s->s_flags = MS_NOUSER;
s->s_maxbytes = ~0ULL;
- s->s_blocksize = 1024;
- s->s_blocksize_bits = 10;
+ s->s_blocksize = PAGE_SIZE;
+ s->s_blocksize_bits = PAGE_SHIFT;
s->s_magic = magic;
s->s_op = ops ? ops : &simple_super_operations;
s->s_time_gran = 1;
mntput(mnt);
}
+/**
+ * simple_read_from_buffer - copy data from the buffer to user space
+ * @to: the user space buffer to read to
+ * @count: the maximum number of bytes to read
+ * @ppos: the current position in the buffer
+ * @from: the buffer to read from
+ * @available: the size of the buffer
+ *
+ * The simple_read_from_buffer() function reads up to @count bytes from the
+ * buffer @from at offset @ppos into the user space address starting at @to.
+ *
+ * On success, the number of bytes read is returned and the offset @ppos is
+ * advanced by this number, or negative value is returned on error.
+ **/
ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
const void *from, size_t available)
{
return count;
}
+/**
+ * memory_read_from_buffer - copy data from the buffer
+ * @to: the kernel space buffer to read to
+ * @count: the maximum number of bytes to read
+ * @ppos: the current position in the buffer
+ * @from: the buffer to read from
+ * @available: the size of the buffer
+ *
+ * The memory_read_from_buffer() function reads up to @count bytes from the
+ * buffer @from at offset @ppos into the kernel space address starting at @to.
+ *
+ * On success, the number of bytes read is returned and the offset @ppos is
+ * advanced by this number, or negative value is returned on error.
+ **/
ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
const void *from, size_t available)
{