4 #include "cache-tree.h"
10 struct cache_tree *cache_tree(void)
12 struct cache_tree *it = xcalloc(1, sizeof(struct cache_tree));
17 void cache_tree_free(struct cache_tree **it_p)
20 struct cache_tree *it = *it_p;
24 for (i = 0; i < it->subtree_nr; i++)
26 cache_tree_free(&it->down[i]->cache_tree);
34 static int subtree_name_cmp(const char *one, int onelen,
35 const char *two, int twolen)
41 return memcmp(one, two, onelen);
44 static int subtree_pos(struct cache_tree *it, const char *path, int pathlen)
46 struct cache_tree_sub **down = it->down;
51 int mi = (lo + hi) / 2;
52 struct cache_tree_sub *mdl = down[mi];
53 int cmp = subtree_name_cmp(path, pathlen,
54 mdl->name, mdl->namelen);
65 static struct cache_tree_sub *find_subtree(struct cache_tree *it,
70 struct cache_tree_sub *down;
71 int pos = subtree_pos(it, path, pathlen);
78 if (it->subtree_alloc <= it->subtree_nr) {
79 it->subtree_alloc = alloc_nr(it->subtree_alloc);
80 it->down = xrealloc(it->down, it->subtree_alloc *
85 down = xmalloc(sizeof(*down) + pathlen + 1);
86 down->cache_tree = NULL;
87 down->namelen = pathlen;
88 memcpy(down->name, path, pathlen);
89 down->name[pathlen] = 0;
91 if (pos < it->subtree_nr)
92 memmove(it->down + pos + 1,
94 sizeof(down) * (it->subtree_nr - pos - 1));
99 struct cache_tree_sub *cache_tree_sub(struct cache_tree *it, const char *path)
101 int pathlen = strlen(path);
102 return find_subtree(it, path, pathlen, 1);
105 void cache_tree_invalidate_path(struct cache_tree *it, const char *path)
108 * ==> invalidate self
109 * ==> find "a", have it invalidate "b/c"
111 * ==> invalidate self
112 * ==> if "a" exists as a subtree, remove it.
116 struct cache_tree_sub *down;
119 fprintf(stderr, "cache-tree invalidate <%s>\n", path);
124 slash = strchr(path, '/');
125 it->entry_count = -1;
128 namelen = strlen(path);
129 pos = subtree_pos(it, path, namelen);
131 cache_tree_free(&it->down[pos]->cache_tree);
136 * move 4 and 5 up one place (2 entries)
137 * 2 = 6 - 3 - 1 = subtree_nr - pos - 1
139 memmove(it->down+pos, it->down+pos+1,
140 sizeof(struct cache_tree_sub *) *
141 (it->subtree_nr - pos - 1));
146 namelen = slash - path;
147 down = find_subtree(it, path, namelen, 0);
149 cache_tree_invalidate_path(down->cache_tree, slash + 1);
152 static int verify_cache(struct cache_entry **cache,
153 int entries, int flags)
156 int silent = flags & WRITE_TREE_SILENT;
158 /* Verify that the tree is merged */
160 for (i = 0; i < entries; i++) {
161 struct cache_entry *ce = cache[i];
166 fprintf(stderr, "...\n");
169 fprintf(stderr, "%s: unmerged (%s)\n",
170 ce->name, sha1_to_hex(ce->sha1));
176 /* Also verify that the cache does not have path and path/file
177 * at the same time. At this point we know the cache has only
181 for (i = 0; i < entries - 1; i++) {
182 /* path/file always comes after path because of the way
183 * the cache is sorted. Also path can appear only once,
184 * which means conflicting one would immediately follow.
