am: simplify prompt response handling
[git] / run-command.c
1 #include "cache.h"
2 #include "run-command.h"
3 #include "exec-cmd.h"
4 #include "sigchain.h"
5 #include "argv-array.h"
6 #include "thread-utils.h"
7 #include "strbuf.h"
8 #include "string-list.h"
9 #include "quote.h"
10
11 void child_process_init(struct child_process *child)
12 {
13         memset(child, 0, sizeof(*child));
14         argv_array_init(&child->args);
15         argv_array_init(&child->env_array);
16 }
17
18 void child_process_clear(struct child_process *child)
19 {
20         argv_array_clear(&child->args);
21         argv_array_clear(&child->env_array);
22 }
23
24 struct child_to_clean {
25         pid_t pid;
26         struct child_process *process;
27         struct child_to_clean *next;
28 };
29 static struct child_to_clean *children_to_clean;
30 static int installed_child_cleanup_handler;
31
32 static void cleanup_children(int sig, int in_signal)
33 {
34         struct child_to_clean *children_to_wait_for = NULL;
35
36         while (children_to_clean) {
37                 struct child_to_clean *p = children_to_clean;
38                 children_to_clean = p->next;
39
40                 if (p->process && !in_signal) {
41                         struct child_process *process = p->process;
42                         if (process->clean_on_exit_handler) {
43                                 trace_printf(
44                                         "trace: run_command: running exit handler for pid %"
45                                         PRIuMAX, (uintmax_t)p->pid
46                                 );
47                                 process->clean_on_exit_handler(process);
48                         }
49                 }
50
51                 kill(p->pid, sig);
52
53                 if (p->process && p->process->wait_after_clean) {
54                         p->next = children_to_wait_for;
55                         children_to_wait_for = p;
56                 } else {
57                         if (!in_signal)
58                                 free(p);
59                 }
60         }
61
62         while (children_to_wait_for) {
63                 struct child_to_clean *p = children_to_wait_for;
64                 children_to_wait_for = p->next;
65
66                 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
67                         ; /* spin waiting for process exit or error */
68
69                 if (!in_signal)
70                         free(p);
71         }
72 }
73
74 static void cleanup_children_on_signal(int sig)
75 {
76         cleanup_children(sig, 1);
77         sigchain_pop(sig);
78         raise(sig);
79 }
80
81 static void cleanup_children_on_exit(void)
82 {
83         cleanup_children(SIGTERM, 0);
84 }
85
86 static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
87 {
88         struct child_to_clean *p = xmalloc(sizeof(*p));
89         p->pid = pid;
90         p->process = process;
91         p->next = children_to_clean;
92         children_to_clean = p;
93
94         if (!installed_child_cleanup_handler) {
95                 atexit(cleanup_children_on_exit);
96                 sigchain_push_common(cleanup_children_on_signal);
97                 installed_child_cleanup_handler = 1;
98         }
99 }
100
101 static void clear_child_for_cleanup(pid_t pid)
102 {
103         struct child_to_clean **pp;
104
105         for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
106                 struct child_to_clean *clean_me = *pp;
107
108                 if (clean_me->pid == pid) {
109                         *pp = clean_me->next;
110                         free(clean_me);
111                         return;
112                 }
113         }
114 }
115
116 static inline void close_pair(int fd[2])
117 {
118         close(fd[0]);
119         close(fd[1]);
120 }
121
122 int is_executable(const char *name)
123 {
124         struct stat st;
125
126         if (stat(name, &st) || /* stat, not lstat */
127             !S_ISREG(st.st_mode))
128                 return 0;
129
130 #if defined(GIT_WINDOWS_NATIVE)
131         /*
132          * On Windows there is no executable bit. The file extension
133          * indicates whether it can be run as an executable, and Git
134          * has special-handling to detect scripts and launch them
135          * through the indicated script interpreter. We test for the
136          * file extension first because virus scanners may make
137          * it quite expensive to open many files.
138          */
139         if (ends_with(name, ".exe"))
140                 return S_IXUSR;
141
142 {
143         /*
144          * Now that we know it does not have an executable extension,
145          * peek into the file instead.
146          */
147         char buf[3] = { 0 };
148         int n;
149         int fd = open(name, O_RDONLY);
150         st.st_mode &= ~S_IXUSR;
151         if (fd >= 0) {
152                 n = read(fd, buf, 2);
153                 if (n == 2)
154                         /* look for a she-bang */
155                         if (!strcmp(buf, "#!"))
156                                 st.st_mode |= S_IXUSR;
157                 close(fd);
158         }
159 }
160 #endif
161         return st.st_mode & S_IXUSR;
162 }
163
164 /*
165  * Search $PATH for a command.  This emulates the path search that
166  * execvp would perform, without actually executing the command so it
167  * can be used before fork() to prepare to run a command using
168  * execve() or after execvp() to diagnose why it failed.
169  *
170  * The caller should ensure that file contains no directory
171  * separators.
172  *
173  * Returns the path to the command, as found in $PATH or NULL if the
174  * command could not be found.  The caller inherits ownership of the memory
175  * used to store the resultant path.
176  *
177  * This should not be used on Windows, where the $PATH search rules
178  * are more complicated (e.g., a search for "foo" should find
179  * "foo.exe").
180  */
181 static char *locate_in_PATH(const char *file)
182 {
183         const char *p = getenv("PATH");
184         struct strbuf buf = STRBUF_INIT;
185
186         if (!p || !*p)
187                 return NULL;
188
189         while (1) {
190                 const char *end = strchrnul(p, ':');
191
192                 strbuf_reset(&buf);
193
194                 /* POSIX specifies an empty entry as the current directory. */
195                 if (end != p) {
196                         strbuf_add(&buf, p, end - p);
197                         strbuf_addch(&buf, '/');
198                 }
199                 strbuf_addstr(&buf, file);
200
201                 if (is_executable(buf.buf))
202                         return strbuf_detach(&buf, NULL);
203
204                 if (!*end)
205                         break;
206                 p = end + 1;
207         }
208
209         strbuf_release(&buf);
210         return NULL;
211 }
212
213 static int exists_in_PATH(const char *file)
214 {
215         char *r = locate_in_PATH(file);
216         free(r);
217         return r != NULL;
218 }
219
220 int sane_execvp(const char *file, char * const argv[])
221 {
222         if (!execvp(file, argv))
223                 return 0; /* cannot happen ;-) */
224
225         /*
226          * When a command can't be found because one of the directories
227          * listed in $PATH is unsearchable, execvp reports EACCES, but
228          * careful usability testing (read: analysis of occasional bug
229          * reports) reveals that "No such file or directory" is more
230          * intuitive.
231          *
232          * We avoid commands with "/", because execvp will not do $PATH
233          * lookups in that case.
234          *
235          * The reassignment of EACCES to errno looks like a no-op below,
236          * but we need to protect against exists_in_PATH overwriting errno.
