list);
4588
4589         if (likely(!parent->perf_counter_ctxp))
4590                 return 0;
4591
4592         /*
4593          * This is executed from the parent task context, so inherit
4594          * counters that have been marked for cloning.
4595          * First allocate and initialize a context for the child.
4596          */
4597
4598         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4599         if (!child_ctx)
4600                 return -ENOMEM;
4601
4602         __perf_counter_init_context(child_ctx, child);
4603         child->perf_counter_ctxp = child_ctx;
4604         get_task_struct(child);
4605
4606         /*
4607          * If the parent's context is a clone, pin it so it won't get
4608          * swapped under us.
4609          */
4610         parent_ctx = perf_pin_task_context(parent);
4611
4612         /*
4613          * No need to check if parent_ctx != NULL here; since we saw
4614          * it non-NULL earlier, the only reason for it to become NULL
4615          * is if we exit, and since we're currently in the middle of
4616          * a fork we can't be exiting at the same time.
4617          */
4618
4619         /*
4620          * Lock the parent list. No need to lock the child - not PID
4621          * hashed yet and not running, so nobody can access it.
4622          */
4623         mutex_lock(&parent_ctx->mutex);
4624
4625         /*
4626          * We dont have to disable NMIs - we are only looking at
4627          * the list, not manipulating it:
4628          */
4629         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4630                 if (counter != counter->group_leader)
4631                         continue;
4632
4633                 if (!counter->attr.inherit) {
4634                         inherited_all = 0;
4635                         continue;
4636                 }
4637
4638                 ret = inherit_group(counter, parent, parent_ctx,
4639                                              child, child_ctx);
4640                 if (ret) {
4641                         inherited_all = 0;
4642                         break;
4643                 }
4644         }
4645
4646         if (inherited_all) {
4647                 /*
4648                  * Mark the child context as a clone of the parent
4649                  * context, or of whatever the parent is a clone of.
4650                  * Note that if the parent is a clone, it could get
4651                  * uncloned at any point, but that doesn't matter
4652                  * because the list of counters and the generation
4653                  * count can't have changed since we took the mutex.
4654                  */
4655                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4656                 if (cloned_ctx) {
4657                         child_ctx->parent_ctx = cloned_ctx;
4658                         child_ctx->parent_gen = parent_ctx->parent_gen;
4659                 } else {
4660                         child_ctx->parent_ctx = parent_ctx;
4661                         child_ctx->parent_gen = parent_ctx->generation;
4662                 }
4663                 get_ctx(child_ctx->parent_ctx);
4664         }
4665
4666         mutex_unlock(&parent_ctx->mutex);
4667
4668         perf_unpin_context(parent_ctx);
4669
4670         return ret;
4671 }
4672
4673 static void __cpuinit perf_counter_init_cpu(int cpu)
4674 {
4675         struct perf_cpu_context *cpuctx;
4676
4677         cpuctx = &per_cpu(perf_cpu_context, cpu);
4678         __perf_counter_init_context(&cpuctx->ctx, NULL);
4679
4680         spin_lock(&perf_resource_lock);
4681         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4682         spin_unlock(&perf_resource_lock);
4683
4684         hw_perf_counter_setup(cpu);
4685 }
4686
4687 #ifdef CONFIG_HOTPLUG_CPU
4688 static void __perf_counter_exit_cpu(void *info)
4689 {
4690         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4691         struct perf_counter_context *ctx = &cpuctx->ctx;
4692         struct perf_counter *counter, *tmp;
4693
4694         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4695                 __perf_counter_remove_from_context(counter);
4696 }
4697 static void perf_counter_exit_cpu(int cpu)
4698 {
4699         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4700         struct perf_counter_context *ctx = &cpuctx->ctx;
4701
4702         mutex_lock(&ctx->mutex);
4703         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4704         mutex_unlock(&ctx->mutex);
4705 }
4706 #else
4707 static inline void perf_counter_exit_cpu(int cpu) { }
4708 #endif
4709
4710 static int __cpuinit
4711 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4712 {
4713         unsigned int cpu = (long)hcpu;
4714
4715         switch (action) {
4716
4717         case CPU_UP_PREPARE:
4718         case CPU_UP_PREPARE_FROZEN:
4719                 perf_counter_init_cpu(cpu);
4720                 break;
4721
4722         case CPU_ONLINE:
4723         case CPU_ONLINE_FROZEN:
4724                 hw_perf_counter_setup_online(cpu);
4725                 break;
4726
4727         case CPU_DOWN_PREPARE:
4728         case CPU_DOWN_PREPARE_FROZEN:
4729                 perf_counter_exit_cpu(cpu);
4730                 break;
4731
4732         default:
4733                 break;
4734         }
4735
4736         return NOTIFY_OK;
4737 }
4738
4739 /*
4740  * This has to have a higher priority than migration_notifier in sched.c.