186 const char *this_name = cache[i]->name;
187 const char *next_name = cache[i+1]->name;
188 int this_len = strlen(this_name);
189 if (this_len < strlen(next_name) &&
190 strncmp(this_name, next_name, this_len) == 0 &&
191 next_name[this_len] == '/') {
193 fprintf(stderr, "...\n");
196 fprintf(stderr, "You have both %s and %s\n",
197 this_name, next_name);
205 static void discard_unused_subtrees(struct cache_tree *it)
207 struct cache_tree_sub **down = it->down;
208 int nr = it->subtree_nr;
210 for (dst = src = 0; src < nr; src++) {
211 struct cache_tree_sub *s = down[src];
215 cache_tree_free(&s->cache_tree);
222 int cache_tree_fully_valid(struct cache_tree *it)
227 if (it->entry_count < 0 || !has_sha1_file(it->sha1))
229 for (i = 0; i < it->subtree_nr; i++) {
230 if (!cache_tree_fully_valid(it->down[i]->cache_tree))
236 static int update_one(struct cache_tree *it,
237 struct cache_entry **cache,
244 struct strbuf buffer;
245 int missing_ok = flags & WRITE_TREE_MISSING_OK;
246 int dryrun = flags & WRITE_TREE_DRY_RUN;
251 if (0 <= it->entry_count && has_sha1_file(it->sha1))
252 return it->entry_count;
255 * We first scan for subtrees and update them; we start by
256 * marking existing subtrees -- the ones that are unmarked
257 * should not be in the result.
259 for (i = 0; i < it->subtree_nr; i++)
260 it->down[i]->used = 0;
263 * Find the subtrees and update them.
266 while (i < entries) {
267 struct cache_entry *ce = cache[i];
268 struct cache_tree_sub *sub;
269 const char *path, *slash;
270 int pathlen, sublen, subcnt, subskip;
273 pathlen = ce_namelen(ce);
274 if (pathlen <= baselen || memcmp(base, path, baselen))
275 break; /* at the end of this level */
277 slash = strchr(path + baselen, '/');
283 * a/bbb/c (base = a/, slash = /c)
285 * path+baselen = bbb/c, sublen = 3
287 sublen = slash - (path + baselen);
288 sub = find_subtree(it, path + baselen, sublen, 1);
289 if (!sub->cache_tree)
290 sub->cache_tree = cache_tree();
291 subcnt = update_one(sub->cache_tree,
292 cache + i, entries - i,
294 baselen + sublen + 1,
300 sub->count = subcnt; /* to be used in the next loop */
301 *skip_count += subskip;
305 discard_unused_subtrees(it);
308 * Then write out the tree object for this level.
310 strbuf_init(&buffer, 8192);
313 while (i < entries) {
314 struct cache_entry *ce = cache[i];
315 struct cache_tree_sub *sub;
316 const char *path, *slash;
318 const unsigned char *sha1;
322 pathlen = ce_namelen(ce);
323 if (pathlen <= baselen || memcmp(base, path, baselen))
324 break; /* at the end of this level */
326 slash = strchr(path + baselen, '/');
328 entlen = slash - (path + baselen);
329 sub = find_subtree(it, path + baselen, entlen, 0);
331 die("cache-tree.c: '%.*s' in '%s' not found",
332 entlen, path + baselen, path);
334 sha1 = sub->cache_tree->sha1;
340 entlen = pathlen - baselen;
343 if (mode != S_IFGITLINK && !missing_ok && !has_sha1_file(sha1)) {
344 strbuf_release(&buffer);
345 return error("invalid object %06o %s for '%.*s'",
346 mode, sha1_to_hex(sha1), entlen+baselen, path);
350 * CE_REMOVE entries are removed before the index is
351 * written to disk. Skip them to remain consistent
352 * with the future on-disk index.