237          */
238         if (errno == EACCES && !strchr(file, '/'))
239                 errno = exists_in_PATH(file) ? EACCES : ENOENT;
240         else if (errno == ENOTDIR && !strchr(file, '/'))
241                 errno = ENOENT;
242         return -1;
243 }
244
245 static const char **prepare_shell_cmd(struct argv_array *out, const char **argv)
246 {
247         if (!argv[0])
248                 BUG("shell command is empty");
249
250         if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
251 #ifndef GIT_WINDOWS_NATIVE
252                 argv_array_push(out, SHELL_PATH);
253 #else
254                 argv_array_push(out, "sh");
255 #endif
256                 argv_array_push(out, "-c");
257
258                 /*
259                  * If we have no extra arguments, we do not even need to
260                  * bother with the "$@" magic.
261                  */
262                 if (!argv[1])
263                         argv_array_push(out, argv[0]);
264                 else
265                         argv_array_pushf(out, "%s \"$@\"", argv[0]);
266         }
267
268         argv_array_pushv(out, argv);
269         return out->argv;
270 }
271
272 #ifndef GIT_WINDOWS_NATIVE
273 static int child_notifier = -1;
274
275 enum child_errcode {
276         CHILD_ERR_CHDIR,
277         CHILD_ERR_DUP2,
278         CHILD_ERR_CLOSE,
279         CHILD_ERR_SIGPROCMASK,
280         CHILD_ERR_ENOENT,
281         CHILD_ERR_SILENT,
282         CHILD_ERR_ERRNO
283 };
284
285 struct child_err {
286         enum child_errcode err;
287         int syserr; /* errno */
288 };
289
290 static void child_die(enum child_errcode err)
291 {
292         struct child_err buf;
293
294         buf.err = err;
295         buf.syserr = errno;
296
297         /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
298         xwrite(child_notifier, &buf, sizeof(buf));
299         _exit(1);
300 }
301
302 static void child_dup2(int fd, int to)
303 {
304         if (dup2(fd, to) < 0)
305                 child_die(CHILD_ERR_DUP2);
306 }
307
308 static void child_close(int fd)
309 {
310         if (close(fd))
311                 child_die(CHILD_ERR_CLOSE);
312 }
313
314 static void child_close_pair(int fd[2])
315 {
316         child_close(fd[0]);
317         child_close(fd[1]);
318 }
319
320 /*
321  * parent will make it look like the child spewed a fatal error and died
322  * this is needed to prevent changes to t0061.
323  */
324 static void fake_fatal(const char *err, va_list params)
325 {
326         vreportf("fatal: ", err, params);
327 }
328
329 static void child_error_fn(const char *err, va_list params)
330 {
331         const char msg[] = "error() should not be called in child\n";
332         xwrite(2, msg, sizeof(msg) - 1);
333 }
334
335 static void child_warn_fn(const char *err, va_list params)
336 {
337         const char msg[] = "warn() should not be called in child\n";
338         xwrite(2, msg, sizeof(msg) - 1);
339 }
340
341 static void NORETURN child_die_fn(const char *err, va_list params)
342 {
343         const char msg[] = "die() should not be called in child\n";
344         xwrite(2, msg, sizeof(msg) - 1);
345         _exit(2);
346 }
347
348 /* this runs in the parent process */
349 static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
350 {
351         static void (*old_errfn)(const char *err, va_list params);
352
353         old_errfn = get_error_routine();
354         set_error_routine(fake_fatal);
355         errno = cerr->syserr;
356
357         switch (cerr->err) {
358         case CHILD_ERR_CHDIR:
359                 error_errno("exec '%s': cd to '%s' failed",
360                             cmd->argv[0], cmd->dir);
361                 break;
362         case CHILD_ERR_DUP2:
363                 error_errno("dup2() in child failed");
364                 break;
365         case CHILD_ERR_CLOSE:
366                 error_errno("close() in child failed");
367                 break;
368         case CHILD_ERR_SIGPROCMASK:
369                 error_errno("sigprocmask failed restoring signals");
370                 break;
371         case CHILD_ERR_ENOENT:
372                 error_errno("cannot run %s", cmd->argv[0]);
373                 break;
374         case CHILD_ERR_SILENT:
375                 break;
376         case CHILD_ERR_ERRNO:
377                 error_errno("cannot exec '%s'", cmd->argv[0]);
378                 break;
379         }
380         set_error_routine(old_errfn);
381 }
382
383 static int prepare_cmd(struct argv_array *out, const struct child_process *cmd)
384 {
385         if (!cmd->argv[0])
386                 BUG("command is empty");
387
388         /*
389          * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
390          * attempt to interpret the command with 'sh'.
391          */
392         argv_array_push(out, SHELL_PATH);
393
394         if (cmd->git_cmd) {
395                 argv_array_push(out, "git");
396                 argv_array_pushv(out, cmd->argv);
397         } else if (cmd->use_shell) {
398                 prepare_shell_cmd(out, cmd->argv);
399         } else {
400                 argv_array_pushv(out, cmd->argv);
401         }
402
403         /*
404          * If there are no '/' characters in the command then perform a path
405          * lookup and use the resolved path as the command to exec.  If there
406          * are '/' characters, we have exec attempt to invoke the command
407          * directly.
