7 * Generic implementation of hash-based key-value mappings.
9 * An example that maps long to a string:
10 * For the sake of the example this allows to lookup exact values, too
11 * (i.e. it is operated as a set, the value is part of the key)
12 * -------------------------------------
15 * struct long2string {
16 * struct hashmap_entry ent;
18 * char value[FLEX_ARRAY]; // be careful with allocating on stack!
21 * #define COMPARE_VALUE 1
23 * static int long2string_cmp(const void *hashmap_cmp_fn_data,
24 * const struct hashmap_entry *eptr,
25 * const struct hashmap_entry *entry_or_key,
26 * const void *keydata)
28 * const char *string = keydata;
29 * unsigned flags = *(unsigned *)hashmap_cmp_fn_data;
30 * const struct long2string *e1, *e2;
32 * e1 = container_of(eptr, const struct long2string, ent);
33 * e2 = container_of(entry_or_key, const struct long2string, ent);
35 * if (flags & COMPARE_VALUE)
36 * return e1->key != e2->key ||
37 * strcmp(e1->value, string ? string : e2->value);
39 * return e1->key != e2->key;
42 * int main(int argc, char **argv)
45 * char value[255], action[32];
48 * hashmap_init(&map, long2string_cmp, &flags, 0);
50 * while (scanf("%s %ld %s", action, &key, value)) {
52 * if (!strcmp("add", action)) {
53 * struct long2string *e;
54 * FLEX_ALLOC_STR(e, value, value);
55 * hashmap_entry_init(&e->ent, memhash(&key, sizeof(long)));
57 * hashmap_add(&map, &e->ent);
60 * if (!strcmp("print_all_by_key", action)) {
61 * struct long2string k, *e;
62 * hashmap_entry_init(&k.ent, memhash(&key, sizeof(long)));
65 * flags &= ~COMPARE_VALUE;
66 * e = hashmap_get_entry(&map, &k, ent, NULL);
68 * printf("first: %ld %s\n", e->key, e->value);
69 * while ((e = hashmap_get_next_entry(&map, e,
70 * struct long2string, ent))) {
71 * printf("found more: %ld %s\n", e->key, e->value);
76 * if (!strcmp("has_exact_match", action)) {
77 * struct long2string *e;
78 * FLEX_ALLOC_STR(e, value, value);
79 * hashmap_entry_init(&e->ent, memhash(&key, sizeof(long)));
82 * flags |= COMPARE_VALUE;
84 * hashmap_get(&map, &e->ent, NULL) ? "" : "not ");
88 * if (!strcmp("has_exact_match_no_heap_alloc", action)) {
89 * struct long2string k;
90 * hashmap_entry_init(&k.ent, memhash(&key, sizeof(long)));
93 * flags |= COMPARE_VALUE;
95 * hashmap_get(&map, &k.ent, value) ? "" : "not ");
98 * if (!strcmp("end", action)) {
99 * hashmap_free_entries(&map, struct long2string, ent);
109 * Ready-to-use hash functions for strings, using the FNV-1 algorithm (see
110 * http://www.isthe.com/chongo/tech/comp/fnv).
111 * `strhash` and `strihash` take 0-terminated strings, while `memhash` and
112 * `memihash` operate on arbitrary-length memory.
113 * `strihash` and `memihash` are case insensitive versions.
114 * `memihash_cont` is a variant of `memihash` that allows a computation to be
115 * continued with another chunk of data.
117 unsigned int strhash(const char *buf);
118 unsigned int strihash(const char *buf);
119 unsigned int memhash(const void *buf, size_t len);
120 unsigned int memihash(const void *buf, size_t len);
121 unsigned int memihash_cont(unsigned int hash_seed, const void *buf, size_t len);
124 * Converts a cryptographic hash (e.g. SHA-1) into an int-sized hash code
125 * for use in hash tables. Cryptographic hashes are supposed to have
126 * uniform distribution, so in contrast to `memhash()`, this just copies
127 * the first `sizeof(int)` bytes without shuffling any bits. Note that
128 * the results will be different on big-endian and little-endian
129 * platforms, so they should not be stored or transferred over the net.
