run-command: block signals between fork and execve
[git] / run-command.c
1 #include "cache.h"
2 #include "run-command.h"
3 #include "exec_cmd.h"
4 #include "sigchain.h"
5 #include "argv-array.h"
6 #include "thread-utils.h"
7 #include "strbuf.h"
8
9 void child_process_init(struct child_process *child)
10 {
11         memset(child, 0, sizeof(*child));
12         argv_array_init(&child->args);
13         argv_array_init(&child->env_array);
14 }
15
16 void child_process_clear(struct child_process *child)
17 {
18         argv_array_clear(&child->args);
19         argv_array_clear(&child->env_array);
20 }
21
22 struct child_to_clean {
23         pid_t pid;
24         struct child_process *process;
25         struct child_to_clean *next;
26 };
27 static struct child_to_clean *children_to_clean;
28 static int installed_child_cleanup_handler;
29
30 static void cleanup_children(int sig, int in_signal)
31 {
32         struct child_to_clean *children_to_wait_for = NULL;
33
34         while (children_to_clean) {
35                 struct child_to_clean *p = children_to_clean;
36                 children_to_clean = p->next;
37
38                 if (p->process && !in_signal) {
39                         struct child_process *process = p->process;
40                         if (process->clean_on_exit_handler) {
41                                 trace_printf(
42                                         "trace: run_command: running exit handler for pid %"
43                                         PRIuMAX, (uintmax_t)p->pid
44                                 );
45                                 process->clean_on_exit_handler(process);
46                         }
47                 }
48
49                 kill(p->pid, sig);
50
51                 if (p->process && p->process->wait_after_clean) {
52                         p->next = children_to_wait_for;
53                         children_to_wait_for = p;
54                 } else {
55                         if (!in_signal)
56                                 free(p);
57                 }
58         }
59
60         while (children_to_wait_for) {
61                 struct child_to_clean *p = children_to_wait_for;
62                 children_to_wait_for = p->next;
63
64                 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
65                         ; /* spin waiting for process exit or error */
66
67                 if (!in_signal)
68                         free(p);
69         }
70 }
71
72 static void cleanup_children_on_signal(int sig)
73 {
74         cleanup_children(sig, 1);
75         sigchain_pop(sig);
76         raise(sig);
77 }
78
79 static void cleanup_children_on_exit(void)
80 {
81         cleanup_children(SIGTERM, 0);
82 }
83
84 static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
85 {
86         struct child_to_clean *p = xmalloc(sizeof(*p));
87         p->pid = pid;
88         p->process = process;
89         p->next = children_to_clean;
90         children_to_clean = p;
91
92         if (!installed_child_cleanup_handler) {
93                 atexit(cleanup_children_on_exit);
94                 sigchain_push_common(cleanup_children_on_signal);
95                 installed_child_cleanup_handler = 1;
96         }
97 }
98
99 static void clear_child_for_cleanup(pid_t pid)
100 {
101         struct child_to_clean **pp;
102
103         for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
104                 struct child_to_clean *clean_me = *pp;
105
106                 if (clean_me->pid == pid) {
107                         *pp = clean_me->next;
108                         free(clean_me);
109                         return;
110                 }
111         }
112 }
113
114 static inline void close_pair(int fd[2])
115 {
116         close(fd[0]);
117         close(fd[1]);
118 }
119
120 static char *locate_in_PATH(const char *file)
121 {
122         const char *p = getenv("PATH");
123         struct strbuf buf = STRBUF_INIT;
124
125         if (!p || !*p)
126                 return NULL;
127
128         while (1) {
129                 const char *end = strchrnul(p, ':');
130
131                 strbuf_reset(&buf);
132
133                 /* POSIX specifies an empty entry as the current directory. */
134                 if (end != p) {
135                         strbuf_add(&buf, p, end - p);
136                         strbuf_addch(&buf, '/');
137                 }
138                 strbuf_addstr(&buf, file);
139
140                 if (!access(buf.buf, F_OK))
141                         return strbuf_detach(&buf, NULL);
142
143                 if (!*end)
144                         break;
145                 p = end + 1;
146         }
147
148         strbuf_release(&buf);
149         return NULL;
150 }
151
152 static int exists_in_PATH(const char *file)
153 {
154         char *r = locate_in_PATH(file);
155         free(r);
156         return r != NULL;
157 }
158
159 int sane_execvp(const char *file, char * const argv[])
160 {
161         if (!execvp(file, argv))
162                 return 0; /* cannot happen ;-) */
163
164         /*
165          * When a command can't be found because one of the directories
166          * listed in $PATH is unsearchable, execvp reports EACCES, but
167          * careful usability testing (read: analysis of occasional bug
168          * reports) reveals that "No such file or directory" is more
169          * intuitive.
170          *
171          * We avoid commands with "/", because execvp will not do $PATH
172          * lookups in that case.
173          *
174          * The reassignment of EACCES to errno looks like a no-op below,
175          * but we need to protect against exists_in_PATH overwriting errno.
176          */
177         if (errno == EACCES && !strchr(file, '/'))
178                 errno = exists_in_PATH(file) ? EACCES : ENOENT;
179         else if (errno == ENOTDIR && !strchr(file, '/'))
180                 errno = ENOENT;
181         return -1;
182 }
183
184 static const char **prepare_shell_cmd(struct argv_array *out, const char **argv)
185 {
186         if (!argv[0])
187                 die("BUG: shell command is empty");
188
189         if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
190 #ifndef GIT_WINDOWS_NATIVE
191                 argv_array_push(out, SHELL_PATH);
192 #else
193                 argv_array_push(out, "sh");
194 #endif
195                 argv_array_push(out, "-c");
196
197                 /*
198                  * If we have no extra arguments, we do not even need to
199                  * bother with the "$@" magic.