408          */
409         if (!strchr(out->argv[1], '/')) {
410                 char *program = locate_in_PATH(out->argv[1]);
411                 if (program) {
412                         free((char *)out->argv[1]);
413                         out->argv[1] = program;
414                 } else {
415                         argv_array_clear(out);
416                         errno = ENOENT;
417                         return -1;
418                 }
419         }
420
421         return 0;
422 }
423
424 static char **prep_childenv(const char *const *deltaenv)
425 {
426         extern char **environ;
427         char **childenv;
428         struct string_list env = STRING_LIST_INIT_DUP;
429         struct strbuf key = STRBUF_INIT;
430         const char *const *p;
431         int i;
432
433         /* Construct a sorted string list consisting of the current environ */
434         for (p = (const char *const *) environ; p && *p; p++) {
435                 const char *equals = strchr(*p, '=');
436
437                 if (equals) {
438                         strbuf_reset(&key);
439                         strbuf_add(&key, *p, equals - *p);
440                         string_list_append(&env, key.buf)->util = (void *) *p;
441                 } else {
442                         string_list_append(&env, *p)->util = (void *) *p;
443                 }
444         }
445         string_list_sort(&env);
446
447         /* Merge in 'deltaenv' with the current environ */
448         for (p = deltaenv; p && *p; p++) {
449                 const char *equals = strchr(*p, '=');
450
451                 if (equals) {
452                         /* ('key=value'), insert or replace entry */
453                         strbuf_reset(&key);
454                         strbuf_add(&key, *p, equals - *p);
455                         string_list_insert(&env, key.buf)->util = (void *) *p;
456                 } else {
457                         /* otherwise ('key') remove existing entry */
458                         string_list_remove(&env, *p, 0);
459                 }
460         }
461
462         /* Create an array of 'char *' to be used as the childenv */
463         ALLOC_ARRAY(childenv, env.nr + 1);
464         for (i = 0; i < env.nr; i++)
465                 childenv[i] = env.items[i].util;
466         childenv[env.nr] = NULL;
467
468         string_list_clear(&env, 0);
469         strbuf_release(&key);
470         return childenv;
471 }
472
473 struct atfork_state {
474 #ifndef NO_PTHREADS
475         int cs;
476 #endif
477         sigset_t old;
478 };
479
480 #define CHECK_BUG(err, msg) \
481         do { \
482                 int e = (err); \
483                 if (e) \
484                         BUG("%s: %s", msg, strerror(e)); \
485         } while(0)
486
487 static void atfork_prepare(struct atfork_state *as)
488 {
489         sigset_t all;
490
491         if (sigfillset(&all))
492                 die_errno("sigfillset");
493 #ifdef NO_PTHREADS
494         if (sigprocmask(SIG_SETMASK, &all, &as->old))
495                 die_errno("sigprocmask");
496 #else
497         CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old),
498                 "blocking all signals");
499         CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
500                 "disabling cancellation");
501 #endif
502 }
503
504 static void atfork_parent(struct atfork_state *as)
505 {
506 #ifdef NO_PTHREADS
507         if (sigprocmask(SIG_SETMASK, &as->old, NULL))
508                 die_errno("sigprocmask");
509 #else
510         CHECK_BUG(pthread_setcancelstate(as->cs, NULL),
511                 "re-enabling cancellation");
512         CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
513                 "restoring signal mask");
514 #endif
515 }
516 #endif /* GIT_WINDOWS_NATIVE */
517
518 static inline void set_cloexec(int fd)
519 {
520         int flags = fcntl(fd, F_GETFD);
521         if (flags >= 0)
522                 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
523 }
524
525 static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
526 {
527         int status, code = -1;
528         pid_t waiting;
529         int failed_errno = 0;
530
531         while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
532                 ;       /* nothing */
533         if (in_signal)
534                 return 0;
535
536         if (waiting < 0) {
537                 failed_errno = errno;
538                 error_errno("waitpid for %s failed", argv0);
539         } else if (waiting != pid) {
540                 error("waitpid is confused (%s)", argv0);
541         } else if (WIFSIGNALED(status)) {
542                 code = WTERMSIG(status);
543                 if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
544                         error("%s died of signal %d", argv0, code);
545                 /*
546                  * This return value is chosen so that code & 0xff
547                  * mimics the exit code that a POSIX shell would report for
548                  * a program that died from this signal.
549                  */
550                 code += 128;
551         } else if (WIFEXITED(status)) {
552                 code = WEXITSTATUS(status);
553         } else {
554                 error("waitpid is confused (%s)", argv0);
555         }
556
557         clear_child_for_cleanup(pid);
558
559         errno = failed_errno;
560         return code;
561 }
562
563 static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
564 {
565         struct string_list envs = STRING_LIST_INIT_DUP;
566         const char *const *e;
567         int i;
568         int printed_unset = 0;
569
570         /* Last one wins, see run-command.c:prep_childenv() for context */
571         for (e = deltaenv; e && *e; e++) {
572                 struct strbuf key = STRBUF_INIT;
573                 char *equals = strchr(*e, '=');
574
575                 if (equals) {
576                         strbuf_add(&key, *e, equals - *e);
577                         string_list_insert(&envs, key.buf)->util = equals + 1;
578                 } else {
579                         string_list_insert(&envs, *e)->util = NULL;
580                 }
581                 strbuf_release(&key);
582         }
583
584         /* "unset X Y...;" */
585         for (i = 0; i < envs.nr; i++) {
586                 const char *var = envs.items[i].string;
587                 const char *val = envs.items[i].util;
588
589                 if (val || !getenv(var))
590                         continue;
591
592                 if (!printed_unset) {
593                         strbuf_addstr(dst, " unset");
594                         printed_unset = 1;
595                 }
596                 strbuf_addf(dst, " %s", var);
597         }
598         if (printed_unset)
599                 strbuf_addch(dst, ';');
600
601         /* ... followed by "A=B C=D ..." */
602         for (i = 0; i < envs.nr; i++) {
603                 const char *var = envs.items[i].string;
604                 const char *val = envs.items[i].util;
605                 const char *oldval;
606
607                 if (!val)
608                         continue;
609
610                 oldval = getenv(var);
611                 if (oldval && !strcmp(val, oldval))
612                         continue;
613
614                 strbuf_addf(dst, " %s=", var);
615                 sq_quote_buf_pretty(dst, val);
616         }
617         string_list_clear(&envs, 0);
618 }
619
620 static void trace_run_command(const struct child_process *cp)
621 {
622         struct strbuf buf = STRBUF_INIT;
623
624         if (!trace_want(&trace_default_key))
625                 return;
626
627         strbuf_addstr(&buf, "trace: run_command:");
628         if (cp->dir) {
629                 strbuf_addstr(&buf, " cd ");
630                 sq_quote_buf_pretty(&buf, cp->dir);
631                 strbuf_addch(&buf, ';');
632         }
633         /*
634          * The caller is responsible for initializing cp->env from
635          * cp->env_array if needed. We only check one place.
636          */
637         if (cp->env)
638                 trace_add_env(&buf, cp->env);
639         if (cp->git_cmd)
640                 strbuf_addstr(&buf, " git");
641         sq_quote_argv_pretty(&buf, cp->argv);
642
643         trace_printf("%s", buf.buf);
644         strbuf_release(&buf);
645 }
646
647 int start_command(struct child_process *cmd)
648 {
649         int need_in, need_out, need_err;
650         int fdin[2], fdout[2], fderr[2];
651         int failed_errno;
652         char *str;
653
654         if (!cmd->argv)
655                 cmd->argv = cmd->args.argv;
656         if (!cmd->env)
657                 cmd->env = cmd->env_array.argv;
658
659         /*
660          * In case of errors we must keep the promise to close FDs
661          * that have been passed in via ->in and ->out.
