/* Internal SLUB flags */
#define __OBJECT_POISON 0x80000000 /* Poison object */
#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
+#define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
+#define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
/* Not all arches define cache_line_size */
#ifndef cache_line_size
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
+
#else
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
{
kfree(s);
}
+
#endif
+static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
+{
+#ifdef CONFIG_SLUB_STATS
+ c->stat[si]++;
+#endif
+}
+
/********************************************************************
* Core slab cache functions
*******************************************************************/
#endif
}
+/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
struct page *page, const void *object)
{
* A. Free pointer (if we cannot overwrite object on free)
* B. Tracking data for SLAB_STORE_USER
* C. Padding to reach required alignment boundary or at mininum
- * one word if debuggin is on to be able to detect writes
+ * one word if debugging is on to be able to detect writes
* before the word boundary.
*
* Padding is done using 0x5a (POISON_INUSE)
endobject, red, s->inuse - s->objsize))
return 0;
} else {
- if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
- check_bytes_and_report(s, page, p, "Alignment padding", endobject,
- POISON_INUSE, s->inuse - s->objsize);
+ if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
+ check_bytes_and_report(s, page, p, "Alignment padding",
+ endobject, POISON_INUSE, s->inuse - s->objsize);
+ }
}
if (s->flags & SLAB_POISON) {
if (!check_slab(s, page))
goto bad;
- if (object && !on_freelist(s, page, object)) {
+ if (!on_freelist(s, page, object)) {
object_err(s, page, object, "Object already allocated");
goto bad;
}
goto bad;
}
- if (object && !check_object(s, page, object, 0))
+ if (!check_object(s, page, object, 0))
goto bad;
/* Success perform special debug activities for allocs */
return 0;
if (unlikely(s != page->slab)) {
- if (!PageSlab(page))
+ if (!PageSlab(page)) {
slab_err(s, page, "Attempt to free object(0x%p) "
"outside of slab", object);
- else
- if (!page->slab) {
+ } else if (!page->slab) {
printk(KERN_ERR
"SLUB <none>: no slab for object 0x%p.\n",
object);
void (*ctor)(struct kmem_cache *, void *))
{
/*
- * The page->offset field is only 16 bit wide. This is an offset
- * in units of words from the beginning of an object. If the slab
- * size is bigger then we cannot move the free pointer behind the
- * object anymore.
- *
- * On 32 bit platforms the limit is 256k. On 64bit platforms
- * the limit is 512k.
- *
- * Debugging or ctor may create a need to move the free
- * pointer. Fail if this happens.
+ * Enable debugging if selected on the kernel commandline.
*/
- if (objsize >= 65535 * sizeof(void *)) {
- BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
- SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
- BUG_ON(ctor);
- } else {
- /*
- * Enable debugging if selected on the kernel commandline.
- */
- if (slub_debug && (!slub_debug_slabs ||
- strncmp(slub_debug_slabs, name,
- strlen(slub_debug_slabs)) == 0))
- flags |= slub_debug;
- }
+ if (slub_debug && (!slub_debug_slabs ||
+ strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
+ flags |= slub_debug;
return flags;
}
struct page *page;
int pages = 1 << s->order;
- if (s->order)
- flags |= __GFP_COMP;
-
- if (s->flags & SLAB_CACHE_DMA)
- flags |= SLUB_DMA;
-
- if (s->flags & SLAB_RECLAIM_ACCOUNT)
- flags |= __GFP_RECLAIMABLE;
+ flags |= s->allocflags;
if (node == -1)
page = alloc_pages(flags, s->order);
static __always_inline void slab_unlock(struct page *page)
{
- bit_spin_unlock(PG_locked, &page->flags);
+ __bit_spin_unlock(PG_locked, &page->flags);
}
static __always_inline int slab_trylock(struct page *page)
* may return off node objects because partial slabs are obtained
* from other nodes and filled up.