200                  */
201                 if (!argv[1])
202                         argv_array_push(out, argv[0]);
203                 else
204                         argv_array_pushf(out, "%s \"$@\"", argv[0]);
205         }
206
207         argv_array_pushv(out, argv);
208         return out->argv;
209 }
210
211 #ifndef GIT_WINDOWS_NATIVE
212 static int child_notifier = -1;
213
214 enum child_errcode {
215         CHILD_ERR_CHDIR,
216         CHILD_ERR_DUP2,
217         CHILD_ERR_CLOSE,
218         CHILD_ERR_SIGPROCMASK,
219         CHILD_ERR_ENOENT,
220         CHILD_ERR_SILENT,
221         CHILD_ERR_ERRNO
222 };
223
224 struct child_err {
225         enum child_errcode err;
226         int syserr; /* errno */
227 };
228
229 static void child_die(enum child_errcode err)
230 {
231         struct child_err buf;
232
233         buf.err = err;
234         buf.syserr = errno;
235
236         /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
237         xwrite(child_notifier, &buf, sizeof(buf));
238         _exit(1);
239 }
240
241 static void child_dup2(int fd, int to)
242 {
243         if (dup2(fd, to) < 0)
244                 child_die(CHILD_ERR_DUP2);
245 }
246
247 static void child_close(int fd)
248 {
249         if (close(fd))
250                 child_die(CHILD_ERR_CLOSE);
251 }
252
253 static void child_close_pair(int fd[2])
254 {
255         child_close(fd[0]);
256         child_close(fd[1]);
257 }
258
259 /*
260  * parent will make it look like the child spewed a fatal error and died
261  * this is needed to prevent changes to t0061.
262  */
263 static void fake_fatal(const char *err, va_list params)
264 {
265         vreportf("fatal: ", err, params);
266 }
267
268 static void child_error_fn(const char *err, va_list params)
269 {
270         const char msg[] = "error() should not be called in child\n";
271         xwrite(2, msg, sizeof(msg) - 1);
272 }
273
274 static void child_warn_fn(const char *err, va_list params)
275 {
276         const char msg[] = "warn() should not be called in child\n";
277         xwrite(2, msg, sizeof(msg) - 1);
278 }
279
280 static void NORETURN child_die_fn(const char *err, va_list params)
281 {
282         const char msg[] = "die() should not be called in child\n";
283         xwrite(2, msg, sizeof(msg) - 1);
284         _exit(2);
285 }
286
287 /* this runs in the parent process */
288 static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
289 {
290         static void (*old_errfn)(const char *err, va_list params);
291
292         old_errfn = get_error_routine();
293         set_error_routine(fake_fatal);
294         errno = cerr->syserr;
295
296         switch (cerr->err) {
297         case CHILD_ERR_CHDIR:
298                 error_errno("exec '%s': cd to '%s' failed",
299                             cmd->argv[0], cmd->dir);
300                 break;
301         case CHILD_ERR_DUP2:
302                 error_errno("dup2() in child failed");
303                 break;
304         case CHILD_ERR_CLOSE:
305                 error_errno("close() in child failed");
306                 break;
307         case CHILD_ERR_SIGPROCMASK:
308                 error_errno("sigprocmask failed restoring signals");
309                 break;
310         case CHILD_ERR_ENOENT:
311                 error_errno("cannot run %s", cmd->argv[0]);
312                 break;
313         case CHILD_ERR_SILENT:
314                 break;
315         case CHILD_ERR_ERRNO:
316                 error_errno("cannot exec '%s'", cmd->argv[0]);
317                 break;
318         }
319         set_error_routine(old_errfn);
320 }
321
322 static void prepare_cmd(struct argv_array *out, const struct child_process *cmd)
323 {
324         if (!cmd->argv[0])
325                 die("BUG: command is empty");
326
327         /*
328          * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
329          * attempt to interpret the command with 'sh'.
330          */
331         argv_array_push(out, SHELL_PATH);
332
333         if (cmd->git_cmd) {
334                 argv_array_push(out, "git");
335                 argv_array_pushv(out, cmd->argv);
336         } else if (cmd->use_shell) {
337                 prepare_shell_cmd(out, cmd->argv);
338         } else {
339                 argv_array_pushv(out, cmd->argv);
340         }
341
342         /*
343          * If there are no '/' characters in the command then perform a path
344          * lookup and use the resolved path as the command to exec.  If there
345          * are no '/' characters or if the command wasn't found in the path,
346          * have exec attempt to invoke the command directly.