131 static inline unsigned int oidhash(const struct object_id *oid)
134 * Equivalent to 'return *(unsigned int *)oid->hash;', but safe on
135 * platforms that don't support unaligned reads.
138 memcpy(&hash, oid->hash, sizeof(hash));
143 * struct hashmap_entry is an opaque structure representing an entry in the
145 * Ideally it should be followed by an int-sized member to prevent unused
146 * memory on 64-bit systems due to alignment.
148 struct hashmap_entry {
150 * next points to the next entry in case of collisions (i.e. if
151 * multiple entries map to the same bucket)
153 struct hashmap_entry *next;
155 /* entry's hash code */
160 * User-supplied function to test two hashmap entries for equality. Shall
161 * return 0 if the entries are equal.
163 * This function is always called with non-NULL `entry` and `entry_or_key`
164 * parameters that have the same hash code.
166 * When looking up an entry, the `key` and `keydata` parameters to hashmap_get
167 * and hashmap_remove are always passed as second `entry_or_key` and third
168 * argument `keydata`, respectively. Otherwise, `keydata` is NULL.
170 * When it is too expensive to allocate a user entry (either because it is
171 * large or variable sized, such that it is not on the stack), then the
172 * relevant data to check for equality should be passed via `keydata`.
173 * In this case `key` can be a stripped down version of the user key data
174 * or even just a hashmap_entry having the correct hash.
176 * The `hashmap_cmp_fn_data` entry is the pointer given in the init function.
178 typedef int (*hashmap_cmp_fn)(const void *hashmap_cmp_fn_data,
179 const struct hashmap_entry *entry,
180 const struct hashmap_entry *entry_or_key,
181 const void *keydata);
184 * struct hashmap is the hash table structure. Members can be used as follows,
185 * but should not be modified directly.
188 struct hashmap_entry **table;
190 /* Stores the comparison function specified in `hashmap_init()`. */
191 hashmap_cmp_fn cmpfn;
192 const void *cmpfn_data;
194 /* total number of entries (0 means the hashmap is empty) */
195 unsigned int private_size; /* use hashmap_get_size() */
198 * tablesize is the allocated size of the hash table. A non-0 value
199 * indicates that the hashmap is initialized. It may also be useful
200 * for statistical purposes (i.e. `size / tablesize` is the current
203 unsigned int tablesize;
205 unsigned int grow_at;
206 unsigned int shrink_at;
208 unsigned int do_count_items : 1;
211 /* hashmap functions */
213 #define HASHMAP_INIT(fn, data) { .cmpfn = fn, .cmpfn_data = data, \
214 .do_count_items = 1 }
217 * Initializes a hashmap structure.
219 * `map` is the hashmap to initialize.
221 * The `equals_function` can be specified to compare two entries for equality.
222 * If NULL, entries are considered equal if their hash codes are equal.
224 * The `equals_function_data` parameter can be used to provide additional data
225 * (a callback cookie) that will be passed to `equals_function` each time it
226 * is called. This allows a single `equals_function` to implement multiple
227 * comparison functions.
229 * If the total number of entries is known in advance, the `initial_size`
230 * parameter may be used to preallocate a sufficiently large table and thus
231 * prevent expensive resizing. If 0, the table is dynamically resized.
233 void hashmap_init(struct hashmap *map,
234 hashmap_cmp_fn equals_function,
235 const void *equals_function_data,
236 size_t initial_size);
238 /* internal functions for clearing or freeing hashmap */
239 void hashmap_partial_clear_(struct hashmap *map, ssize_t offset);
240 void hashmap_free_(struct hashmap *map, ssize_t offset);
243 * Frees a hashmap structure and allocated memory for the table, but does not
244 * free the entries nor anything they point to.