*
- * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
+ * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
* defrag_ratio = 1000) then every (well almost) allocation will
* first attempt to defrag slab caches on other nodes. This means
* scanning over all nodes to look for partial slabs which may be
get_cycles() % 1024 > s->remote_node_defrag_ratio)
return NULL;
- zonelist = &NODE_DATA(slab_node(current->mempolicy))
- ->node_zonelists[gfp_zone(flags)];
+ zonelist = &NODE_DATA(
+ slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
for (z = zonelist->zones; *z; z++) {
struct kmem_cache_node *n;
static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
{
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
+ struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
ClearSlabFrozen(page);
if (page->inuse) {
- if (page->freelist)
+ if (page->freelist) {
add_partial(n, page, tail);
- else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
- add_full(n, page);
+ stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
+ } else {
+ stat(c, DEACTIVATE_FULL);
+ if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
+ add_full(n, page);
+ }
slab_unlock(page);
-
} else {
+ stat(c, DEACTIVATE_EMPTY);
if (n->nr_partial < MIN_PARTIAL) {
/*
* Adding an empty slab to the partial slabs in order
* to avoid page allocator overhead. This slab needs
* to come after the other slabs with objects in
- * order to fill them up. That way the size of the
- * partial list stays small. kmem_cache_shrink can
- * reclaim empty slabs from the partial list.
+ * so that the others get filled first. That way the
+ * size of the partial list stays small.
+ *
+ * kmem_cache_shrink can reclaim any empty slabs from the
+ * partial list.
*/
add_partial(n, page, 1);
slab_unlock(page);
} else {
slab_unlock(page);
+ stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
discard_slab(s, page);
}
}
{
struct page *page = c->page;
int tail = 1;
+
+ if (page->freelist)
+ stat(c, DEACTIVATE_REMOTE_FREES);
/*
- * Merge cpu freelist into freelist. Typically we get here
+ * Merge cpu freelist into slab freelist. Typically we get here
* because both freelists are empty. So this is unlikely
* to occur.
*/
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
{
+ stat(c, CPUSLAB_FLUSH);
slab_lock(c->page);
deactivate_slab(s, c);
}
/*
* Flush cpu slab.
+ *
* Called from IPI handler with interrupts disabled.
*/
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
* rest of the freelist to the lockless freelist.
*
* And if we were unable to get a new slab from the partial slab lists then
- * we need to allocate a new slab. This is slowest path since we may sleep.
+ * we need to allocate a new slab. This is the slowest path since it involves
+ * a call to the page allocator and the setup of a new slab.
*/
static void *__slab_alloc(struct kmem_cache *s,
gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
void **object;
struct page *new;
+ /* We handle __GFP_ZERO in the caller */
+ gfpflags &= ~__GFP_ZERO;
+
if (!c->page)
goto new_slab;
slab_lock(c->page);
if (unlikely(!node_match(c, node)))
goto another_slab;
+
+ stat(c, ALLOC_REFILL);
+
load_freelist:
object = c->page->freelist;
if (unlikely(!object))
if (unlikely(SlabDebug(c->page)))
goto debug;
- object = c->page->freelist;
c->freelist = object[c->offset];
c->page->inuse = s->objects;
c->page->freelist = NULL;
c->node = page_to_nid(c->page);
+unlock_out:
slab_unlock(c->page);
+ stat(c, ALLOC_SLOWPATH);
return object;
another_slab:
new = get_partial(s, gfpflags, node);
if (new) {
c->page = new;
+ stat(c, ALLOC_FROM_PARTIAL);
goto load_freelist;
}
if (new) {
c = get_cpu_slab(s, smp_processor_id());
+ stat(c, ALLOC_SLAB);
if (c->page)
flush_slab(s, c);
slab_lock(new);
c->page = new;
goto load_freelist;
}
+
+ /*
+ * No memory available.
+ *
+ * If the slab uses higher order allocs but the object is
+ * smaller than a page size then we can fallback in emergencies
+ * to the page allocator via kmalloc_large. The page allocator may
+ * have failed to obtain a higher order page and we can try to
+ * allocate a single page if the object fits into a single page.
+ * That is only possible if certain conditions are met that are being
+ * checked when a slab is created.