347          */
348         if (!strchr(out->argv[1], '/')) {
349                 char *program = locate_in_PATH(out->argv[1]);
350                 if (program) {
351                         free((char *)out->argv[1]);
352                         out->argv[1] = program;
353                 }
354         }
355 }
356
357 static char **prep_childenv(const char *const *deltaenv)
358 {
359         extern char **environ;
360         char **childenv;
361         struct string_list env = STRING_LIST_INIT_DUP;
362         struct strbuf key = STRBUF_INIT;
363         const char *const *p;
364         int i;
365
366         /* Construct a sorted string list consisting of the current environ */
367         for (p = (const char *const *) environ; p && *p; p++) {
368                 const char *equals = strchr(*p, '=');
369
370                 if (equals) {
371                         strbuf_reset(&key);
372                         strbuf_add(&key, *p, equals - *p);
373                         string_list_append(&env, key.buf)->util = (void *) *p;
374                 } else {
375                         string_list_append(&env, *p)->util = (void *) *p;
376                 }
377         }
378         string_list_sort(&env);
379
380         /* Merge in 'deltaenv' with the current environ */
381         for (p = deltaenv; p && *p; p++) {
382                 const char *equals = strchr(*p, '=');
383
384                 if (equals) {
385                         /* ('key=value'), insert or replace entry */
386                         strbuf_reset(&key);
387                         strbuf_add(&key, *p, equals - *p);
388                         string_list_insert(&env, key.buf)->util = (void *) *p;
389                 } else {
390                         /* otherwise ('key') remove existing entry */
391                         string_list_remove(&env, *p, 0);
392                 }
393         }
394
395         /* Create an array of 'char *' to be used as the childenv */
396         childenv = xmalloc((env.nr + 1) * sizeof(char *));
397         for (i = 0; i < env.nr; i++)
398                 childenv[i] = env.items[i].util;
399         childenv[env.nr] = NULL;
400
401         string_list_clear(&env, 0);
402         strbuf_release(&key);
403         return childenv;
404 }
405
406 struct atfork_state {
407 #ifndef NO_PTHREADS
408         int cs;
409 #endif
410         sigset_t old;
411 };
412
413 #ifndef NO_PTHREADS
414 static void bug_die(int err, const char *msg)
415 {
416         if (err) {
417                 errno = err;
418                 die_errno("BUG: %s", msg);
419         }
420 }
421 #endif
422
423 static void atfork_prepare(struct atfork_state *as)
424 {
425         sigset_t all;
426
427         if (sigfillset(&all))
428                 die_errno("sigfillset");
429 #ifdef NO_PTHREADS
430         if (sigprocmask(SIG_SETMASK, &all, &as->old))
431                 die_errno("sigprocmask");
432 #else
433         bug_die(pthread_sigmask(SIG_SETMASK, &all, &as->old),
434                 "blocking all signals");
435         bug_die(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
436                 "disabling cancellation");
437 #endif
438 }
439
440 static void atfork_parent(struct atfork_state *as)
441 {
442 #ifdef NO_PTHREADS
443         if (sigprocmask(SIG_SETMASK, &as->old, NULL))
444                 die_errno("sigprocmask");
445 #else
446         bug_die(pthread_setcancelstate(as->cs, NULL),
447                 "re-enabling cancellation");
448         bug_die(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
449                 "restoring signal mask");
450 #endif
451 }
452 #endif /* GIT_WINDOWS_NATIVE */
453
454 static inline void set_cloexec(int fd)
455 {
456         int flags = fcntl(fd, F_GETFD);
457         if (flags >= 0)
458                 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
459 }
460
461 static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
462 {
463         int status, code = -1;
464         pid_t waiting;
465         int failed_errno = 0;
466
467         while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
468                 ;       /* nothing */
469         if (in_signal)
470                 return 0;
471
472         if (waiting < 0) {
473                 failed_errno = errno;
474                 error_errno("waitpid for %s failed", argv0);
475         } else if (waiting != pid) {
476                 error("waitpid is confused (%s)", argv0);
477         } else if (WIFSIGNALED(status)) {
478                 code = WTERMSIG(status);
479                 if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
480                         error("%s died of signal %d", argv0, code);
481                 /*
482                  * This return value is chosen so that code & 0xff
483                  * mimics the exit code that a POSIX shell would report for
484                  * a program that died from this signal.
485                  */
486                 code += 128;
487         } else if (WIFEXITED(status)) {
488                 code = WEXITSTATUS(status);
489         } else {
490                 error("waitpid is confused (%s)", argv0);
491         }
492
493         clear_child_for_cleanup(pid);
494
495         errno = failed_errno;
496         return code;
497 }
498
499 int start_command(struct child_process *cmd)
500 {
501         int need_in, need_out, need_err;
502         int fdin[2], fdout[2], fderr[2];
503         int failed_errno;
504         char *str;
505
506         if (!cmd->argv)
507                 cmd->argv = cmd->args.argv;
508         if (!cmd->env)
509                 cmd->env = cmd->env_array.argv;
510
511         /*
512          * In case of errors we must keep the promise to close FDs
513          * that have been passed in via ->in and ->out.