662          */
663
664         need_in = !cmd->no_stdin && cmd->in < 0;
665         if (need_in) {
666                 if (pipe(fdin) < 0) {
667                         failed_errno = errno;
668                         if (cmd->out > 0)
669                                 close(cmd->out);
670                         str = "standard input";
671                         goto fail_pipe;
672                 }
673                 cmd->in = fdin[1];
674         }
675
676         need_out = !cmd->no_stdout
677                 && !cmd->stdout_to_stderr
678                 && cmd->out < 0;
679         if (need_out) {
680                 if (pipe(fdout) < 0) {
681                         failed_errno = errno;
682                         if (need_in)
683                                 close_pair(fdin);
684                         else if (cmd->in)
685                                 close(cmd->in);
686                         str = "standard output";
687                         goto fail_pipe;
688                 }
689                 cmd->out = fdout[0];
690         }
691
692         need_err = !cmd->no_stderr && cmd->err < 0;
693         if (need_err) {
694                 if (pipe(fderr) < 0) {
695                         failed_errno = errno;
696                         if (need_in)
697                                 close_pair(fdin);
698                         else if (cmd->in)
699                                 close(cmd->in);
700                         if (need_out)
701                                 close_pair(fdout);
702                         else if (cmd->out)
703                                 close(cmd->out);
704                         str = "standard error";
705 fail_pipe:
706                         error("cannot create %s pipe for %s: %s",
707                                 str, cmd->argv[0], strerror(failed_errno));
708                         child_process_clear(cmd);
709                         errno = failed_errno;
710                         return -1;
711                 }
712                 cmd->err = fderr[0];
713         }
714
715         trace_run_command(cmd);
716
717         fflush(NULL);
718
719 #ifndef GIT_WINDOWS_NATIVE
720 {
721         int notify_pipe[2];
722         int null_fd = -1;
723         char **childenv;
724         struct argv_array argv = ARGV_ARRAY_INIT;
725         struct child_err cerr;
726         struct atfork_state as;
727
728         if (prepare_cmd(&argv, cmd) < 0) {
729                 failed_errno = errno;
730                 cmd->pid = -1;
731                 if (!cmd->silent_exec_failure)
732                         error_errno("cannot run %s", cmd->argv[0]);
733                 goto end_of_spawn;
734         }
735
736         if (pipe(notify_pipe))
737                 notify_pipe[0] = notify_pipe[1] = -1;
738
739         if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
740                 null_fd = open("/dev/null", O_RDWR | O_CLOEXEC);
741                 if (null_fd < 0)
742                         die_errno(_("open /dev/null failed"));
743                 set_cloexec(null_fd);
744         }
745
746         childenv = prep_childenv(cmd->env);
747         atfork_prepare(&as);
748
749         /*
750          * NOTE: In order to prevent deadlocking when using threads special
751          * care should be taken with the function calls made in between the
752          * fork() and exec() calls.  No calls should be made to functions which
753          * require acquiring a lock (e.g. malloc) as the lock could have been
754          * held by another thread at the time of forking, causing the lock to
755          * never be released in the child process.  This means only
756          * Async-Signal-Safe functions are permitted in the child.
757          */
758         cmd->pid = fork();
759         failed_errno = errno;
760         if (!cmd->pid) {
761                 int sig;
762                 /*
763                  * Ensure the default die/error/warn routines do not get
764                  * called, they can take stdio locks and malloc.
765                  */
766                 set_die_routine(child_die_fn);
767                 set_error_routine(child_error_fn);
768                 set_warn_routine(child_warn_fn);
769
770                 close(notify_pipe[0]);
771                 set_cloexec(notify_pipe[1]);
772                 child_notifier = notify_pipe[1];
773
774                 if (cmd->no_stdin)
775                         child_dup2(null_fd, 0);
776                 else if (need_in) {
777                         child_dup2(fdin[0], 0);
778                         child_close_pair(fdin);
779                 } else if (cmd->in) {
780                         child_dup2(cmd->in, 0);
781                         child_close(cmd->in);
782                 }
783
784                 if (cmd->no_stderr)
785                         child_dup2(null_fd, 2);
786                 else if (need_err) {
787                         child_dup2(fderr[1], 2);
788                         child_close_pair(fderr);
789                 } else if (cmd->err > 1) {
790                         child_dup2(cmd->err, 2);
791                         child_close(cmd->err);
792                 }
793
794                 if (cmd->no_stdout)
795                         child_dup2(null_fd, 1);
796                 else if (cmd->stdout_to_stderr)
797                         child_dup2(2, 1);
798                 else if (need_out) {
799                         child_dup2(fdout[1], 1);
800                         child_close_pair(fdout);
801                 } else if (cmd->out > 1) {
802                         child_dup2(cmd->out, 1);
803                         child_close(cmd->out);
804                 }
805
806                 if (cmd->dir && chdir(cmd->dir))
807                         child_die(CHILD_ERR_CHDIR);
808
809                 /*
810                  * restore default signal handlers here, in case
811                  * we catch a signal right before execve below
812                  */
813                 for (sig = 1; sig < NSIG; sig++) {
814                         /* ignored signals get reset to SIG_DFL on execve */
815                         if (signal(sig, SIG_DFL) == SIG_IGN)
816                                 signal(sig, SIG_IGN);
817                 }
818
819                 if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
820                         child_die(CHILD_ERR_SIGPROCMASK);
821
822                 /*
823                  * Attempt to exec using the command and arguments starting at
824                  * argv.argv[1].  argv.argv[0] contains SHELL_PATH which will
825                  * be used in the event exec failed with ENOEXEC at which point
826                  * we will try to interpret the command using 'sh'.
827                  */
828                 execve(argv.argv[1], (char *const *) argv.argv + 1,
829                        (char *const *) childenv);
830                 if (errno == ENOEXEC)
831                         execve(argv.argv[0], (char *const *) argv.argv,
832                                (char *const *) childenv);
833
834                 if (errno == ENOENT) {
835                         if (cmd->silent_exec_failure)
836                                 child_die(CHILD_ERR_SILENT);
837                         child_die(CHILD_ERR_ENOENT);
838                 } else {
839                         child_die(CHILD_ERR_ERRNO);
840                 }
841         }
842         atfork_parent(&as);
843         if (cmd->pid < 0)
844                 error_errno("cannot fork() for %s", cmd->argv[0]);
845         else if (cmd->clean_on_exit)
846                 mark_child_for_cleanup(cmd->pid, cmd);
847
848         /*
849          * Wait for child's exec. If the exec succeeds (or if fork()
850          * failed), EOF is seen immediately by the parent. Otherwise, the
851          * child process sends a child_err struct.
852          * Note that use of this infrastructure is completely advisory,
853          * therefore, we keep error checks minimal.
854          */
855         close(notify_pipe[1]);
856         if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
857                 /*
858                  * At this point we know that fork() succeeded, but exec()
859                  * failed. Errors have been reported to our stderr.