354 if (ce->ce_flags & CE_REMOVE) {
355 *skip_count = *skip_count + 1;
359 if (ce->ce_flags & CE_INTENT_TO_ADD)
362 strbuf_grow(&buffer, entlen + 100);
363 strbuf_addf(&buffer, "%o %.*s%c", mode, entlen, path + baselen, '\0');
364 strbuf_add(&buffer, sha1, 20);
367 fprintf(stderr, "cache-tree update-one %o %.*s\n",
368 mode, entlen, path + baselen);
373 hash_sha1_file(buffer.buf, buffer.len, tree_type, it->sha1);
374 else if (write_sha1_file(buffer.buf, buffer.len, tree_type, it->sha1)) {
375 strbuf_release(&buffer);
379 strbuf_release(&buffer);
380 it->entry_count = i - *skip_count;
382 fprintf(stderr, "cache-tree update-one (%d ent, %d subtree) %s\n",
383 it->entry_count, it->subtree_nr,
384 sha1_to_hex(it->sha1));
389 int cache_tree_update(struct cache_tree *it,
390 struct cache_entry **cache,
395 i = verify_cache(cache, entries, flags);
398 i = update_one(it, cache, entries, "", 0, &skip, flags);
404 static void write_one(struct strbuf *buffer, struct cache_tree *it,
405 const char *path, int pathlen)
409 /* One "cache-tree" entry consists of the following:
410 * path (NUL terminated)
411 * entry_count, subtree_nr ("%d %d\n")
412 * tree-sha1 (missing if invalid)
413 * subtree_nr "cache-tree" entries for subtrees.
415 strbuf_grow(buffer, pathlen + 100);
416 strbuf_add(buffer, path, pathlen);
417 strbuf_addf(buffer, "%c%d %d\n", 0, it->entry_count, it->subtree_nr);
420 if (0 <= it->entry_count)
421 fprintf(stderr, "cache-tree <%.*s> (%d ent, %d subtree) %s\n",
422 pathlen, path, it->entry_count, it->subtree_nr,
423 sha1_to_hex(it->sha1));
425 fprintf(stderr, "cache-tree <%.*s> (%d subtree) invalid\n",
426 pathlen, path, it->subtree_nr);
429 if (0 <= it->entry_count) {
430 strbuf_add(buffer, it->sha1, 20);
432 for (i = 0; i < it->subtree_nr; i++) {
433 struct cache_tree_sub *down = it->down[i];
435 struct cache_tree_sub *prev = it->down[i-1];
436 if (subtree_name_cmp(down->name, down->namelen,
437 prev->name, prev->namelen) <= 0)
438 die("fatal - unsorted cache subtree");
440 write_one(buffer, down->cache_tree, down->name, down->namelen);
444 void cache_tree_write(struct strbuf *sb, struct cache_tree *root)
446 write_one(sb, root, "", 0);
449 static struct cache_tree *read_one(const char **buffer, unsigned long *size_p)
451 const char *buf = *buffer;
452 unsigned long size = *size_p;
455 struct cache_tree *it;
459 /* skip name, but make sure name exists */
460 while (size && *buf) {
470 it->entry_count = strtol(cp, &ep, 10);
474 subtree_nr = strtol(cp, &ep, 10);
477 while (size && *buf && *buf != '\n') {
484 if (0 <= it->entry_count) {
487 hashcpy(it->sha1, (const unsigned char*)buf);
493 if (0 <= it->entry_count)
494 fprintf(stderr, "cache-tree <%s> (%d ent, %d subtree) %s\n",
495 *buffer, it->entry_count, subtree_nr,
496 sha1_to_hex(it->sha1));
498 fprintf(stderr, "cache-tree <%s> (%d subtrees) invalid\n",
499 *buffer, subtree_nr);
503 * Just a heuristic -- we do not add directories that often but
504 * we do not want to have to extend it immediately when we do,
507 it->subtree_alloc = subtree_nr + 2;
508 it->down = xcalloc(it->subtree_alloc, sizeof(struct cache_tree_sub *));
509 for (i = 0; i < subtree_nr; i++) {
510 /* read each subtree */
511 struct cache_tree *sub;
512 struct cache_tree_sub *subtree;
513 const char *name = buf;
515 sub = read_one(&buf, &size);
518 subtree = cache_tree_sub(it, name);
519 subtree->cache_tree = sub;
521 if (subtree_nr != it->subtree_nr)
522 die("cache-tree: internal error");
528 cache_tree_free(&it);
532 struct cache_tree *cache_tree_read(const char *buffer, unsigned long size)
535 return NULL; /* not the whole tree */
536 return read_one(&buffer, &size);
539 static struct cache_tree *cache_tree_find(struct cache_tree *it, const char *path)
545 struct cache_tree_sub *sub;
547 slash = strchr(path, '/');
549 slash = path + strlen(path);
550 /* between path and slash is the name of the
551 * subtree to look for.