514          */
515
516         need_in = !cmd->no_stdin && cmd->in < 0;
517         if (need_in) {
518                 if (pipe(fdin) < 0) {
519                         failed_errno = errno;
520                         if (cmd->out > 0)
521                                 close(cmd->out);
522                         str = "standard input";
523                         goto fail_pipe;
524                 }
525                 cmd->in = fdin[1];
526         }
527
528         need_out = !cmd->no_stdout
529                 && !cmd->stdout_to_stderr
530                 && cmd->out < 0;
531         if (need_out) {
532                 if (pipe(fdout) < 0) {
533                         failed_errno = errno;
534                         if (need_in)
535                                 close_pair(fdin);
536                         else if (cmd->in)
537                                 close(cmd->in);
538                         str = "standard output";
539                         goto fail_pipe;
540                 }
541                 cmd->out = fdout[0];
542         }
543
544         need_err = !cmd->no_stderr && cmd->err < 0;
545         if (need_err) {
546                 if (pipe(fderr) < 0) {
547                         failed_errno = errno;
548                         if (need_in)
549                                 close_pair(fdin);
550                         else if (cmd->in)
551                                 close(cmd->in);
552                         if (need_out)
553                                 close_pair(fdout);
554                         else if (cmd->out)
555                                 close(cmd->out);
556                         str = "standard error";
557 fail_pipe:
558                         error("cannot create %s pipe for %s: %s",
559                                 str, cmd->argv[0], strerror(failed_errno));
560                         child_process_clear(cmd);
561                         errno = failed_errno;
562                         return -1;
563                 }
564                 cmd->err = fderr[0];
565         }
566
567         trace_argv_printf(cmd->argv, "trace: run_command:");
568         fflush(NULL);
569
570 #ifndef GIT_WINDOWS_NATIVE
571 {
572         int notify_pipe[2];
573         int null_fd = -1;
574         char **childenv;
575         struct argv_array argv = ARGV_ARRAY_INIT;
576         struct child_err cerr;
577         struct atfork_state as;
578
579         if (pipe(notify_pipe))
580                 notify_pipe[0] = notify_pipe[1] = -1;
581
582         if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
583                 null_fd = open("/dev/null", O_RDWR | O_CLOEXEC);
584                 if (null_fd < 0)
585                         die_errno(_("open /dev/null failed"));
586                 set_cloexec(null_fd);
587         }
588
589         prepare_cmd(&argv, cmd);
590         childenv = prep_childenv(cmd->env);
591         atfork_prepare(&as);
592
593         /*
594          * NOTE: In order to prevent deadlocking when using threads special
595          * care should be taken with the function calls made in between the
596          * fork() and exec() calls.  No calls should be made to functions which
597          * require acquiring a lock (e.g. malloc) as the lock could have been
598          * held by another thread at the time of forking, causing the lock to
599          * never be released in the child process.  This means only
600          * Async-Signal-Safe functions are permitted in the child.
601          */
602         cmd->pid = fork();
603         failed_errno = errno;
604         if (!cmd->pid) {
605                 int sig;
606                 /*
607                  * Ensure the default die/error/warn routines do not get
608                  * called, they can take stdio locks and malloc.
609                  */
610                 set_die_routine(child_die_fn);
611                 set_error_routine(child_error_fn);
612                 set_warn_routine(child_warn_fn);
613
614                 close(notify_pipe[0]);
615                 set_cloexec(notify_pipe[1]);
616                 child_notifier = notify_pipe[1];
617
618                 if (cmd->no_stdin)
619                         child_dup2(null_fd, 0);
620                 else if (need_in) {
621                         child_dup2(fdin[0], 0);
622                         child_close_pair(fdin);
623                 } else if (cmd->in) {
624                         child_dup2(cmd->in, 0);
625                         child_close(cmd->in);
626                 }
627
628                 if (cmd->no_stderr)
629                         child_dup2(null_fd, 2);
630                 else if (need_err) {
631                         child_dup2(fderr[1], 2);
632                         child_close_pair(fderr);
633                 } else if (cmd->err > 1) {
634                         child_dup2(cmd->err, 2);
635                         child_close(cmd->err);
636                 }
637
638                 if (cmd->no_stdout)
639                         child_dup2(null_fd, 1);
640                 else if (cmd->stdout_to_stderr)
641                         child_dup2(2, 1);
642                 else if (need_out) {
643                         child_dup2(fdout[1], 1);
644                         child_close_pair(fdout);
645                 } else if (cmd->out > 1) {
646                         child_dup2(cmd->out, 1);
647                         child_close(cmd->out);
648                 }
649
650                 if (cmd->dir && chdir(cmd->dir))
651                         child_die(CHILD_ERR_CHDIR);
652
653                 /*
654                  * restore default signal handlers here, in case
655                  * we catch a signal right before execve below
656                  */
657                 for (sig = 1; sig < NSIG; sig++) {
658                         /* ignored signals get reset to SIG_DFL on execve */
659                         if (signal(sig, SIG_DFL) == SIG_IGN)
660                                 signal(sig, SIG_IGN);
661                 }
662
663                 if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
664                         child_die(CHILD_ERR_SIGPROCMASK);
665
666                 /*
667                  * Attempt to exec using the command and arguments starting at
668                  * argv.argv[1].  argv.argv[0] contains SHELL_PATH which will
669                  * be used in the event exec failed with ENOEXEC at which point
670                  * we will try to interpret the command using 'sh'.
671                  */
672                 execve(argv.argv[1], (char *const *) argv.argv + 1,
673                        (char *const *) childenv);
674                 if (errno == ENOEXEC)
675                         execve(argv.argv[0], (char *const *) argv.argv,
676                                (char *const *) childenv);
677
678                 if (errno == ENOENT) {
679                         if (cmd->silent_exec_failure)
680                                 child_die(CHILD_ERR_SILENT);
681                         child_die(CHILD_ERR_ENOENT);
682                 } else {
683                         child_die(CHILD_ERR_ERRNO);
684                 }
685         }
686         atfork_parent(&as);
687         if (cmd->pid < 0)
688                 error_errno("cannot fork() for %s", cmd->argv[0]);
689         else if (cmd->clean_on_exit)
690                 mark_child_for_cleanup(cmd->pid, cmd);
691
692         /*
693          * Wait for child's exec. If the exec succeeds (or if fork()
694          * failed), EOF is seen immediately by the parent. Otherwise, the
695          * child process sends a child_err struct.
696          * Note that use of this infrastructure is completely advisory,
697          * therefore, we keep error checks minimal.
698          */
699         close(notify_pipe[1]);
700         if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
701                 /*
702                  * At this point we know that fork() succeeded, but exec()
703                  * failed. Errors have been reported to our stderr.