860                  */
861                 wait_or_whine(cmd->pid, cmd->argv[0], 0);
862                 child_err_spew(cmd, &cerr);
863                 failed_errno = errno;
864                 cmd->pid = -1;
865         }
866         close(notify_pipe[0]);
867
868         if (null_fd >= 0)
869                 close(null_fd);
870         argv_array_clear(&argv);
871         free(childenv);
872 }
873 end_of_spawn:
874
875 #else
876 {
877         int fhin = 0, fhout = 1, fherr = 2;
878         const char **sargv = cmd->argv;
879         struct argv_array nargv = ARGV_ARRAY_INIT;
880
881         if (cmd->no_stdin)
882                 fhin = open("/dev/null", O_RDWR);
883         else if (need_in)
884                 fhin = dup(fdin[0]);
885         else if (cmd->in)
886                 fhin = dup(cmd->in);
887
888         if (cmd->no_stderr)
889                 fherr = open("/dev/null", O_RDWR);
890         else if (need_err)
891                 fherr = dup(fderr[1]);
892         else if (cmd->err > 2)
893                 fherr = dup(cmd->err);
894
895         if (cmd->no_stdout)
896                 fhout = open("/dev/null", O_RDWR);
897         else if (cmd->stdout_to_stderr)
898                 fhout = dup(fherr);
899         else if (need_out)
900                 fhout = dup(fdout[1]);
901         else if (cmd->out > 1)
902                 fhout = dup(cmd->out);
903
904         if (cmd->git_cmd)
905                 cmd->argv = prepare_git_cmd(&nargv, cmd->argv);
906         else if (cmd->use_shell)
907                 cmd->argv = prepare_shell_cmd(&nargv, cmd->argv);
908
909         cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env,
910                         cmd->dir, fhin, fhout, fherr);
911         failed_errno = errno;
912         if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
913                 error_errno("cannot spawn %s", cmd->argv[0]);
914         if (cmd->clean_on_exit && cmd->pid >= 0)
915                 mark_child_for_cleanup(cmd->pid, cmd);
916
917         argv_array_clear(&nargv);
918         cmd->argv = sargv;
919         if (fhin != 0)
920                 close(fhin);
921         if (fhout != 1)
922                 close(fhout);
923         if (fherr != 2)
924                 close(fherr);
925 }
926 #endif
927
928         if (cmd->pid < 0) {
929                 if (need_in)
930                         close_pair(fdin);
931                 else if (cmd->in)
932                         close(cmd->in);
933                 if (need_out)
934                         close_pair(fdout);
935                 else if (cmd->out)
936                         close(cmd->out);
937                 if (need_err)
938                         close_pair(fderr);
939                 else if (cmd->err)
940                         close(cmd->err);
941                 child_process_clear(cmd);
942                 errno = failed_errno;
943                 return -1;
944         }
945
946         if (need_in)
947                 close(fdin[0]);
948         else if (cmd->in)
949                 close(cmd->in);
950
951         if (need_out)
952                 close(fdout[1]);
953         else if (cmd->out)
954                 close(cmd->out);
955
956         if (need_err)
957                 close(fderr[1]);
958         else if (cmd->err)
959                 close(cmd->err);
960
961         return 0;
962 }
963
964 int finish_command(struct child_process *cmd)
965 {
966         int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0);
967         child_process_clear(cmd);
968         return ret;
969 }
970
971 int finish_command_in_signal(struct child_process *cmd)
972 {
973         return wait_or_whine(cmd->pid, cmd->argv[0], 1);
974 }
975
976
977 int run_command(struct child_process *cmd)
978 {
979         int code;
980
981         if (cmd->out < 0 || cmd->err < 0)
982                 BUG("run_command with a pipe can cause deadlock");
983
984         code = start_command(cmd);
985         if (code)
986                 return code;
987         return finish_command(cmd);
988 }
989
990 int run_command_v_opt(const char **argv, int opt)
991 {
992         return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
993 }
994
995 int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
996 {
997         struct child_process cmd = CHILD_PROCESS_INIT;
998         cmd.argv = argv;
999         cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
1000         cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
1001         cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
1002         cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
1003         cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
1004         cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
1005         cmd.dir = dir;
1006         cmd.env = env;
1007         return run_command(&cmd);
1008 }
1009
1010 #ifndef NO_PTHREADS
1011 static pthread_t main_thread;
1012 static int main_thread_set;
1013 static pthread_key_t async_key;
1014 static pthread_key_t async_die_counter;
1015
1016 static void *run_thread(void *data)
1017 {
1018         struct async *async = data;
1019         intptr_t ret;
1020
1021         if (async->isolate_sigpipe) {
1022                 sigset_t mask;
1023                 sigemptyset(&mask);
1024                 sigaddset(&mask, SIGPIPE);
1025                 if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
1026                         ret = error("unable to block SIGPIPE in async thread");
1027                         return (void *)ret;
1028                 }
1029         }
1030
1031         pthread_setspecific(async_key, async);
1032         ret = async->proc(async->proc_in, async->proc_out, async->data);
1033         return (void *)ret;
1034 }
1035
1036 static NORETURN void die_async(const char *err, va_list params)
1037 {
1038         vreportf("fatal: ", err, params);
1039
1040         if (in_async()) {
1041                 struct async *async = pthread_getspecific(async_key);
1042                 if (async->proc_in >= 0)
1043                         close(async->proc_in);
1044                 if (async->proc_out >= 0)
1045                         close(async->proc_out);
1046                 pthread_exit((void *)128);
1047         }
1048
1049         exit(128);
1050 }
1051
1052 static int async_die_is_recursing(void)
1053 {
1054         void *ret = pthread_getspecific(async_die_counter);
1055         pthread_setspecific(async_die_counter, (void *)1);
1056         return ret != NULL;
1057 }
1058
1059 int in_async(void)
1060 {
1061         if (!main_thread_set)
1062                 return 0; /* no asyncs started yet */
1063         return !pthread_equal(main_thread, pthread_self());
1064 }
1065
1066 static void NORETURN async_exit(int code)
1067 {
1068         pthread_exit((void *)(intptr_t)code);
1069 }
1070
1071 #else
1072
1073 static struct {
1074         void (**handlers)(void);
1075         size_t nr;
1076         size_t alloc;
1077 } git_atexit_hdlrs;
1078
1079 static int git_atexit_installed;
1080
1081 static void git_atexit_dispatch(void)
1082 {
1083         size_t i;
1084
1085         for (i=git_atexit_hdlrs.nr ; i ; i--)
1086                 git_atexit_hdlrs.handlers[i-1]();
1087 }
1088
1089 static void git_atexit_clear(void)
1090 {
1091         free(git_atexit_hdlrs.handlers);
1092         memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1093         git_atexit_installed = 0;
1094 }
1095
1096 #undef atexit
1097 int git_atexit(void (*handler)(void))
