# Build a 'graph-like' object having 'nodes' nodes belonging to 'classes' classes. # Class distribution is given by 'proba', and connectivity probabilities are given # by 'intraproba' and 'interproba'. generateGraph<-function(nodes,classes,proba=rep(1/classes,classes), intraproba=0.1,crossproba=0.02) { mat_pi=CreateConnectivityMat(classes,intraproba,crossproba) igraph=Fast2SimuleERMG(nodes,proba,mat_pi[1],mat_pi[2]) adjacency=get.adjacency(igraph$graph) cmgraph=list(nodes=nodes,classes=classes,adjacency=adjacency,nodeclasses=igraph$node.classes,proba=proba, intraproba=intraproba,crossproba=crossproba) attr(cmgraph,'class')<-c('cmgraph') cmgraph } # Return explicit member names for the different attributes of graph objects. labels.cmgraph<-function(object,...) { c("Nodes","Classes","Adjacency Matrix","Node Classification","Class Probability Distribution","Intra Class Edge Probability","Cross Class Edge Probability") } # Override the summmary function for graph objects. summary.cmgraph<-function(object,...) { cat(c("Nodes : ",object$nodes,"\n", "Edges : ",length(which(object$adjacency!=0)),"\n", "Classes : ",object$classes,"\n", "Class Probability Distribution: ",object$proba,"\n")) } # Override the plot function for graph objects. plot.cmgraph<-function(x,...) { RepresentationXGroup(x$adjacency,x$nodeclasses) } # Generate covariable data for the graph 'g'. Covariables are associated to vertex data, and # their values are drawn according to 2 distributions: one for vertices joining nodes of # the same class, and another for vertices joining nodes of different classes. # The two distributions have different means but a single standard deviation. generateCovariablesCondZ<-function(g,sameclustermean=0,otherclustermean=2,sigma=1) { mu=CreateMu(g$classes,sameclustermean,otherclustermean) res=SimDataYcondZ(g$nodeclasses,mu,sigma) cmcovars=list(graph=g,sameclustermean=sameclustermean,otherclustermean=otherclustermean,sigma=sigma,mu=mu,y=res) attr(cmcovars,'class')<-c('cmcovarz','cmcovar') cmcovars } # Generate covariable data for the graph 'g'. Covariables are associated to vertex data, and # their values are drawn according to 2 distributions: one for vertices joining nodes of # the same class, and another for vertices joining nodes of different classes. # The two distributions have different means but a single standard deviation. # This function generates two sets of covariables. generateCovariablesCondXZ<-function(g,sameclustermean=c(0,3),otherclustermean=c(2,5),sigma=1) { mux0=CreateMu(g$classes,sameclustermean[1],otherclustermean[1]) mux1=CreateMu(g$classes,sameclustermean[2],otherclustermean[2]) res=SimDataYcondXZ(g$nodeclasses,g$adjacency,mux0,mux1,sigma) cmcovars=list(graph=g,sameclustermean=sameclustermean,otherclustermean=otherclustermean,sigma=sigma,mu=c(mux0,mux1),y=res) attr(cmcovars,'class')<-c('cmcovarxz','cmcovar') cmcovars } # Override the print function for a cleaner covariable output. print.cmcovar<-function(x,...) { cat("Classes : ",x$graph$classes,"\n", "Intra cluster mean: ",x$sameclustermean,"\n", "Cross cluster mean: ",x$otherclustermean,"\n", "Variance : ",x$sigma,"\n", "Covariables :\n",x$y,"\n") } # Perform parameter estimation on 'graph' given the covariables 'covars'. estimateCondZ<-function(graph,covars,maxiterations,initialclasses,selfloops) { res=EMalgorithm(initialclasses,covars$y,graph$adjacency,maxiterations,FALSE,selfloops) cmestimation=list(mean=res$MuEstimated,variance=res$VarianceEstimated,pi=res$PIEstimated,alpha=res$AlphaEstimated,tau=res$TauEstimated,jexpected=res$EJ,graph=graph) attr(cmestimation,'class')<-c('cmestimationz') cmestimation } # Private generic estimation function used to allow various call conventions for estimation functions. privateestimate<-function(covars,graph,maxiterations,initialclasses,selfloops,...) UseMethod("privateestimate") # Private estimation function used to allow various call conventions for estimation functions. # Override of generic function for single