704                  */
705                 wait_or_whine(cmd->pid, cmd->argv[0], 0);
706                 child_err_spew(cmd, &cerr);
707                 failed_errno = errno;
708                 cmd->pid = -1;
709         }
710         close(notify_pipe[0]);
711
712         if (null_fd >= 0)
713                 close(null_fd);
714         argv_array_clear(&argv);
715         free(childenv);
716 }
717 #else
718 {
719         int fhin = 0, fhout = 1, fherr = 2;
720         const char **sargv = cmd->argv;
721         struct argv_array nargv = ARGV_ARRAY_INIT;
722
723         if (cmd->no_stdin)
724                 fhin = open("/dev/null", O_RDWR);
725         else if (need_in)
726                 fhin = dup(fdin[0]);
727         else if (cmd->in)
728                 fhin = dup(cmd->in);
729
730         if (cmd->no_stderr)
731                 fherr = open("/dev/null", O_RDWR);
732         else if (need_err)
733                 fherr = dup(fderr[1]);
734         else if (cmd->err > 2)
735                 fherr = dup(cmd->err);
736
737         if (cmd->no_stdout)
738                 fhout = open("/dev/null", O_RDWR);
739         else if (cmd->stdout_to_stderr)
740                 fhout = dup(fherr);
741         else if (need_out)
742                 fhout = dup(fdout[1]);
743         else if (cmd->out > 1)
744                 fhout = dup(cmd->out);
745
746         if (cmd->git_cmd)
747                 cmd->argv = prepare_git_cmd(&nargv, cmd->argv);
748         else if (cmd->use_shell)
749                 cmd->argv = prepare_shell_cmd(&nargv, cmd->argv);
750
751         cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env,
752                         cmd->dir, fhin, fhout, fherr);
753         failed_errno = errno;
754         if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
755                 error_errno("cannot spawn %s", cmd->argv[0]);
756         if (cmd->clean_on_exit && cmd->pid >= 0)
757                 mark_child_for_cleanup(cmd->pid, cmd);
758
759         argv_array_clear(&nargv);
760         cmd->argv = sargv;
761         if (fhin != 0)
762                 close(fhin);
763         if (fhout != 1)
764                 close(fhout);
765         if (fherr != 2)
766                 close(fherr);
767 }
768 #endif
769
770         if (cmd->pid < 0) {
771                 if (need_in)
772                         close_pair(fdin);
773                 else if (cmd->in)
774                         close(cmd->in);
775                 if (need_out)
776                         close_pair(fdout);
777                 else if (cmd->out)
778                         close(cmd->out);
779                 if (need_err)
780                         close_pair(fderr);
781                 else if (cmd->err)
782                         close(cmd->err);
783                 child_process_clear(cmd);
784                 errno = failed_errno;
785                 return -1;
786         }
787
788         if (need_in)
789                 close(fdin[0]);
790         else if (cmd->in)
791                 close(cmd->in);
792
793         if (need_out)
794                 close(fdout[1]);
795         else if (cmd->out)
796                 close(cmd->out);
797
798         if (need_err)
799                 close(fderr[1]);
800         else if (cmd->err)
801                 close(cmd->err);
802
803         return 0;
804 }
805
806 int finish_command(struct child_process *cmd)
807 {
808         int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0);
809         child_process_clear(cmd);
810         return ret;
811 }
812
813 int finish_command_in_signal(struct child_process *cmd)
814 {
815         return wait_or_whine(cmd->pid, cmd->argv[0], 1);
816 }
817
818
819 int run_command(struct child_process *cmd)
820 {
821         int code;
822
823         if (cmd->out < 0 || cmd->err < 0)
824                 die("BUG: run_command with a pipe can cause deadlock");
825
826         code = start_command(cmd);
827         if (code)
828                 return code;
829         return finish_command(cmd);
830 }
831
832 int run_command_v_opt(const char **argv, int opt)
833 {
834         return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
835 }
836
837 int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
838 {
839         struct child_process cmd = CHILD_PROCESS_INIT;
840         cmd.argv = argv;
841         cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
842         cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
843         cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
844         cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
845         cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
846         cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
847         cmd.dir = dir;
848         cmd.env = env;
849         return run_command(&cmd);
850 }
851
852 #ifndef NO_PTHREADS
853 static pthread_t main_thread;
854 static int main_thread_set;
855 static pthread_key_t async_key;
856 static pthread_key_t async_die_counter;
857
858 static void *run_thread(void *data)
859 {
860         struct async *async = data;
861         intptr_t ret;
862
863         if (async->isolate_sigpipe) {
864                 sigset_t mask;
865                 sigemptyset(&mask);
866                 sigaddset(&mask, SIGPIPE);
867                 if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
868                         ret = error("unable to block SIGPIPE in async thread");