1098 {
1099         ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1100         git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1101         if (!git_atexit_installed) {
1102                 if (atexit(&git_atexit_dispatch))
1103                         return -1;
1104                 git_atexit_installed = 1;
1105         }
1106         return 0;
1107 }
1108 #define atexit git_atexit
1109
1110 static int process_is_async;
1111 int in_async(void)
1112 {
1113         return process_is_async;
1114 }
1115
1116 static void NORETURN async_exit(int code)
1117 {
1118         exit(code);
1119 }
1120
1121 #endif
1122
1123 void check_pipe(int err)
1124 {
1125         if (err == EPIPE) {
1126                 if (in_async())
1127                         async_exit(141);
1128
1129                 signal(SIGPIPE, SIG_DFL);
1130                 raise(SIGPIPE);
1131                 /* Should never happen, but just in case... */
1132                 exit(141);
1133         }
1134 }
1135
1136 int start_async(struct async *async)
1137 {
1138         int need_in, need_out;
1139         int fdin[2], fdout[2];
1140         int proc_in, proc_out;
1141
1142         need_in = async->in < 0;
1143         if (need_in) {
1144                 if (pipe(fdin) < 0) {
1145                         if (async->out > 0)
1146                                 close(async->out);
1147                         return error_errno("cannot create pipe");
1148                 }
1149                 async->in = fdin[1];
1150         }
1151
1152         need_out = async->out < 0;
1153         if (need_out) {
1154                 if (pipe(fdout) < 0) {
1155                         if (need_in)
1156                                 close_pair(fdin);
1157                         else if (async->in)
1158                                 close(async->in);
1159                         return error_errno("cannot create pipe");
1160                 }
1161                 async->out = fdout[0];
1162         }
1163
1164         if (need_in)
1165                 proc_in = fdin[0];
1166         else if (async->in)
1167                 proc_in = async->in;
1168         else
1169                 proc_in = -1;
1170
1171         if (need_out)
1172                 proc_out = fdout[1];
1173         else if (async->out)
1174                 proc_out = async->out;
1175         else
1176                 proc_out = -1;
1177
1178 #ifdef NO_PTHREADS
1179         /* Flush stdio before fork() to avoid cloning buffers */
1180         fflush(NULL);
1181
1182         async->pid = fork();
1183         if (async->pid < 0) {
1184                 error_errno("fork (async) failed");
1185                 goto error;
1186         }
1187         if (!async->pid) {
1188                 if (need_in)
1189                         close(fdin[1]);
1190                 if (need_out)
1191                         close(fdout[0]);
1192                 git_atexit_clear();
1193                 process_is_async = 1;
1194                 exit(!!async->proc(proc_in, proc_out, async->data));
1195         }
1196
1197         mark_child_for_cleanup(async->pid, NULL);
1198
1199         if (need_in)
1200                 close(fdin[0]);
1201         else if (async->in)
1202                 close(async->in);
1203
1204         if (need_out)
1205                 close(fdout[1]);
1206         else if (async->out)
1207                 close(async->out);
1208 #else
1209         if (!main_thread_set) {
1210                 /*
1211                  * We assume that the first time that start_async is called
1212                  * it is from the main thread.
1213                  */
1214                 main_thread_set = 1;
1215                 main_thread = pthread_self();
1216                 pthread_key_create(&async_key, NULL);
1217                 pthread_key_create(&async_die_counter, NULL);
1218                 set_die_routine(die_async);
1219                 set_die_is_recursing_routine(async_die_is_recursing);
1220         }
1221
1222         if (proc_in >= 0)
1223                 set_cloexec(proc_in);
1224         if (proc_out >= 0)
1225                 set_cloexec(proc_out);
1226         async->proc_in = proc_in;
1227         async->proc_out = proc_out;
1228         {
1229                 int err = pthread_create(&async->tid, NULL, run_thread, async);
1230                 if (err) {
1231                         error(_("cannot create async thread: %s"), strerror(err));
1232                         goto error;
1233                 }
1234         }
1235 #endif
1236         return 0;
1237
1238 error:
1239         if (need_in)
1240                 close_pair(fdin);
1241         else if (async->in)
1242                 close(async->in);
1243
1244         if (need_out)
1245                 close_pair(fdout);
1246         else if (async->out)
1247                 close(async->out);
1248         return -1;
1249 }
1250
1251 int finish_async(struct async *async)
1252 {
1253 #ifdef NO_PTHREADS
1254         return wait_or_whine(async->pid, "child process", 0);
1255 #else
1256         void *ret = (void *)(intptr_t)(-1);
1257
1258         if (pthread_join(async->tid, &ret))
1259                 error("pthread_join failed");
1260         return (int)(intptr_t)ret;
1261 #endif
1262 }
1263
1264 int async_with_fork(void)
1265 {
1266 #ifdef NO_PTHREADS
1267         return 1;
1268 #else
1269         return 0;
1270 #endif
1271 }
1272
1273 const char *find_hook(const char *name)
1274 {
1275         static struct strbuf path = STRBUF_INIT;
1276
1277         strbuf_reset(&path);
1278         strbuf_git_path(&path, "hooks/%s", name);
1279         if (access(path.buf, X_OK) < 0) {
1280                 int err = errno;
1281
1282 #ifdef STRIP_EXTENSION
1283                 strbuf_addstr(&path, STRIP_EXTENSION);
1284                 if (access(path.buf, X_OK) >= 0)
1285                         return path.buf;
1286                 if (errno == EACCES)
1287                         err = errno;
1288 #endif
1289
1290                 if (err == EACCES && advice_ignored_hook) {
1291                         static struct string_list advise_given = STRING_LIST_INIT_DUP;
1292
1293                         if (!string_list_lookup(&advise_given, name)) {
1294                                 string_list_insert(&advise_given, name);
1295                                 advise(_("The '%s' hook was ignored because "
1296                                          "it's not set as executable.\n"
1297                                          "You can disable this warning with "
1298                                          "`git config advice.ignoredHook false`."),
1299                                        path.buf);
1300                         }
1301                 }
1302                 return NULL;
1303         }
1304         return path.buf;
1305 }
1306
1307 int run_hook_ve(const char *const *env, const char *name, va_list args)
1308 {
1309         struct child_process hook = CHILD_PROCESS_INIT;
1310         const char *p;
1311
1312         p = find_hook(name);
1313         if (!p)
1314                 return 0;
1315
1316         argv_array_push(&hook.args, p);
1317         while ((p = va_arg(args, const char *)))
1318                 argv_array_push(&hook.args, p);
1319         hook.env = env;
1320         hook.no_stdin = 1;
1321         hook.stdout_to_stderr = 1;
1322
1323         return run_command(&hook);
1324 }
1325
1326 int run_hook_le(const char *const *env, const char *name, ...)