248 * Many callers will need to iterate over all entries and free the data each
249 * entry points to; in such a case, they can free the entry itself while at it.
250 * Thus, you might see:
252 * hashmap_for_each_entry(map, hashmap_iter, e, hashmap_entry_name) {
253 * free(e->somefield);
260 * hashmap_for_each_entry(map, hashmap_iter, e, hashmap_entry_name) {
261 * free(e->somefield);
263 * hashmap_free_entries(map, struct my_entry_struct, hashmap_entry_name);
265 * to avoid the implicit extra loop over the entries. However, if there are
266 * no special fields in your entry that need to be freed beyond the entry
267 * itself, it is probably simpler to avoid the explicit loop and just call
268 * hashmap_free_entries().
270 #define hashmap_free(map) hashmap_free_(map, -1)
273 * Basically the same as calling hashmap_free() followed by hashmap_init(),
274 * but doesn't incur the overhead of deallocating and reallocating
275 * map->table; it leaves map->table allocated and the same size but zeroes
276 * it out so it's ready for use again as an empty map. As with
277 * hashmap_free(), you may need to free the entries yourself before calling
280 #define hashmap_partial_clear(map) hashmap_partial_clear_(map, -1)
283 * Frees @map and all entries. @type is the struct type of the entry
284 * where @member is the hashmap_entry struct used to associate with @map.
286 * See usage note above hashmap_free().
288 #define hashmap_free_entries(map, type, member) \
289 hashmap_free_(map, offsetof(type, member));
291 /* hashmap_entry functions */
294 * Initializes a hashmap_entry structure.
296 * `entry` points to the entry to initialize.
297 * `hash` is the hash code of the entry.
299 * The hashmap_entry structure does not hold references to external resources,
300 * and it is safe to just discard it once you are done with it (i.e. if
301 * your structure was allocated with xmalloc(), you can just free(3) it,
302 * and if it is on stack, you can just let it go out of scope).
304 static inline void hashmap_entry_init(struct hashmap_entry *e,
312 * Return the number of items in the map.
314 static inline unsigned int hashmap_get_size(struct hashmap *map)
316 if (map->do_count_items)
317 return map->private_size;
319 BUG("hashmap_get_size: size not set");
324 * Returns the hashmap entry for the specified key, or NULL if not found.
326 * `map` is the hashmap structure.
328 * `key` is a user data structure that starts with hashmap_entry that has at
329 * least been initialized with the proper hash code (via `hashmap_entry_init`).
331 * `keydata` is a data structure that holds just enough information to check
332 * for equality to a given entry.
334 * If the key data is variable-sized (e.g. a FLEX_ARRAY string) or quite large,
335 * it is undesirable to create a full-fledged entry structure on the heap and
336 * copy all the key data into the structure.
338 * In this case, the `keydata` parameter can be used to pass
339 * variable-sized key data directly to the comparison function, and the `key`
340 * parameter can be a stripped-down, fixed size entry structure allocated on the
343 * If an entry with matching hash code is found, `key` and `keydata` are passed
344 * to `hashmap_cmp_fn` to decide whether the entry matches the key.
346 struct hashmap_entry *hashmap_get(const struct hashmap *map,
347 const struct hashmap_entry *key,
348 const void *keydata);
351 * Returns the hashmap entry for the specified hash code and key data,
352 * or NULL if not found.
354 * `map` is the hashmap structure.
355 * `hash` is the hash code of the entry to look up.
357 * If an entry with matching hash code is found, `keydata` is passed to
358 * `hashmap_cmp_fn` to decide whether the entry matches the key. The
359 * `entry_or_key` parameter of `hashmap_cmp_fn` points to a hashmap_entry
360 * structure that should not be used in the comparison.
