Merge branch 'an/shallow-doc'
[git] / vcs-svn / trp.txt
1 Motivation
2 ==========
3
4 Treaps provide a memory-efficient binary search tree structure.
5 Insertion/deletion/search are about as about as fast in the average
6 case as red-black trees and the chances of worst-case behavior are
7 vanishingly small, thanks to (pseudo-)randomness.  The bad worst-case
8 behavior is a small price to pay, given that treaps are much simpler
9 to implement.
10
11 API
12 ===
13
14 The trp API generates a data structure and functions to handle a
15 large growing set of objects stored in a pool.
16
17 The caller:
18
19 . Specifies parameters for the generated functions with the
20   trp_gen(static, foo_, ...) macro.
21
22 . Allocates a `struct trp_root` variable and sets it to {~0}.
23
24 . Adds new nodes to the set using `foo_insert`.  Any pointers
25   to existing nodes cannot be relied upon any more, so the caller
26   might retrieve them anew with `foo_pointer`.
27
28 . Can find a specific item in the set using `foo_search`.
29
30 . Can iterate over items in the set using `foo_first` and `foo_next`.
31
32 . Can remove an item from the set using `foo_remove`.
33
34 Example:
35
36 ----
37 struct ex_node {
38         const char *s;
39         struct trp_node ex_link;
40 };
41 static struct trp_root ex_base = {~0};
42 obj_pool_gen(ex, struct ex_node, 4096);
43 trp_gen(static, ex_, struct ex_node, ex_link, ex, strcmp)
44 struct ex_node *item;
45
46 item = ex_pointer(ex_alloc(1));
47 item->s = "hello";
48 ex_insert(&ex_base, item);
49 item = ex_pointer(ex_alloc(1));
50 item->s = "goodbye";
51 ex_insert(&ex_base, item);
52 for (item = ex_first(&ex_base); item; item = ex_next(&ex_base, item))
53         printf("%s\n", item->s);
54 ----
55
56 Functions
57 ---------
58
59 trp_gen(attr, foo_, node_type, link_field, pool, cmp)::
60
61         Generate a type-specific treap implementation.
62 +
63 . The storage class for generated functions will be 'attr' (e.g., `static`).
64 . Generated function names are prefixed with 'foo_' (e.g., `treap_`).
65 . Treap nodes will be of type 'node_type' (e.g., `struct treap_node`).
66   This type must be a struct with at least one `struct trp_node` field
67   to point to its children.
68 . The field used to access child nodes will be 'link_field'.
69 . All treap nodes must lie in the 'pool' object pool.
70 . Treap nodes must be totally ordered by the 'cmp' relation, with the
71   following prototype:
72 +
73 int (*cmp)(node_type \*a, node_type \*b)
74 +
75 and returning a value less than, equal to, or greater than zero
76 according to the result of comparison.
77
78 node_type {asterisk}foo_insert(struct trp_root *treap, node_type \*node)::
79
80         Insert node into treap.  If inserted multiple times,
81         a node will appear in the treap multiple times.
82 +
83 The return value is the address of the node within the treap,
84 which might differ from `node` if `pool_alloc` had to call
85 `realloc` to expand the pool.
86
87 void foo_remove(struct trp_root *treap, node_type \*node)::
88
89         Remove node from treap.  Caller must ensure node is
90         present in treap before using this function.
91
92 node_type *foo_search(struct trp_root \*treap, node_type \*key)::
93
94         Search for a node that matches key.  If no match is found,
95         result is NULL.
96
97 node_type *foo_nsearch(struct trp_root \*treap, node_type \*key)::
98
99         Like `foo_search`, but if the key is missing return what
100         would be key's successor, were key in treap (NULL if no
101         successor).
102
103 node_type *foo_first(struct trp_root \*treap)::
104
105         Find the first item from the treap, in sorted order.
106
107 node_type *foo_next(struct trp_root \*treap, node_type \*node)::
108
109         Find the next item.