4741  */
4742 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4743         .notifier_call          = perf_cpu_notify,
4744         .priority               = 20,
4745 };
4746
4747 void __init perf_counter_init(void)
4748 {
4749         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4750                         (void *)(long)smp_processor_id());
4751         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
4752                         (void *)(long)smp_processor_id());
4753         register_cpu_notifier(&perf_cpu_nb);
4754 }
4755
4756 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4757 {
4758         return sprintf(buf, "%d\n", perf_reserved_percpu);
4759 }
4760
4761 static ssize_t
4762 perf_set_reserve_percpu(struct sysdev_class *class,
4763                         const char *buf,
4764                         size_t count)
4765 {
4766         struct perf_cpu_context *cpuctx;
4767         unsigned long val;
4768         int err, cpu, mpt;
4769
4770         err = strict_strtoul(buf, 10, &val);
4771         if (err)
4772                 return err;
4773         if (val > perf_max_counters)
4774                 return -EINVAL;
4775
4776         spin_lock(&perf_resource_lock);
4777         perf_reserved_percpu = val;
4778         for_each_online_cpu(cpu) {
4779                 cpuctx = &per_cpu(perf_cpu_context, cpu);
4780                 spin_lock_irq(&cpuctx->ctx.lock);
4781                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4782                           perf_max_counters - perf_reserved_percpu);
4783                 cpuctx->max_pertask = mpt;
4784                 spin_unlock_irq(&cpuctx->ctx.lock);
4785         }
4786         spin_unlock(&perf_resource_lock);
4787
4788         return count;
4789 }
4790
4791 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4792 {
4793         return sprintf(buf, "%d\n", perf_overcommit);
4794 }
4795
4796 static ssize_t
4797 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4798 {
4799         unsigned long val;
4800         int err;
4801
4802         err = strict_strtoul(buf, 10, &val);
4803         if (err)
4804                 return err;
4805         if (val > 1)
4806                 return -EINVAL;
4807
4808         spin_lock(&perf_resource_lock);
4809         perf_overcommit = val;
4810         spin_unlock(&perf_resource_lock);
4811
4812         return count;
4813 }
4814
4815 static SYSDEV_CLASS_ATTR(
4816                                 reserve_percpu,
4817                                 0644,
4818                                 perf_show_reserve_percpu,
4819                                 perf_set_reserve_percpu
4820                         );
4821
4822 static SYSDEV_CLASS_ATTR(
4823                                 overcommit,
4824                                 0644,
4825                                 perf_show_overcommit,
4826                                 perf_set_overcommit
4827                         );
4828
4829 static struct attribute *perfclass_attrs[] = {
4830         &attr_reserve_percpu.attr,
4831         &attr_overcommit.attr,
4832         NULL
4833 };
4834
4835 static struct attribute_group perfclass_attr_group = {
4836         .attrs                  = perfclass_attrs,
4837         .name                   = "perf_counters",
4838 };
4839
4840 static int __init perf_counter_sysfs_init(void)
4841 {
4842         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4843                                   &perfclass_attr_group);
4844 }
4845 device_initcall(perf_counter_sysfs_init);