362 static inline struct hashmap_entry *hashmap_get_from_hash(
363 const struct hashmap *map,
367 struct hashmap_entry key;
368 hashmap_entry_init(&key, hash);
369 return hashmap_get(map, &key, keydata);
373 * Returns the next equal hashmap entry, or NULL if not found. This can be
374 * used to iterate over duplicate entries (see `hashmap_add`).
376 * `map` is the hashmap structure.
377 * `entry` is the hashmap_entry to start the search from, obtained via a previous
378 * call to `hashmap_get` or `hashmap_get_next`.
380 struct hashmap_entry *hashmap_get_next(const struct hashmap *map,
381 const struct hashmap_entry *entry);
384 * Adds a hashmap entry. This allows to add duplicate entries (i.e.
385 * separate values with the same key according to hashmap_cmp_fn).
387 * `map` is the hashmap structure.
388 * `entry` is the entry to add.
390 void hashmap_add(struct hashmap *map, struct hashmap_entry *entry);
393 * Adds or replaces a hashmap entry. If the hashmap contains duplicate
394 * entries equal to the specified entry, only one of them will be replaced.
396 * `map` is the hashmap structure.
397 * `entry` is the entry to add or replace.
398 * Returns the replaced entry, or NULL if not found (i.e. the entry was added).
400 struct hashmap_entry *hashmap_put(struct hashmap *map,
401 struct hashmap_entry *entry);
404 * Adds or replaces a hashmap entry contained within @keyvar,
405 * where @keyvar is a pointer to a struct containing a
406 * "struct hashmap_entry" @member.
408 * Returns the replaced pointer which is of the same type as @keyvar,
409 * or NULL if not found.
411 #define hashmap_put_entry(map, keyvar, member) \
412 container_of_or_null_offset(hashmap_put(map, &(keyvar)->member), \
413 OFFSETOF_VAR(keyvar, member))
416 * Removes a hashmap entry matching the specified key. If the hashmap contains
417 * duplicate entries equal to the specified key, only one of them will be
418 * removed. Returns the removed entry, or NULL if not found.
420 * Argument explanation is the same as in `hashmap_get`.
422 struct hashmap_entry *hashmap_remove(struct hashmap *map,
423 const struct hashmap_entry *key,
424 const void *keydata);
427 * Removes a hashmap entry contained within @keyvar,
428 * where @keyvar is a pointer to a struct containing a
429 * "struct hashmap_entry" @member.
431 * See `hashmap_get` for an explanation of @keydata
433 * Returns the replaced pointer which is of the same type as @keyvar,
434 * or NULL if not found.
436 #define hashmap_remove_entry(map, keyvar, member, keydata) \
437 container_of_or_null_offset( \
438 hashmap_remove(map, &(keyvar)->member, keydata), \
439 OFFSETOF_VAR(keyvar, member))
442 * Returns the `bucket` an entry is stored in.
443 * Useful for multithreaded read access.