1327 {
1328         va_list args;
1329         int ret;
1330
1331         va_start(args, name);
1332         ret = run_hook_ve(env, name, args);
1333         va_end(args);
1334
1335         return ret;
1336 }
1337
1338 struct io_pump {
1339         /* initialized by caller */
1340         int fd;
1341         int type; /* POLLOUT or POLLIN */
1342         union {
1343                 struct {
1344                         const char *buf;
1345                         size_t len;
1346                 } out;
1347                 struct {
1348                         struct strbuf *buf;
1349                         size_t hint;
1350                 } in;
1351         } u;
1352
1353         /* returned by pump_io */
1354         int error; /* 0 for success, otherwise errno */
1355
1356         /* internal use */
1357         struct pollfd *pfd;
1358 };
1359
1360 static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1361 {
1362         int pollsize = 0;
1363         int i;
1364
1365         for (i = 0; i < nr; i++) {
1366                 struct io_pump *io = &slots[i];
1367                 if (io->fd < 0)
1368                         continue;
1369                 pfd[pollsize].fd = io->fd;
1370                 pfd[pollsize].events = io->type;
1371                 io->pfd = &pfd[pollsize++];
1372         }
1373
1374         if (!pollsize)
1375                 return 0;
1376
1377         if (poll(pfd, pollsize, -1) < 0) {
1378                 if (errno == EINTR)
1379                         return 1;
1380                 die_errno("poll failed");
1381         }
1382
1383         for (i = 0; i < nr; i++) {
1384                 struct io_pump *io = &slots[i];
1385
1386                 if (io->fd < 0)
1387                         continue;
1388
1389                 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1390                         continue;
1391
1392                 if (io->type == POLLOUT) {
1393                         ssize_t len = xwrite(io->fd,
1394                                              io->u.out.buf, io->u.out.len);
1395                         if (len < 0) {
1396                                 io->error = errno;
1397                                 close(io->fd);
1398                                 io->fd = -1;
1399                         } else {
1400                                 io->u.out.buf += len;
1401                                 io->u.out.len -= len;
1402                                 if (!io->u.out.len) {
1403                                         close(io->fd);
1404                                         io->fd = -1;
1405                                 }
1406                         }
1407                 }
1408
1409                 if (io->type == POLLIN) {
1410                         ssize_t len = strbuf_read_once(io->u.in.buf,
1411                                                        io->fd, io->u.in.hint);
1412                         if (len < 0)
1413                                 io->error = errno;
1414                         if (len <= 0) {
1415                                 close(io->fd);
1416                                 io->fd = -1;
1417                         }
1418                 }
1419         }
1420
1421         return 1;
1422 }
1423
1424 static int pump_io(struct io_pump *slots, int nr)
1425 {
1426         struct pollfd *pfd;
1427         int i;
1428
1429         for (i = 0; i < nr; i++)
1430                 slots[i].error = 0;
1431
1432         ALLOC_ARRAY(pfd, nr);
1433         while (pump_io_round(slots, nr, pfd))
1434                 ; /* nothing */
1435         free(pfd);
1436
1437         /* There may be multiple errno values, so just pick the first. */
1438         for (i = 0; i < nr; i++) {
1439                 if (slots[i].error) {
1440                         errno = slots[i].error;
1441                         return -1;
1442                 }
1443         }
1444         return 0;
1445 }
1446
1447
1448 int pipe_command(struct child_process *cmd,
1449                  const char *in, size_t in_len,
1450                  struct strbuf *out, size_t out_hint,
1451                  struct strbuf *err, size_t err_hint)
1452 {
1453         struct io_pump io[3];
1454         int nr = 0;
1455
1456         if (in)
1457                 cmd->in = -1;
1458         if (out)
1459                 cmd->out = -1;
1460         if (err)
1461                 cmd->err = -1;
1462
1463         if (start_command(cmd) < 0)
1464                 return -1;
1465
1466         if (in) {
1467                 io[nr].fd = cmd->in;
1468                 io[nr].type = POLLOUT;
1469                 io[nr].u.out.buf = in;
1470                 io[nr].u.out.len = in_len;
1471                 nr++;
1472         }
1473         if (out) {
1474                 io[nr].fd = cmd->out;
1475                 io[nr].type = POLLIN;
1476                 io[nr].u.in.buf = out;
1477                 io[nr].u.in.hint = out_hint;
1478                 nr++;
1479         }
1480         if (err) {
1481                 io[nr].fd = cmd->err;
1482                 io[nr].type = POLLIN;
1483                 io[nr].u.in.buf = err;
1484                 io[nr].u.in.hint = err_hint;
1485                 nr++;
1486         }
1487
1488         if (pump_io(io, nr) < 0) {
1489                 finish_command(cmd); /* throw away exit code */
1490                 return -1;
1491         }
1492
1493         return finish_command(cmd);
1494 }
1495
1496 enum child_state {
1497         GIT_CP_FREE,
1498         GIT_CP_WORKING,
1499         GIT_CP_WAIT_CLEANUP,
1500 };
1501
1502 struct parallel_processes {
1503         void *data;
1504
1505         int max_processes;
1506         int nr_processes;
1507
1508         get_next_task_fn get_next_task;
1509         start_failure_fn start_failure;
1510         task_finished_fn task_finished;
1511
1512         struct {
1513                 enum child_state state;
1514                 struct child_process process;
1515                 struct strbuf err;
1516                 void *data;
1517         } *children;
1518         /*
1519          * The struct pollfd is logically part of *children,
1520          * but the system call expects it as its own array.
1521          */
1522         struct pollfd *pfd;
1523
1524         unsigned shutdown : 1;
1525
1526         int output_owner;
1527         struct strbuf buffered_output; /* of finished children */
1528 };
1529
1530 static int default_start_failure(struct strbuf *out,
1531                                  void *pp_cb,
1532                                  void *pp_task_cb)
1533 {
1534         return 0;
1535 }
1536
1537 static int default_task_finished(int result,
1538                                  struct strbuf *out,
1539                                  void *pp_cb,
1540                                  void *pp_task_cb)
1541 {
1542         return 0;
1543 }
1544
1545 static void kill_children(struct parallel_processes *pp, int signo)
1546 {
1547         int i, n = pp->max_processes;
1548
1549         for (i = 0; i < n; i++)
1550                 if (pp->children[i].state == GIT_CP_WORKING)
1551                         kill(pp->children[i].process.pid, signo);
1552 }
1553
1554 static struct parallel_processes *pp_for_signal;
1555
1556 static void handle_children_on_signal(int signo)
1557 {
1558         kill_children(pp_for_signal, signo);
1559         sigchain_pop(signo);
1560         raise(signo);
1561 }
1562
1563 static void pp_init(struct parallel_processes *pp,
1564                     int n,
1565                     get_next_task_fn get_next_task,
1566                     start_failure_fn start_failure,
1567                     task_finished_fn task_finished,
1568                     void *data)
1569 {
1570         int i;
1571
1572         if (n < 1)
1573                 n = online_cpus();
1574
1575         pp->max_processes = n;
1576
1577         trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1578
1579         pp->data = data;
1580         if (!get_next_task)
1581                 BUG("you need to specify a get_next_task function");
1582         pp->get_next_task = get_next_task;
1583
1584         pp->start_failure = start_failure ? start_failure : default_start_failure;
1585         pp->task_finished = task_finished ? task_finished : default_task_finished;
1586
1587         pp->nr_processes = 0;
1588         pp->output_owner = 0;
1589         pp->shutdown = 0;
1590         pp->children = xcalloc(n, sizeof(*pp->children));
1591         pp->pfd = xcalloc(n, sizeof(*pp->pfd));
1592         strbuf_init(&pp->buffered_output, 0);
1593
1594         for (i = 0; i < n; i++) {
1595                 strbuf_init(&pp->children[i].err, 0);
1596                 child_process_init(&pp->children[i].process);
1597                 pp->pfd[i].events = POLLIN | POLLHUP;
1598                 pp->pfd[i].fd = -1;
1599         }
1600
1601         pp_for_signal = pp;
1602         sigchain_push_common(handle_children_on_signal);
1603 }
1604
1605 static void pp_cleanup(struct parallel_processes *pp)
1606 {
1607         int i;
1608
1609         trace_printf("run_processes_parallel: done");
1610         for (i = 0; i < pp->max_processes; i++) {
1611                 strbuf_release(&pp->children[i].err);
1612                 child_process_clear(&pp->children[i].process);
1613         }
1614
1615         free(pp->children);
1616         free(pp->pfd);
1617
1618         /*
1619          * When get_next_task added messages to the buffer in its last
1620          * iteration, the buffered output is non empty.