+ */
+ if (!(gfpflags & __GFP_NORETRY) &&
+ (s->flags & __PAGE_ALLOC_FALLBACK)) {
+ if (gfpflags & __GFP_WAIT)
+ local_irq_enable();
+ object = kmalloc_large(s->objsize, gfpflags);
+ if (gfpflags & __GFP_WAIT)
+ local_irq_disable();
+ return object;
+ }
return NULL;
debug:
- object = c->page->freelist;
if (!alloc_debug_processing(s, c->page, object, addr))
goto another_slab;
c->page->inuse++;
c->page->freelist = object[c->offset];
c->node = -1;
- slab_unlock(c->page);
- return object;
+ goto unlock_out;
}
/*
gfp_t gfpflags, int node, void *addr)
{
void **object;
- unsigned long flags;
struct kmem_cache_cpu *c;
+ unsigned long flags;
local_irq_save(flags);
c = get_cpu_slab(s, smp_processor_id());
else {
object = c->freelist;
c->freelist = object[c->offset];
+ stat(c, ALLOC_FASTPATH);
}
local_irq_restore(flags);
{
void *prior;
void **object = (void *)x;
+ struct kmem_cache_cpu *c;
+ c = get_cpu_slab(s, raw_smp_processor_id());
+ stat(c, FREE_SLOWPATH);
slab_lock(page);
if (unlikely(SlabDebug(page)))
goto debug;
+
checks_ok:
prior = object[offset] = page->freelist;
page->freelist = object;
page->inuse--;
- if (unlikely(SlabFrozen(page)))
+ if (unlikely(SlabFrozen(page))) {
+ stat(c, FREE_FROZEN);
goto out_unlock;
+ }
if (unlikely(!page->inuse))
goto slab_empty;
/*
- * Objects left in the slab. If it
- * was not on the partial list before
+ * Objects left in the slab. If it was not on the partial list before
* then add it.
*/
- if (unlikely(!prior))
+ if (unlikely(!prior)) {
add_partial(get_node(s, page_to_nid(page)), page, 1);
+ stat(c, FREE_ADD_PARTIAL);
+ }
out_unlock:
slab_unlock(page);
return;
slab_empty:
- if (prior)
+ if (prior) {
/*
* Slab still on the partial list.
*/
remove_partial(s, page);
-
+ stat(c, FREE_REMOVE_PARTIAL);
+ }
slab_unlock(page);
+ stat(c, FREE_SLAB);
discard_slab(s, page);
return;
struct page *page, void *x, void *addr)
{
void **object = (void *)x;
- unsigned long flags;
struct kmem_cache_cpu *c;
+ unsigned long flags;
local_irq_save(flags);
- debug_check_no_locks_freed(object, s->objsize);
c = get_cpu_slab(s, smp_processor_id());
+ debug_check_no_locks_freed(object, c->objsize);
if (likely(page == c->page && c->node >= 0)) {
object[c->offset] = c->freelist;
c->freelist = object;
+ stat(c, FREE_FASTPATH);
} else
__slab_free(s, page, x, addr, c->offset);
unsigned long align, unsigned long size)
{
/*
- * If the user wants hardware cache aligned objects then
- * follow that suggestion if the object is sufficiently
- * large.
+ * If the user wants hardware cache aligned objects then follow that
+ * suggestion if the object is sufficiently large.
*
- * The hardware cache alignment cannot override the
- * specified alignment though. If that is greater
- * then use it.
+ * The hardware cache alignment cannot override the specified
+ * alignment though. If that is greater then use it.
*/
- if ((flags & SLAB_HWCACHE_ALIGN) &&
- size > cache_line_size() / 2)
- return max_t(unsigned long, align, cache_line_size());
+ if (flags & SLAB_HWCACHE_ALIGN) {
+ unsigned long ralign = cache_line_size();
+ while (size <= ralign / 2)
+ ralign /= 2;
+ align = max(align, ralign);
+ }
if (align < ARCH_SLAB_MINALIGN)
- return ARCH_SLAB_MINALIGN;
+ align = ARCH_SLAB_MINALIGN;
return ALIGN(align, sizeof(void *));
}
#endif
init_kmem_cache_node(n);
atomic_long_inc(&n->nr_slabs);
+
/*
* lockdep requires consistent irq usage for each lock
* so even though there cannot be a race this early in
unsigned long size = s->objsize;
unsigned long align = s->align;
+ /*
+ * Round up object size to the next word boundary. We can only
+ * place the free pointer at word boundaries and this determines
+ * the possible location of the free pointer.