553 sub = find_subtree(it, path, slash - path, 0);
556 it = sub->cache_tree;
558 while (*slash && *slash == '/')
560 if (!slash || !*slash)
561 return it; /* prefix ended with slashes */
567 int write_cache_as_tree(unsigned char *sha1, int flags, const char *prefix)
569 int entries, was_valid, newfd;
570 struct lock_file *lock_file;
573 * We can't free this memory, it becomes part of a linked list
576 lock_file = xcalloc(1, sizeof(struct lock_file));
578 newfd = hold_locked_index(lock_file, 1);
580 entries = read_cache();
582 return WRITE_TREE_UNREADABLE_INDEX;
583 if (flags & WRITE_TREE_IGNORE_CACHE_TREE)
584 cache_tree_free(&(active_cache_tree));
586 if (!active_cache_tree)
587 active_cache_tree = cache_tree();
589 was_valid = cache_tree_fully_valid(active_cache_tree);
591 if (cache_tree_update(active_cache_tree,
592 active_cache, active_nr,
594 return WRITE_TREE_UNMERGED_INDEX;
596 if (!write_cache(newfd, active_cache, active_nr) &&
597 !commit_lock_file(lock_file))
600 /* Not being able to write is fine -- we are only interested
601 * in updating the cache-tree part, and if the next caller
602 * ends up using the old index with unupdated cache-tree part
603 * it misses the work we did here, but that is just a
604 * performance penalty and not a big deal.
609 struct cache_tree *subtree =
610 cache_tree_find(active_cache_tree, prefix);
612 return WRITE_TREE_PREFIX_ERROR;
613 hashcpy(sha1, subtree->sha1);
616 hashcpy(sha1, active_cache_tree->sha1);
619 rollback_lock_file(lock_file);
624 static void prime_cache_tree_rec(struct cache_tree *it, struct tree *tree)
626 struct tree_desc desc;
627 struct name_entry entry;
630 hashcpy(it->sha1, tree->object.sha1);
631 init_tree_desc(&desc, tree->buffer, tree->size);
633 while (tree_entry(&desc, &entry)) {
634 if (!S_ISDIR(entry.mode))
637 struct cache_tree_sub *sub;
638 struct tree *subtree = lookup_tree(entry.sha1);
639 if (!subtree->object.parsed)
641 sub = cache_tree_sub(it, entry.path);
642 sub->cache_tree = cache_tree();
643 prime_cache_tree_rec(sub->cache_tree, subtree);
644 cnt += sub->cache_tree->entry_count;
647 it->entry_count = cnt;
650 void prime_cache_tree(struct cache_tree **it, struct tree *tree)
654 prime_cache_tree_rec(*it, tree);
658 * find the cache_tree that corresponds to the current level without
659 * exploding the full path into textual form. The root of the
660 * cache tree is given as "root", and our current level is "info".
661 * (1) When at root level, info->prev is NULL, so it is "root" itself.
662 * (2) Otherwise, find the cache_tree that corresponds to one level
663 * above us, and find ourselves in there.
665 static struct cache_tree *find_cache_tree_from_traversal(struct cache_tree *root,
666 struct traverse_info *info)
668 struct cache_tree *our_parent;
672 our_parent = find_cache_tree_from_traversal(root, info->prev);
673 return cache_tree_find(our_parent, info->name.path);
676 int cache_tree_matches_traversal(struct cache_tree *root,
677 struct name_entry *ent,
678 struct traverse_info *info)
680 struct cache_tree *it;
682 it = find_cache_tree_from_traversal(root, info);
683 it = cache_tree_find(it, ent->path);
684 if (it && it->entry_count > 0 && !hashcmp(ent->sha1, it->sha1))
685 return it->entry_count;
689 int update_main_cache_tree(int flags)
691 if (!the_index.cache_tree)
692 the_index.cache_tree = cache_tree();
693 return cache_tree_update(the_index.cache_tree,
694 the_index.cache, the_index.cache_nr, flags);