3 #include "refs-internal.h"
5 #include "../iterator.h"
7 void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
9 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
10 dir->entries[dir->nr++] = entry;
11 /* optimize for the case that entries are added in order */
13 (dir->nr == dir->sorted + 1 &&
14 strcmp(dir->entries[dir->nr - 2]->name,
15 dir->entries[dir->nr - 1]->name) < 0))
16 dir->sorted = dir->nr;
19 struct ref_dir *get_ref_dir(struct ref_entry *entry)
22 assert(entry->flag & REF_DIR);
23 dir = &entry->u.subdir;
24 if (entry->flag & REF_INCOMPLETE) {
25 if (!dir->cache->fill_ref_dir)
26 die("BUG: incomplete ref_store without fill_ref_dir function");
28 dir->cache->fill_ref_dir(dir->cache->ref_store, dir, entry->name);
29 entry->flag &= ~REF_INCOMPLETE;
34 struct ref_entry *create_ref_entry(const char *refname,
35 const struct object_id *oid, int flag)
37 struct ref_entry *ref;
39 FLEX_ALLOC_STR(ref, name, refname);
40 oidcpy(&ref->u.value.oid, oid);
41 oidclr(&ref->u.value.peeled);
46 struct ref_cache *create_ref_cache(struct ref_store *refs,
47 fill_ref_dir_fn *fill_ref_dir)
49 struct ref_cache *ret = xcalloc(1, sizeof(*ret));
51 ret->ref_store = refs;
52 ret->fill_ref_dir = fill_ref_dir;
53 ret->root = create_dir_entry(ret, "", 0, 1);
57 static void clear_ref_dir(struct ref_dir *dir);
59 static void free_ref_entry(struct ref_entry *entry)
61 if (entry->flag & REF_DIR) {
63 * Do not use get_ref_dir() here, as that might
64 * trigger the reading of loose refs.
66 clear_ref_dir(&entry->u.subdir);
71 void free_ref_cache(struct ref_cache *cache)
73 free_ref_entry(cache->root);
78 * Clear and free all entries in dir, recursively.
80 static void clear_ref_dir(struct ref_dir *dir)
83 for (i = 0; i < dir->nr; i++)
84 free_ref_entry(dir->entries[i]);
85 FREE_AND_NULL(dir->entries);
86 dir->sorted = dir->nr = dir->alloc = 0;
89 struct ref_entry *create_dir_entry(struct ref_cache *cache,
90 const char *dirname, size_t len,
93 struct ref_entry *direntry;
95 FLEX_ALLOC_MEM(direntry, name, dirname, len);
96 direntry->u.subdir.cache = cache;
97 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
101 static int ref_entry_cmp(const void *a, const void *b)
103 struct ref_entry *one = *(struct ref_entry **)a;
104 struct ref_entry *two = *(struct ref_entry **)b;
105 return strcmp(one->name, two->name);
108 static void sort_ref_dir(struct ref_dir *dir);
110 struct string_slice {
115 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
117 const struct string_slice *key = key_;
118 const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
119 int cmp = strncmp(key->str, ent->name, key->len);
122 return '\0' - (unsigned char)ent->name[key->len];
125 int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
127 struct ref_entry **r;
128 struct string_slice key;
130 if (refname == NULL || !dir->nr)
136 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
137 ref_entry_cmp_sslice);
142 return r - dir->entries;
146 * Search for a directory entry directly within dir (without
147 * recursing). Sort dir if necessary. subdirname must be a directory
148 * name (i.e., end in '/'). If mkdir is set, then create the
149 * directory if it is missing; otherwise, return NULL if the desired
150 * directory cannot be found. dir must already be complete.
152 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
153 const char *subdirname, size_t len,
156 int entry_index = search_ref_dir(dir, subdirname, len);
157 struct ref_entry *entry;
158 if (entry_index == -1) {
162 * Since dir is complete, the absence of a subdir
163 * means that the subdir really doesn't exist;
164 * therefore, create an empty record for it but mark
165 * the record complete.
167 entry = create_dir_entry(dir->cache, subdirname, len, 0);
168 add_entry_to_dir(dir, entry);
170 entry = dir->entries[entry_index];
172 return get_ref_dir(entry);
176 * If refname is a reference name, find the ref_dir within the dir
177 * tree that should hold refname. If refname is a directory name
178 * (i.e., it ends in '/'), then return that ref_dir itself. dir must
179 * represent the top-level directory and must already be complete.
180 * Sort ref_dirs and recurse into subdirectories as necessary. If
181 * mkdir is set, then create any missing directories; otherwise,
182 * return NULL if the desired directory cannot be found.