869                         return (void *)ret;
870                 }
871         }
872
873         pthread_setspecific(async_key, async);
874         ret = async->proc(async->proc_in, async->proc_out, async->data);
875         return (void *)ret;
876 }
877
878 static NORETURN void die_async(const char *err, va_list params)
879 {
880         vreportf("fatal: ", err, params);
881
882         if (in_async()) {
883                 struct async *async = pthread_getspecific(async_key);
884                 if (async->proc_in >= 0)
885                         close(async->proc_in);
886                 if (async->proc_out >= 0)
887                         close(async->proc_out);
888                 pthread_exit((void *)128);
889         }
890
891         exit(128);
892 }
893
894 static int async_die_is_recursing(void)
895 {
896         void *ret = pthread_getspecific(async_die_counter);
897         pthread_setspecific(async_die_counter, (void *)1);
898         return ret != NULL;
899 }
900
901 int in_async(void)
902 {
903         if (!main_thread_set)
904                 return 0; /* no asyncs started yet */
905         return !pthread_equal(main_thread, pthread_self());
906 }
907
908 static void NORETURN async_exit(int code)
909 {
910         pthread_exit((void *)(intptr_t)code);
911 }
912
913 #else
914
915 static struct {
916         void (**handlers)(void);
917         size_t nr;
918         size_t alloc;
919 } git_atexit_hdlrs;
920
921 static int git_atexit_installed;
922
923 static void git_atexit_dispatch(void)
924 {
925         size_t i;
926
927         for (i=git_atexit_hdlrs.nr ; i ; i--)
928                 git_atexit_hdlrs.handlers[i-1]();
929 }
930
931 static void git_atexit_clear(void)
932 {
933         free(git_atexit_hdlrs.handlers);
934         memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
935         git_atexit_installed = 0;
936 }
937
938 #undef atexit
939 int git_atexit(void (*handler)(void))
940 {
941         ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
942         git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
943         if (!git_atexit_installed) {
944                 if (atexit(&git_atexit_dispatch))
945                         return -1;
946                 git_atexit_installed = 1;
947         }
948         return 0;
949 }
950 #define atexit git_atexit
951
952 static int process_is_async;
953 int in_async(void)
954 {
955         return process_is_async;
956 }
957
958 static void NORETURN async_exit(int code)
959 {
960         exit(code);
961 }
962
963 #endif
964
965 void check_pipe(int err)
966 {
967         if (err == EPIPE) {
968                 if (in_async())
969                         async_exit(141);
970
971                 signal(SIGPIPE, SIG_DFL);
972                 raise(SIGPIPE);
973                 /* Should never happen, but just in case... */
974                 exit(141);
975         }
976 }
977
978 int start_async(struct async *async)
979 {
980         int need_in, need_out;
981         int fdin[2], fdout[2];
982         int proc_in, proc_out;
983
984         need_in = async->in < 0;
985         if (need_in) {
986                 if (pipe(fdin) < 0) {
987                         if (async->out > 0)
988                                 close(async->out);
989                         return error_errno("cannot create pipe");
990                 }
991                 async->in = fdin[1];
992         }
993
994         need_out = async->out < 0;
995         if (need_out) {
996                 if (pipe(fdout) < 0) {
997                         if (need_in)
998                                 close_pair(fdin);
999                         else if (async->in)
1000                                 close(async->in);
1001                         return error_errno("cannot create pipe");
1002                 }
1003                 async->out = fdout[0];
1004         }
1005
1006         if (need_in)
1007                 proc_in = fdin[0];
1008         else if (async->in)
1009                 proc_in = async->in;
1010         else
1011                 proc_in = -1;
1012
1013         if (need_out)
1014                 proc_out = fdout[1];
1015         else if (async->out)
1016                 proc_out = async->out;
1017         else
1018                 proc_out = -1;
1019
1020 #ifdef NO_PTHREADS
1021         /* Flush stdio before fork() to avoid cloning buffers */
1022         fflush(NULL);
1023
1024         async->pid = fork();
1025         if (async->pid < 0) {
1026                 error_errno("fork (async) failed");
1027                 goto error;
1028         }
1029         if (!async->pid) {
1030                 if (need_in)
1031                         close(fdin[1]);
1032                 if (need_out)
1033                         close(fdout[0]);
1034                 git_atexit_clear();
1035                 process_is_async = 1;
1036                 exit(!!async->proc(proc_in, proc_out, async->data));
1037         }
1038
1039         mark_child_for_cleanup(async->pid, NULL);
1040
1041         if (need_in)
1042                 close(fdin[0]);
1043         else if (async->in)
1044                 close(async->in);
1045
1046         if (need_out)
1047                 close(fdout[1]);
1048         else if (async->out)
1049                 close(async->out);
1050 #else
1051         if (!main_thread_set) {
1052                 /*
1053                  * We assume that the first time that start_async is called
1054                  * it is from the main thread.