covariables. privateestimate.cmcovarz<-function(covars,graph,maxiterations,initialclasses,selfloops,...) { res=estimateCondZ(graph,covars,maxiterations,initialclasses,selfloops) attr(res,'class')<-c(attr(res,'class'),'cmestimation') res } # Perform parameter estimation on 'graph' given the covariables 'covars'. estimateCondXZ<-function(graph,covars,maxiterations,initialclasses,selfloops) { #resSimXZ = EMalgorithmXZ(TauIni,Y2,Adjacente,30,SelfLoop=FALSE) res=EMalgorithmXZ(initialclasses,covars$y,graph$adjacency,maxiterations,selfloops) cmestimation=list(mean=c(res$MuEstimated1,res$MuEstimated2),variance=res$VarianceEstimated,pi=res$PIEstimated,alpha=res$AlphaEstimated,tau=res$TauEstimated,jexpected=res$EJ,graph=graph) attr(cmestimation,'class')<-c('cmestimationxz') cmestimation } # Private estimation function used to allow various call conventions for estimation functions. # Override of generic function for multiple covariables. privateestimate.cmcovarxz<-function(covars,graph,maxiterations,initialclasses,selfloops,...) { res=estimateCondXZ(graph,covars,maxiterations,initialclasses,selfloops) attr(res,'class')<-c(attr(res,'class'),'cmestimation') res } # Generic estimation function applicable to graphs with covariables. estimate<-function(graph,covars,...) UseMethod("estimate") # Override of the generic estimation function. Performs the actual function dispatch depending on the class of covariables. estimate.cmgraph<-function(graph,covars,maxiterations=20,initialclasses=t(rmultinom(size=1,prob=graph$proba,n=graph$nodes)),selfloops=FALSE,method=NULL,...) { if (length(method) == 0) { res=privateestimate(covars,graph,maxiterations,initialclasses,selfloops,...) } else { res=method(graph,covars,maxiterations,initialclasses,selfloops) attr(res,'class')<-c(attr(res,'class'),'cmestimation') } res } # Override of the generic pliot function for estimation results. plot.cmestimation<-function(x,...) { par(mfrow = c(1,2)) plot(x$jexpected) title("Expected value of J: Convergence criterion") map=MAP(x$tau) gplot(x$graph$adjacency,vertex.col=map$node.classes+2) title("Network with estimated classes") } # Generic private ICL computation function for graphs and covariables. privatecomputeICL<-function(covars,graph,qmin,qmax,loops,maxiterations,selfloops) UseMethod("privatecomputeICL") # Private ICL computation function for graphs with single covariables. privatecomputeICL.cmcovarz<-function(covars,graph,qmin,qmax,loops,maxiterations,selfloops) { res=ICL(X=graph$adjacency,Y=covars$y,Qmin=qmin,Qmax=qmax,loop=loops,NbIteration=maxiterations,SelfLoop=selfloops,Plot=FALSE) attr(res,'class')<-c('cmiclz') res } # Private ICL computation function for graphs with multiple covariables. privatecomputeICL.cmcovarxz<-function(covars,graph,qmin,qmax,loops,maxiterations,selfloops) { res=ICL(X=graph$adjacency,Y=covars$y,Qmin=qmin,Qmax=qmax,loop=loops,NbIteration=maxiterations,SelfLoop=selfloops,Plot=FALSE) attr(res,'class')<-c('cmiclxz') res } # Generic public ICL computation function applicable to graph objects. computeICL<-function(graph,covars,qmin,qmax,...) UseMethod("computeICL") # Override of ICL computation function applicable to graph objects. # Performs the actual method dispatch to private functions depending on the type of covariables. computeICL.cmgraph<-function(graph,covars,qmin,qmax,loops=10,maxiterations=20,selfloops=FALSE,...) { res=privatecomputeICL(covars,graph,qmin,qmax,loops,maxiterations,selfloops) res$qmin=qmin res$qmax=qmax res$graph=graph res$covars=covars attr(res,'class')<-c(attr(res,'class'),'cmicl') res } # Override of the plot function for results of ICL computation. plot.cmicl<-function(x,...) { par(mfrow = c(1,2)) result=x$iclvalues maxi=which(max(result)==result) plot(seq(x$qmin,x$qmax),result,type="b",xlab="Number of classes",ylab="ICL value") points(maxi+x$qmin-1,result[maxi],col="red") title("ICL curve") best=x$EMestimation[[maxi+x$qmin-1]] tau=best$TauEstimated map=MAP(tau) gplot(x$graph$adjacency,vertex.col=map$node.classes+2) title("Network with estimated classes") }