184 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
185 const char *refname, int mkdir)
188 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
189 size_t dirnamelen = slash - refname + 1;
190 struct ref_dir *subdir;
191 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
202 struct ref_entry *find_ref_entry(struct ref_dir *dir, const char *refname)
205 struct ref_entry *entry;
206 dir = find_containing_dir(dir, refname, 0);
209 entry_index = search_ref_dir(dir, refname, strlen(refname));
210 if (entry_index == -1)
212 entry = dir->entries[entry_index];
213 return (entry->flag & REF_DIR) ? NULL : entry;
216 int remove_entry_from_dir(struct ref_dir *dir, const char *refname)
218 int refname_len = strlen(refname);
220 struct ref_entry *entry;
221 int is_dir = refname[refname_len - 1] == '/';
224 * refname represents a reference directory. Remove
225 * the trailing slash; otherwise we will get the
226 * directory *representing* refname rather than the
227 * one *containing* it.
229 char *dirname = xmemdupz(refname, refname_len - 1);
230 dir = find_containing_dir(dir, dirname, 0);
233 dir = find_containing_dir(dir, refname, 0);
237 entry_index = search_ref_dir(dir, refname, refname_len);
238 if (entry_index == -1)
240 entry = dir->entries[entry_index];
242 memmove(&dir->entries[entry_index],
243 &dir->entries[entry_index + 1],
244 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
247 if (dir->sorted > entry_index)
249 free_ref_entry(entry);
253 int add_ref_entry(struct ref_dir *dir, struct ref_entry *ref)
255 dir = find_containing_dir(dir, ref->name, 1);
258 add_entry_to_dir(dir, ref);
263 * Emit a warning and return true iff ref1 and ref2 have the same name
264 * and the same sha1. Die if they have the same name but different
267 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
269 if (strcmp(ref1->name, ref2->name))
272 /* Duplicate name; make sure that they don't conflict: */
274 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
275 /* This is impossible by construction */
276 die("Reference directory conflict: %s", ref1->name);
278 if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
279 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
281 warning("Duplicated ref: %s", ref1->name);
286 * Sort the entries in dir non-recursively (if they are not already
287 * sorted) and remove any duplicate entries.
289 static void sort_ref_dir(struct ref_dir *dir)
292 struct ref_entry *last = NULL;
295 * This check also prevents passing a zero-length array to qsort(),
296 * which is a problem on some platforms.
298 if (dir->sorted == dir->nr)
301 QSORT(dir->entries, dir->nr, ref_entry_cmp);
303 /* Remove any duplicates: */
304 for (i = 0, j = 0; j < dir->nr; j++) {
305 struct ref_entry *entry = dir->entries[j];
306 if (last && is_dup_ref(last, entry))
307 free_ref_entry(entry);
309 last = dir->entries[i++] = entry;
311 dir->sorted = dir->nr = i;
315 /* All refs within the directory would match prefix: */
318 /* Some, but not all, refs within the directory might match prefix: */
321 /* No refs within the directory could possibly match prefix: */
326 * Return a `prefix_state` constant describing the relationship
327 * between the directory with the specified `dirname` and `prefix`.
329 static enum prefix_state overlaps_prefix(const char *dirname,
332 while (*prefix && *dirname == *prefix) {
337 return PREFIX_CONTAINS_DIR;
339 return PREFIX_WITHIN_DIR;
341 return PREFIX_EXCLUDES_DIR;
345 * Load all of the refs from `dir` (recursively) that could possibly
346 * contain references matching `prefix` into our in-memory cache. If
347 * `prefix` is NULL, prime unconditionally.
349 static void prime_ref_dir(struct ref_dir *dir, const char *prefix)
352 * The hard work of loading loose refs is done by get_ref_dir(), so we
353 * just need to recurse through all of the sub-directories. We do not
354 * even need to care about sorting, as traversal order does not matter
358 for (i = 0; i < dir->nr; i++) {
359 struct ref_entry *entry = dir->entries[i];
360 if (!(entry->flag & REF_DIR)) {
361 /* Not a directory; no need to recurse. */
362 } else if (!prefix) {
363 /* Recurse in any case: */
364 prime_ref_dir(get_ref_dir(entry), NULL);
366 switch (overlaps_prefix(entry->name, prefix)) {
367 case PREFIX_CONTAINS_DIR:
369 * Recurse, and from here down we
370 * don't have to check the prefix
373 prime_ref_dir(get_ref_dir(entry), NULL);
375 case PREFIX_WITHIN_DIR:
376 prime_ref_dir(get_ref_dir(entry), prefix);
378 case PREFIX_EXCLUDES_DIR:
379 /* No need to prime this directory. */
387 * A level in the reference hierarchy that is currently being iterated
390 struct cache_ref_iterator_level {
392 * The ref_dir being iterated over at this level. The ref_dir
393 * is sorted before being stored here.