1055                  */
1056                 main_thread_set = 1;
1057                 main_thread = pthread_self();
1058                 pthread_key_create(&async_key, NULL);
1059                 pthread_key_create(&async_die_counter, NULL);
1060                 set_die_routine(die_async);
1061                 set_die_is_recursing_routine(async_die_is_recursing);
1062         }
1063
1064         if (proc_in >= 0)
1065                 set_cloexec(proc_in);
1066         if (proc_out >= 0)
1067                 set_cloexec(proc_out);
1068         async->proc_in = proc_in;
1069         async->proc_out = proc_out;
1070         {
1071                 int err = pthread_create(&async->tid, NULL, run_thread, async);
1072                 if (err) {
1073                         error_errno("cannot create thread");
1074                         goto error;
1075                 }
1076         }
1077 #endif
1078         return 0;
1079
1080 error:
1081         if (need_in)
1082                 close_pair(fdin);
1083         else if (async->in)
1084                 close(async->in);
1085
1086         if (need_out)
1087                 close_pair(fdout);
1088         else if (async->out)
1089                 close(async->out);
1090         return -1;
1091 }
1092
1093 int finish_async(struct async *async)
1094 {
1095 #ifdef NO_PTHREADS
1096         return wait_or_whine(async->pid, "child process", 0);
1097 #else
1098         void *ret = (void *)(intptr_t)(-1);
1099
1100         if (pthread_join(async->tid, &ret))
1101                 error("pthread_join failed");
1102         return (int)(intptr_t)ret;
1103 #endif
1104 }
1105
1106 const char *find_hook(const char *name)
1107 {
1108         static struct strbuf path = STRBUF_INIT;
1109
1110         strbuf_reset(&path);
1111         strbuf_git_path(&path, "hooks/%s", name);
1112         if (access(path.buf, X_OK) < 0) {
1113 #ifdef STRIP_EXTENSION
1114                 strbuf_addstr(&path, STRIP_EXTENSION);
1115                 if (access(path.buf, X_OK) >= 0)
1116                         return path.buf;
1117 #endif
1118                 return NULL;
1119         }
1120         return path.buf;
1121 }
1122
1123 int run_hook_ve(const char *const *env, const char *name, va_list args)
1124 {
1125         struct child_process hook = CHILD_PROCESS_INIT;
1126         const char *p;
1127
1128         p = find_hook(name);
1129         if (!p)
1130                 return 0;
1131
1132         argv_array_push(&hook.args, p);
1133         while ((p = va_arg(args, const char *)))
1134                 argv_array_push(&hook.args, p);
1135         hook.env = env;
1136         hook.no_stdin = 1;
1137         hook.stdout_to_stderr = 1;
1138
1139         return run_command(&hook);
1140 }
1141
1142 int run_hook_le(const char *const *env, const char *name, ...)
1143 {
1144         va_list args;
1145         int ret;
1146
1147         va_start(args, name);
1148         ret = run_hook_ve(env, name, args);
1149         va_end(args);
1150
1151         return ret;
1152 }
1153
1154 struct io_pump {
1155         /* initialized by caller */
1156         int fd;
1157         int type; /* POLLOUT or POLLIN */
1158         union {
1159                 struct {
1160                         const char *buf;
1161                         size_t len;
1162                 } out;
1163                 struct {
1164                         struct strbuf *buf;
1165                         size_t hint;
1166                 } in;
1167         } u;
1168
1169         /* returned by pump_io */
1170         int error; /* 0 for success, otherwise errno */
1171
1172         /* internal use */
1173         struct pollfd *pfd;
1174 };
1175
1176 static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1177 {
1178         int pollsize = 0;
1179         int i;
1180
1181         for (i = 0; i < nr; i++) {
1182                 struct io_pump *io = &slots[i];
1183                 if (io->fd < 0)
1184                         continue;
1185                 pfd[pollsize].fd = io->fd;
1186                 pfd[pollsize].events = io->type;
1187                 io->pfd = &pfd[pollsize++];
1188         }
1189
1190         if (!pollsize)
1191                 return 0;
1192
1193         if (poll(pfd, pollsize, -1) < 0) {
1194                 if (errno == EINTR)
1195                         return 1;
1196                 die_errno("poll failed");
1197         }
1198
1199         for (i = 0; i < nr; i++) {
1200                 struct io_pump *io = &slots[i];
1201
1202                 if (io->fd < 0)
1203                         continue;
1204
1205                 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1206                         continue;
1207
1208                 if (io->type == POLLOUT) {
1209                         ssize_t len = xwrite(io->fd,
1210                                              io->u.out.buf, io->u.out.len);
1211                         if (len < 0) {
1212                                 io->error = errno;
1213                                 close(io->fd);
1214                                 io->fd = -1;
1215                         } else {
1216                                 io->u.out.buf += len;
1217                                 io->u.out.len -= len;
1218                                 if (!io->u.out.len) {
1219                                         close(io->fd);
1220                                         io->fd = -1;
1221                                 }
1222                         }
1223                 }
1224
1225                 if (io->type == POLLIN) {
1226                         ssize_t len = strbuf_read_once(io->u.in.buf,
1227                                                        io->fd, io->u.in.hint);
1228                         if (len < 0)
1229                                 io->error = errno;
1230                         if (len <= 0) {
1231                                 close(io->fd);
1232                                 io->fd = -1;
1233                         }
1234                 }
1235         }
1236
1237         return 1;
1238 }
1239
1240 static int pump_io(struct io_pump *slots, int nr)
1241 {
1242         struct pollfd *pfd;
1243         int i;
1244
1245         for (i = 0; i < nr; i++)
1246                 slots[i].error = 0;
1247
1248         ALLOC_ARRAY(pfd, nr);
1249         while (pump_io_round(slots, nr, pfd))
1250                 ; /* nothing */
1251         free(pfd);
1252
1253         /* There may be multiple errno values, so just pick the first. */
1254         for (i = 0; i < nr; i++) {
1255                 if (slots[i].error) {
1256                         errno = slots[i].error;
1257                         return -1;
1258                 }
1259         }
1260         return 0;
1261 }
1262
1263
1264 int pipe_command(struct child_process *cmd,
1265                  const char *in, size_t in_len,
1266                  struct strbuf *out, size_t out_hint,
1267                  struct strbuf *err, size_t err_hint)
1268 {
1269         struct io_pump io[3];
1270         int nr = 0;
1271
1272         if (in)
1273                 cmd->in = -1;
1274         if (out)
1275                 cmd->out = -1;
1276         if (err)
1277                 cmd->err = -1;
1278
1279         if (start_command(cmd) < 0)
1280                 return -1;
1281
1282         if (in) {
1283                 io[nr].fd = cmd->in;
1284                 io[nr].type = POLLOUT;
1285                 io[nr].u.out.buf = in;
1286                 io[nr].u.out.len = in_len;
1287                 nr++;
1288         }
1289         if (out) {
1290                 io[nr].fd = cmd->out;
1291                 io[nr].type = POLLIN;
1292                 io[nr].u.in.buf = out;
1293                 io[nr].u.in.hint = out_hint;
1294                 nr++;
1295         }
1296         if (err) {
1297                 io[nr].fd = cmd->err;
1298                 io[nr].type = POLLIN;
1299                 io[nr].u.in.buf = err;
1300                 io[nr].u.in.hint = err_hint;
1301                 nr++;
1302         }
1303
1304         if (pump_io(io, nr) < 0) {
1305                 finish_command(cmd); /* throw away exit code */
1306                 return -1;
1307         }
1308
1309         return finish_command(cmd);
1310 }
1311
1312 enum child_state {
1313         GIT_CP_FREE,
1314         GIT_CP_WORKING,
1315         GIT_CP_WAIT_CLEANUP,
1316 };
1317
1318 struct parallel_processes {
1319         void *data;
1320
1321         int max_processes;
1322         int nr_processes;
1323
1324         get_next_task_fn get_next_task;
1325         start_failure_fn start_failure;
1326         task_finished_fn task_finished;
1327
1328         struct {
1329                 enum child_state state;
1330                 struct child_process process;
1331                 struct strbuf err;
1332                 void *data;
1333         } *children;
1334         /*
1335          * The struct pollfd is logically part of *children,
1336          * but the system call expects it as its own array.