+ */
+ size = ALIGN(size, sizeof(void *));
+
+#ifdef CONFIG_SLUB_DEBUG
/*
* Determine if we can poison the object itself. If the user of
* the slab may touch the object after free or before allocation
else
s->flags &= ~__OBJECT_POISON;
- /*
- * Round up object size to the next word boundary. We can only
- * place the free pointer at word boundaries and this determines
- * the possible location of the free pointer.
- */
- size = ALIGN(size, sizeof(void *));
-#ifdef CONFIG_SLUB_DEBUG
/*
* If we are Redzoning then check if there is some space between the
* end of the object and the free pointer. If not then add an
size = ALIGN(size, align);
s->size = size;
- s->order = calculate_order(size);
+ if ((flags & __KMALLOC_CACHE) &&
+ PAGE_SIZE / size < slub_min_objects) {
+ /*
+ * Kmalloc cache that would not have enough objects in
+ * an order 0 page. Kmalloc slabs can fallback to
+ * page allocator order 0 allocs so take a reasonably large
+ * order that will allows us a good number of objects.
+ */
+ s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
+ s->flags |= __PAGE_ALLOC_FALLBACK;
+ s->allocflags |= __GFP_NOWARN;
+ } else
+ s->order = calculate_order(size);
+
if (s->order < 0)
return 0;
+ s->allocflags = 0;
+ if (s->order)
+ s->allocflags |= __GFP_COMP;
+
+ if (s->flags & SLAB_CACHE_DMA)
+ s->allocflags |= SLUB_DMA;
+
+ if (s->flags & SLAB_RECLAIM_ACCOUNT)
+ s->allocflags |= __GFP_RECLAIMABLE;
+
/*
* Determine the number of objects per slab
*/
/*
* We could also check if the object is on the slabs freelist.
* But this would be too expensive and it seems that the main
- * purpose of kmem_ptr_valid is to check if the object belongs
+ * purpose of kmem_ptr_valid() is to check if the object belongs
* to a certain slab.
*/
return 1;
* Kmalloc subsystem
*******************************************************************/
-struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
+struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
EXPORT_SYMBOL(kmalloc_caches);
#ifdef CONFIG_ZONE_DMA
-static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
+static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
#endif
static int __init setup_slub_min_order(char *str)
down_write(&slub_lock);
if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
- flags, NULL))
+ flags | __KMALLOC_CACHE, NULL))
goto panic;
list_add(&s->list, &slab_caches);
goto unlock_out;
realsize = kmalloc_caches[index].objsize;
- text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
+ text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
+ (unsigned int)realsize);
s = kmalloc(kmem_size, flags & ~SLUB_DMA);
if (!s || !text || !kmem_cache_open(s, flags, text,
{
struct kmem_cache *s;
- if (unlikely(size > PAGE_SIZE / 2))
- return (void *)__get_free_pages(flags | __GFP_COMP,
- get_order(size));
+ if (unlikely(size > PAGE_SIZE))
+ return kmalloc_large(size, flags);
s = get_slab(size, flags);
}
EXPORT_SYMBOL(__kmalloc);
+static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
+{
+ struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
+ get_order(size));
+
+ if (page)
+ return page_address(page);
+ else
+ return NULL;
+}
+
#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
struct kmem_cache *s;
- if (unlikely(size > PAGE_SIZE / 2))
- return (void *)__get_free_pages(flags | __GFP_COMP,
- get_order(size));
+ if (unlikely(size > PAGE_SIZE))
+ return kmalloc_large_node(size, flags, node);
s = get_slab(size, flags);
struct page *page;
struct kmem_cache *s;
- BUG_ON(!object);
if (unlikely(object == ZERO_SIZE_PTR))
return 0;
page = virt_to_head_page(object);
- BUG_ON(!page);
if (unlikely(!PageSlab(page)))
return PAGE_SIZE << compound_order(page);
s = page->slab;
- BUG_ON(!s);
+#ifdef CONFIG_SLUB_DEBUG
/*
* Debugging requires use of the padding between object
* and whatever may come after it.