397 enum prefix_state prefix_state;
400 * The index of the current entry within dir (which might
401 * itself be a directory). If index == -1, then the iteration
402 * hasn't yet begun. If index == dir->nr, then the iteration
403 * through this level is over.
409 * Represent an iteration through a ref_dir in the memory cache. The
410 * iteration recurses through subdirectories.
412 struct cache_ref_iterator {
413 struct ref_iterator base;
416 * The number of levels currently on the stack. This is always
417 * at least 1, because when it becomes zero the iteration is
418 * ended and this struct is freed.
422 /* The number of levels that have been allocated on the stack */
426 * Only include references with this prefix in the iteration.
427 * The prefix is matched textually, without regard for path
428 * component boundaries.
433 * A stack of levels. levels[0] is the uppermost level that is
434 * being iterated over in this iteration. (This is not
435 * necessary the top level in the references hierarchy. If we
436 * are iterating through a subtree, then levels[0] will hold
437 * the ref_dir for that subtree, and subsequent levels will go
440 struct cache_ref_iterator_level *levels;
443 static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
445 struct cache_ref_iterator *iter =
446 (struct cache_ref_iterator *)ref_iterator;
449 struct cache_ref_iterator_level *level =
450 &iter->levels[iter->levels_nr - 1];
451 struct ref_dir *dir = level->dir;
452 struct ref_entry *entry;
453 enum prefix_state entry_prefix_state;
455 if (level->index == -1)
458 if (++level->index == level->dir->nr) {
459 /* This level is exhausted; pop up a level */
460 if (--iter->levels_nr == 0)
461 return ref_iterator_abort(ref_iterator);
466 entry = dir->entries[level->index];
468 if (level->prefix_state == PREFIX_WITHIN_DIR) {
469 entry_prefix_state = overlaps_prefix(entry->name, iter->prefix);
470 if (entry_prefix_state == PREFIX_EXCLUDES_DIR)
473 entry_prefix_state = level->prefix_state;
476 if (entry->flag & REF_DIR) {
477 /* push down a level */
478 ALLOC_GROW(iter->levels, iter->levels_nr + 1,
481 level = &iter->levels[iter->levels_nr++];
482 level->dir = get_ref_dir(entry);
483 level->prefix_state = entry_prefix_state;
486 iter->base.refname = entry->name;
487 iter->base.oid = &entry->u.value.oid;
488 iter->base.flags = entry->flag;
494 enum peel_status peel_entry(struct ref_entry *entry, int repeel)
496 enum peel_status status;
498 if (entry->flag & REF_KNOWS_PEELED) {
500 entry->flag &= ~REF_KNOWS_PEELED;
501 oidclr(&entry->u.value.peeled);
503 return is_null_oid(&entry->u.value.peeled) ?
504 PEEL_NON_TAG : PEEL_PEELED;
507 if (entry->flag & REF_ISBROKEN)
509 if (entry->flag & REF_ISSYMREF)
510 return PEEL_IS_SYMREF;
512 status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
513 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
514 entry->flag |= REF_KNOWS_PEELED;
518 static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
519 struct object_id *peeled)
521 struct cache_ref_iterator *iter =
522 (struct cache_ref_iterator *)ref_iterator;
523 struct cache_ref_iterator_level *level;
524 struct ref_entry *entry;
526 level = &iter->levels[iter->levels_nr - 1];
528 if (level->index == -1)
529 die("BUG: peel called before advance for cache iterator");
531 entry = level->dir->entries[level->index];
533 if (peel_entry(entry, 0))
535 oidcpy(peeled, &entry->u.value.peeled);
539 static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
541 struct cache_ref_iterator *iter =
542 (struct cache_ref_iterator *)ref_iterator;
544 free((char *)iter->prefix);
546 base_ref_iterator_free(ref_iterator);
550 static struct ref_iterator_vtable cache_ref_iterator_vtable = {
551 cache_ref_iterator_advance,
552 cache_ref_iterator_peel,
553 cache_ref_iterator_abort
556 struct ref_iterator *cache_ref_iterator_begin(struct ref_cache *cache,
561 struct cache_ref_iterator *iter;
562 struct ref_iterator *ref_iterator;
563 struct cache_ref_iterator_level *level;
565 dir = get_ref_dir(cache->root);
566 if (prefix && *prefix)
567 dir = find_containing_dir(dir, prefix, 0);
569 /* There's nothing to iterate over. */
570 return empty_ref_iterator_begin();
573 prime_ref_dir(dir, prefix);
575 iter = xcalloc(1, sizeof(*iter));
576 ref_iterator = &iter->base;
577 base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
578 ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
581 level = &iter->levels[0];
585 if (prefix && *prefix) {
586 iter->prefix = xstrdup(prefix);
587 level->prefix_state = PREFIX_WITHIN_DIR;
589 level->prefix_state = PREFIX_CONTAINS_DIR;