* counting on behalf of references from different
* cgroups
*/
- if (mem_cont && !vm_match_cgroup(vma->vm_mm, mem_cont))
+ if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
continue;
referenced += page_referenced_one(page, vma, &mapcount);
if (!mapcount)
/**
* page_referenced_file - referenced check for object-based rmap
* @page: the page we're checking references on.
+ * @mem_cont: target memory controller
*
* For an object-based mapped page, find all the places it is mapped and
* check/clear the referenced flag. This is done by following the page->mapping
* counting on behalf of references from different
* cgroups
*/
- if (mem_cont && !vm_match_cgroup(vma->vm_mm, mem_cont))
+ if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
continue;
if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
== (VM_LOCKED|VM_MAYSHARE)) {
* page_referenced - test if the page was referenced
* @page: the page to test
* @is_locked: caller holds lock on the page
+ * @mem_cont: target memory controller
*
* Quick test_and_clear_referenced for all mappings to a page,
* returns the number of ptes which referenced the page.
{
int referenced = 0;
- if (page_test_and_clear_young(page))
- referenced++;
-
if (TestClearPageReferenced(page))
referenced++;
unlock_page(page);
}
}
+
+ if (page_test_and_clear_young(page))
+ referenced++;
+
return referenced;
}
EXPORT_SYMBOL_GPL(page_mkclean);
/**
- * page_set_anon_rmap - setup new anonymous rmap
+ * __page_set_anon_rmap - setup new anonymous rmap
* @page: the page to add the mapping to
* @vma: the vm area in which the mapping is added
* @address: the user virtual address mapped
}
/**
- * page_set_anon_rmap - sanity check anonymous rmap addition
+ * __page_check_anon_rmap - sanity check anonymous rmap addition
* @page: the page to add the mapping to
* @vma: the vm area in which the mapping is added
* @address: the user virtual address mapped
}
}
-/*
+/**
* page_add_new_anon_rmap - add pte mapping to a new anonymous page
* @page: the page to add the mapping to
* @vma: the vm area in which the mapping is added
/**
* page_dup_rmap - duplicate pte mapping to a page
* @page: the page to add the mapping to
+ * @vma: the vm area being duplicated
+ * @address: the user virtual address mapped
*
* For copy_page_range only: minimal extract from page_add_file_rmap /
* page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
/**
* page_remove_rmap - take down pte mapping from a page
* @page: page to remove mapping from
+ * @vma: the vm area in which the mapping is removed
*
* The caller needs to hold the pte lock.
*/
printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
if (vma->vm_ops) {
- print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
}
if (vma->vm_file && vma->vm_file->f_op)
/**
* try_to_unmap_file - unmap file page using the object-based rmap method
* @page: the page to unmap
+ * @migration: migration flag
*
* Find all the mappings of a page using the mapping pointer and the vma chains
* contained in the address_space struct it points to.
/**
* try_to_unmap - try to remove all page table mappings to a page
* @page: the page to get unmapped
+ * @migration: migration flag
*
* Tries to remove all the page table entries which are mapping this
* page, used in the pageout path. Caller must hold the page lock.