if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
return s->objsize;
+#endif
/*
* If we have the need to store the freelist pointer
* back there or track user information then we can
*/
if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
return s->inuse;
-
/*
* Else we can use all the padding etc for the allocation
*/
void kfree(const void *x)
{
struct page *page;
+ void *object = (void *)x;
if (unlikely(ZERO_OR_NULL_PTR(x)))
return;
put_page(page);
return;
}
- slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
+ slab_free(page->slab, page, object, __builtin_return_address(0));
}
EXPORT_SYMBOL(kfree);
+#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SLABINFO)
static unsigned long count_partial(struct kmem_cache_node *n)
{
unsigned long flags;
spin_unlock_irqrestore(&n->list_lock, flags);
return x;
}
+#endif
/*
* kmem_cache_shrink removes empty slabs from the partial lists and sorts
caches++;
}
- for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
+ for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
create_kmalloc_cache(&kmalloc_caches[i],
"kmalloc", 1 << i, GFP_KERNEL);
caches++;
/*
* Patch up the size_index table if we have strange large alignment
* requirements for the kmalloc array. This is only the case for
- * mips it seems. The standard arches will not generate any code here.
+ * MIPS it seems. The standard arches will not generate any code here.
*
* Largest permitted alignment is 256 bytes due to the way we
* handle the index determination for the smaller caches.
slab_state = UP;
/* Provide the correct kmalloc names now that the caches are up */
- for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
+ for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
kmalloc_caches[i]. name =
kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
kmem_size = sizeof(struct kmem_cache);
#endif
-
- printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
+ printk(KERN_INFO
+ "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
" CPUs=%d, Nodes=%d\n",
caches, cache_line_size(),
slub_min_order, slub_max_order, slub_min_objects,
if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
return 1;
+ if ((s->flags & __PAGE_ALLOC_FALLBACK))
+ return 1;
+
if (s->ctor)
return 1;
*/
for_each_online_cpu(cpu)
get_cpu_slab(s, cpu)->objsize = s->objsize;
+
s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
up_write(&slub_lock);
+
if (sysfs_slab_alias(s, name))
goto err;
return s;
}
+
s = kmalloc(kmem_size, GFP_KERNEL);
if (s) {
if (kmem_cache_open(s, GFP_KERNEL, name,
}
static struct notifier_block __cpuinitdata slab_notifier = {
- &slab_cpuup_callback, NULL, 0
+ .notifier_call = slab_cpuup_callback
};
#endif
{
struct kmem_cache *s;
- if (unlikely(size > PAGE_SIZE / 2))
- return (void *)__get_free_pages(gfpflags | __GFP_COMP,
- get_order(size));
+ if (unlikely(size > PAGE_SIZE))
+ return kmalloc_large(size, gfpflags);
+
s = get_slab(size, gfpflags);
if (unlikely(ZERO_OR_NULL_PTR(s)))
{
struct kmem_cache *s;
- if (unlikely(size > PAGE_SIZE / 2))
- return (void *)__get_free_pages(gfpflags | __GFP_COMP,
- get_order(size));
+ if (unlikely(size > PAGE_SIZE))
+ return kmalloc_large_node(size, gfpflags, node);
+
s = get_slab(size, gfpflags);
if (unlikely(ZERO_OR_NULL_PTR(s)))
p = kzalloc(32, GFP_KERNEL);
p[32 + sizeof(void *)] = 0x34;
printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
- " 0x34 -> -0x%p\n", p);
- printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
+ " 0x34 -> -0x%p\n", p);
+ printk(KERN_ERR
+ "If allocated object is overwritten then not detectable\n\n");
validate_slab_cache(kmalloc_caches + 5);
p = kzalloc(64, GFP_KERNEL);
*p = 0x56;
printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
p);
- printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
+ printk(KERN_ERR
+ "If allocated object is overwritten then not detectable\n\n");
validate_slab_cache(kmalloc_caches + 6);
printk(KERN_ERR "\nB. Corruption after free\n");
p = kzalloc(256, GFP_KERNEL);
kfree(p);
p[50] = 0x9a;
- printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
+ printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
+ p);
validate_slab_cache(kmalloc_caches + 8);
p = kzalloc(512, GFP_KERNEL);
#define SO_CPU (1 << SL_CPU)
#define SO_OBJECTS (1 << SL_OBJECTS)
-static unsigned long slab_objects(struct kmem_cache *s,
- char *buf, unsigned long flags)
+static ssize_t show_slab_objects(struct kmem_cache *s,
+ char *buf, unsigned long flags)
{
unsigned long total = 0;
int cpu;
unsigned long *per_cpu;
nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
+ if (!nodes)
+ return -ENOMEM;
per_cpu = nodes + nr_node_ids;
for_each_possible_cpu(cpu) {
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
- return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
+ return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
}
SLAB_ATTR_RO(slabs);
static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
- return slab_objects(s, buf, SO_PARTIAL);
+ return show_slab_objects(s, buf, SO_PARTIAL);
}
SLAB_ATTR_RO(partial);
static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
- return slab_objects(s, buf, SO_CPU);
+ return show_slab_objects(s, buf, SO_CPU);
}
SLAB_ATTR_RO(cpu_slabs);
static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
- return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
+ return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
}
SLAB_ATTR_RO(objects);
SLAB_ATTR(remote_node_defrag_ratio);
#endif
+#ifdef CONFIG_SLUB_STATS
+static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
+{
+ unsigned long sum = 0;
+ int cpu;
+ int len;
+ int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
+
+ if (!data)
+ return -ENOMEM;
+
+ for_each_online_cpu(cpu) {
+ unsigned x = get_cpu_slab(s, cpu)->stat[si];
+
+ data[cpu] = x;
+ sum += x;
+ }
+
+ len = sprintf(buf, "%lu", sum);
+
+ for_each_online_cpu(cpu) {
+ if (data[cpu] && len < PAGE_SIZE - 20)
+ len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
+ }
+ kfree(data);
+ return len + sprintf(buf + len, "\n");
+}
+
+#define STAT_ATTR(si, text) \
+static ssize_t text##_show(struct kmem_cache *s, char *buf) \
+{ \
+ return show_stat(s, buf, si); \
+} \
+SLAB_ATTR_RO(text); \
+
+STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
+STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
+STAT_ATTR(FREE_FASTPATH, free_fastpath);
+STAT_ATTR(FREE_SLOWPATH, free_slowpath);
+STAT_ATTR(FREE_FROZEN, free_frozen);
+STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
+STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
+STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
+STAT_ATTR(ALLOC_SLAB, alloc_slab);
+STAT_ATTR(ALLOC_REFILL, alloc_refill);
+STAT_ATTR(FREE_SLAB, free_slab);
+STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
+STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
+STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
+STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
+STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
+STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
+
+#endif
+
static struct attribute *slab_attrs[] = {
&slab_size_attr.attr,
&object_size_attr.attr,
#endif
#ifdef CONFIG_NUMA
&remote_node_defrag_ratio_attr.attr,
+#endif
+#ifdef CONFIG_SLUB_STATS
+ &alloc_fastpath_attr.attr,
+ &alloc_slowpath_attr.attr,
+ &free_fastpath_attr.attr,
+ &free_slowpath_attr.attr,
+ &free_frozen_attr.attr,
+ &free_add_partial_attr.attr,
+ &free_remove_partial_attr.attr,
+ &alloc_from_partial_attr.attr,
+ &alloc_slab_attr.attr,
+ &alloc_refill_attr.attr,
+ &free_slab_attr.attr,
+ &cpuslab_flush_attr.attr,
+ &deactivate_full_attr.attr,
+ &deactivate_empty_attr.attr,
+ &deactivate_to_head_attr.attr,
+ &deactivate_to_tail_attr.attr,
+ &deactivate_remote_frees_attr.attr,
#endif
NULL
};
#define ID_STR_LENGTH 64
/* Create a unique string id for a slab cache:
- * format
- * :[flags-]size:[memory address of kmemcache]
+ *
+ * Format :[flags-]size
*/
static char *create_unique_id(struct kmem_cache *s)
{