445 int hashmap_bucket(const struct hashmap *map, unsigned int hash);
448 * Used to iterate over all entries of a hashmap. Note that it is
449 * not safe to add or remove entries to the hashmap while
452 struct hashmap_iter {
454 struct hashmap_entry *next;
455 unsigned int tablepos;
458 /* Initializes a `hashmap_iter` structure. */
459 void hashmap_iter_init(struct hashmap *map, struct hashmap_iter *iter);
461 /* Returns the next hashmap_entry, or NULL if there are no more entries. */
462 struct hashmap_entry *hashmap_iter_next(struct hashmap_iter *iter);
464 /* Initializes the iterator and returns the first entry, if any. */
465 static inline struct hashmap_entry *hashmap_iter_first(struct hashmap *map,
466 struct hashmap_iter *iter)
468 hashmap_iter_init(map, iter);
469 return hashmap_iter_next(iter);
473 * returns the first entry in @map using @iter, where the entry is of
474 * @type (e.g. "struct foo") and @member is the name of the
475 * "struct hashmap_entry" in @type
477 #define hashmap_iter_first_entry(map, iter, type, member) \
478 container_of_or_null(hashmap_iter_first(map, iter), type, member)
480 /* internal macro for hashmap_for_each_entry */
481 #define hashmap_iter_next_entry_offset(iter, offset) \
482 container_of_or_null_offset(hashmap_iter_next(iter), offset)
484 /* internal macro for hashmap_for_each_entry */
485 #define hashmap_iter_first_entry_offset(map, iter, offset) \
486 container_of_or_null_offset(hashmap_iter_first(map, iter), offset)
489 * iterate through @map using @iter, @var is a pointer to a type
490 * containing a @member which is a "struct hashmap_entry"
492 #define hashmap_for_each_entry(map, iter, var, member) \
493 for (var = NULL, /* for systems without typeof */ \
494 var = hashmap_iter_first_entry_offset(map, iter, \
495 OFFSETOF_VAR(var, member)); \
497 var = hashmap_iter_next_entry_offset(iter, \
498 OFFSETOF_VAR(var, member)))
501 * returns a pointer of type matching @keyvar, or NULL if nothing found.
502 * @keyvar is a pointer to a struct containing a
503 * "struct hashmap_entry" @member.
505 #define hashmap_get_entry(map, keyvar, member, keydata) \
506 container_of_or_null_offset( \
507 hashmap_get(map, &(keyvar)->member, keydata), \
508 OFFSETOF_VAR(keyvar, member))
510 #define hashmap_get_entry_from_hash(map, hash, keydata, type, member) \
511 container_of_or_null(hashmap_get_from_hash(map, hash, keydata), \
514 * returns the next equal pointer to @var, or NULL if not found.
515 * @var is a pointer of any type containing "struct hashmap_entry"
516 * @member is the name of the "struct hashmap_entry" field
518 #define hashmap_get_next_entry(map, var, member) \
519 container_of_or_null_offset(hashmap_get_next(map, &(var)->member), \
520 OFFSETOF_VAR(var, member))
523 * iterate @map starting from @var, where @var is a pointer of @type
524 * and @member is the name of the "struct hashmap_entry" field in @type
526 #define hashmap_for_each_entry_from(map, var, member) \
529 var = hashmap_get_next_entry(map, var, member))
532 * Disable item counting and automatic rehashing when adding/removing items.
534 * Normally, the hashmap keeps track of the number of items in the map
535 * and uses it to dynamically resize it. This (both the counting and
536 * the resizing) can cause problems when the map is being used by
537 * threaded callers (because the hashmap code does not know about the
538 * locking strategy used by the threaded callers and therefore, does
539 * not know how to protect the "private_size" counter).
541 static inline void hashmap_disable_item_counting(struct hashmap *map)
543 map->do_count_items = 0;
547 * Re-enable item counting when adding/removing items.
548 * If counting is currently disabled, it will force count them.
549 * It WILL NOT automatically rehash them.
551 static inline void hashmap_enable_item_counting(struct hashmap *map)
554 struct hashmap_iter iter;
556 if (map->do_count_items)
559 hashmap_iter_init(map, &iter);
560 while (hashmap_iter_next(&iter))
563 map->do_count_items = 1;
564 map->private_size = n;
567 /* String interning */
570 * Returns the unique, interned version of the specified string or data,
571 * similar to the `String.intern` API in Java and .NET, respectively.
572 * Interned strings remain valid for the entire lifetime of the process.
574 * Can be used as `[x]strdup()` or `xmemdupz` replacement, except that interned
575 * strings / data must not be modified or freed.
577 * Interned strings are best used for short strings with high probability of
580 * Uses a hashmap to store the pool of interned strings.
582 const void *memintern(const void *data, size_t len);
583 static inline const char *strintern(const char *string)
585 return memintern(string, strlen(string));