1621          */
1622         strbuf_write(&pp->buffered_output, stderr);
1623         strbuf_release(&pp->buffered_output);
1624
1625         sigchain_pop_common();
1626 }
1627
1628 /* returns
1629  *  0 if a new task was started.
1630  *  1 if no new jobs was started (get_next_task ran out of work, non critical
1631  *    problem with starting a new command)
1632  * <0 no new job was started, user wishes to shutdown early. Use negative code
1633  *    to signal the children.
1634  */
1635 static int pp_start_one(struct parallel_processes *pp)
1636 {
1637         int i, code;
1638
1639         for (i = 0; i < pp->max_processes; i++)
1640                 if (pp->children[i].state == GIT_CP_FREE)
1641                         break;
1642         if (i == pp->max_processes)
1643                 BUG("bookkeeping is hard");
1644
1645         code = pp->get_next_task(&pp->children[i].process,
1646                                  &pp->children[i].err,
1647                                  pp->data,
1648                                  &pp->children[i].data);
1649         if (!code) {
1650                 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1651                 strbuf_reset(&pp->children[i].err);
1652                 return 1;
1653         }
1654         pp->children[i].process.err = -1;
1655         pp->children[i].process.stdout_to_stderr = 1;
1656         pp->children[i].process.no_stdin = 1;
1657
1658         if (start_command(&pp->children[i].process)) {
1659                 code = pp->start_failure(&pp->children[i].err,
1660                                          pp->data,
1661                                          pp->children[i].data);
1662                 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1663                 strbuf_reset(&pp->children[i].err);
1664                 if (code)
1665                         pp->shutdown = 1;
1666                 return code;
1667         }
1668
1669         pp->nr_processes++;
1670         pp->children[i].state = GIT_CP_WORKING;
1671         pp->pfd[i].fd = pp->children[i].process.err;
1672         return 0;
1673 }
1674
1675 static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1676 {
1677         int i;
1678
1679         while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1680                 if (errno == EINTR)
1681                         continue;
1682                 pp_cleanup(pp);
1683                 die_errno("poll");
1684         }
1685
1686         /* Buffer output from all pipes. */
1687         for (i = 0; i < pp->max_processes; i++) {
1688                 if (pp->children[i].state == GIT_CP_WORKING &&
1689                     pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1690                         int n = strbuf_read_once(&pp->children[i].err,
1691                                                  pp->children[i].process.err, 0);
1692                         if (n == 0) {
1693                                 close(pp->children[i].process.err);
1694                                 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1695                         } else if (n < 0)
1696                                 if (errno != EAGAIN)
1697                                         die_errno("read");
1698                 }
1699         }
1700 }
1701
1702 static void pp_output(struct parallel_processes *pp)
1703 {
1704         int i = pp->output_owner;
1705         if (pp->children[i].state == GIT_CP_WORKING &&
1706             pp->children[i].err.len) {
1707                 strbuf_write(&pp->children[i].err, stderr);
1708                 strbuf_reset(&pp->children[i].err);
1709         }
1710 }
1711
1712 static int pp_collect_finished(struct parallel_processes *pp)
1713 {
1714         int i, code;
1715         int n = pp->max_processes;
1716         int result = 0;
1717
1718         while (pp->nr_processes > 0) {
1719                 for (i = 0; i < pp->max_processes; i++)
1720                         if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1721                                 break;
1722                 if (i == pp->max_processes)
1723                         break;
1724
1725                 code = finish_command(&pp->children[i].process);
1726
1727                 code = pp->task_finished(code,
1728                                          &pp->children[i].err, pp->data,
1729                                          pp->children[i].data);
1730
1731                 if (code)
1732                         result = code;
1733                 if (code < 0)
1734                         break;
1735
1736                 pp->nr_processes--;
1737                 pp->children[i].state = GIT_CP_FREE;
1738                 pp->pfd[i].fd = -1;
1739                 child_process_init(&pp->children[i].process);
1740
1741                 if (i != pp->output_owner) {
1742                         strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1743                         strbuf_reset(&pp->children[i].err);
1744                 } else {
1745                         strbuf_write(&pp->children[i].err, stderr);
1746                         strbuf_reset(&pp->children[i].err);
1747
1748                         /* Output all other finished child processes */
1749                         strbuf_write(&pp->buffered_output, stderr);
1750                         strbuf_reset(&pp->buffered_output);
1751
1752                         /*
1753                          * Pick next process to output live.
1754                          * NEEDSWORK:
1755                          * For now we pick it randomly by doing a round
1756                          * robin. Later we may want to pick the one with
1757                          * the most output or the longest or shortest
1758                          * running process time.
1759                          */
1760                         for (i = 0; i < n; i++)
1761                                 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1762                                         break;
1763                         pp->output_owner = (pp->output_owner + i) % n;
1764                 }
1765         }
1766         return result;
1767 }
1768
1769 int run_processes_parallel(int n,
1770                            get_next_task_fn get_next_task,
1771                            start_failure_fn start_failure,
1772                            task_finished_fn task_finished,
1773                            void *pp_cb)
1774 {
1775         int i, code;
1776         int output_timeout = 100;
1777         int spawn_cap = 4;
1778         struct parallel_processes pp;
1779
1780         pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1781         while (1) {
1782                 for (i = 0;
1783                     i < spawn_cap && !pp.shutdown &&
1784                     pp.nr_processes < pp.max_processes;
1785                     i++) {
1786                         code = pp_start_one(&pp);
1787                         if (!code)
1788                                 continue;
1789                         if (code < 0) {
1790                                 pp.shutdown = 1;
1791                                 kill_children(&pp, -code);
1792                         }
1793                         break;
1794                 }
1795                 if (!pp.nr_processes)
1796                         break;
1797                 pp_buffer_stderr(&pp, output_timeout);
1798                 pp_output(&pp);
1799                 code = pp_collect_finished(&pp);
1800                 if (code) {
1801                         pp.shutdown = 1;
1802                         if (code < 0)
1803                                 kill_children(&pp, -code);
1804                 }
1805         }
1806
1807         pp_cleanup(&pp);
1808         return 0;
1809 }