This is used primarily during fault processing.
-5) void flush_tlb_pgtables(struct mm_struct *mm,
- unsigned long start, unsigned long end)
-
- The software page tables for address space 'mm' for virtual
- addresses in the range 'start' to 'end-1' are being torn down.
-
- Some platforms cache the lowest level of the software page tables
- in a linear virtually mapped array, to make TLB miss processing
- more efficient. On such platforms, since the TLB is caching the
- software page table structure, it needs to be flushed when parts
- of the software page table tree are unlinked/freed.
-
- Sparc64 is one example of a platform which does this.
-
- Usually, when munmap()'ing an area of user virtual address
- space, the kernel leaves the page table parts around and just
- marks the individual pte's as invalid. However, if very large
- portions of the address space are unmapped, the kernel frees up
- those portions of the software page tables to prevent potential
- excessive kernel memory usage caused by erratic mmap/mmunmap
- sequences. It is at these times that flush_tlb_pgtables will
- be invoked.
-
-6) void update_mmu_cache(struct vm_area_struct *vma,
+5) void update_mmu_cache(struct vm_area_struct *vma,
unsigned long address, pte_t pte)
At the end of every page fault, this routine is invoked to
translations for software managed TLB configurations.
The sparc64 port currently does this.
-7) void tlb_migrate_finish(struct mm_struct *mm)
+6) void tlb_migrate_finish(struct mm_struct *mm)
This interface is called at the end of an explicit
process migration. This interface provides a hook