1337          */
1338         struct pollfd *pfd;
1339
1340         unsigned shutdown : 1;
1341
1342         int output_owner;
1343         struct strbuf buffered_output; /* of finished children */
1344 };
1345
1346 static int default_start_failure(struct strbuf *out,
1347                                  void *pp_cb,
1348                                  void *pp_task_cb)
1349 {
1350         return 0;
1351 }
1352
1353 static int default_task_finished(int result,
1354                                  struct strbuf *out,
1355                                  void *pp_cb,
1356                                  void *pp_task_cb)
1357 {
1358         return 0;
1359 }
1360
1361 static void kill_children(struct parallel_processes *pp, int signo)
1362 {
1363         int i, n = pp->max_processes;
1364
1365         for (i = 0; i < n; i++)
1366                 if (pp->children[i].state == GIT_CP_WORKING)
1367                         kill(pp->children[i].process.pid, signo);
1368 }
1369
1370 static struct parallel_processes *pp_for_signal;
1371
1372 static void handle_children_on_signal(int signo)
1373 {
1374         kill_children(pp_for_signal, signo);
1375         sigchain_pop(signo);
1376         raise(signo);
1377 }
1378
1379 static void pp_init(struct parallel_processes *pp,
1380                     int n,
1381                     get_next_task_fn get_next_task,
1382                     start_failure_fn start_failure,
1383                     task_finished_fn task_finished,
1384                     void *data)
1385 {
1386         int i;
1387
1388         if (n < 1)
1389                 n = online_cpus();
1390
1391         pp->max_processes = n;
1392
1393         trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1394
1395         pp->data = data;
1396         if (!get_next_task)
1397                 die("BUG: you need to specify a get_next_task function");
1398         pp->get_next_task = get_next_task;
1399
1400         pp->start_failure = start_failure ? start_failure : default_start_failure;
1401         pp->task_finished = task_finished ? task_finished : default_task_finished;
1402
1403         pp->nr_processes = 0;
1404         pp->output_owner = 0;
1405         pp->shutdown = 0;
1406         pp->children = xcalloc(n, sizeof(*pp->children));
1407         pp->pfd = xcalloc(n, sizeof(*pp->pfd));
1408         strbuf_init(&pp->buffered_output, 0);
1409
1410         for (i = 0; i < n; i++) {
1411                 strbuf_init(&pp->children[i].err, 0);
1412                 child_process_init(&pp->children[i].process);
1413                 pp->pfd[i].events = POLLIN | POLLHUP;
1414                 pp->pfd[i].fd = -1;
1415         }
1416
1417         pp_for_signal = pp;
1418         sigchain_push_common(handle_children_on_signal);
1419 }
1420
1421 static void pp_cleanup(struct parallel_processes *pp)
1422 {
1423         int i;
1424
1425         trace_printf("run_processes_parallel: done");
1426         for (i = 0; i < pp->max_processes; i++) {
1427                 strbuf_release(&pp->children[i].err);
1428                 child_process_clear(&pp->children[i].process);
1429         }
1430
1431         free(pp->children);
1432         free(pp->pfd);
1433
1434         /*
1435          * When get_next_task added messages to the buffer in its last
1436          * iteration, the buffered output is non empty.
1437          */
1438         strbuf_write(&pp->buffered_output, stderr);
1439         strbuf_release(&pp->buffered_output);
1440
1441         sigchain_pop_common();
1442 }
1443
1444 /* returns
1445  *  0 if a new task was started.
1446  *  1 if no new jobs was started (get_next_task ran out of work, non critical
1447  *    problem with starting a new command)
1448  * <0 no new job was started, user wishes to shutdown early. Use negative code
1449  *    to signal the children.
1450  */
1451 static int pp_start_one(struct parallel_processes *pp)
1452 {
1453         int i, code;
1454
1455         for (i = 0; i < pp->max_processes; i++)
1456                 if (pp->children[i].state == GIT_CP_FREE)
1457                         break;
1458         if (i == pp->max_processes)
1459                 die("BUG: bookkeeping is hard");
1460
1461         code = pp->get_next_task(&pp->children[i].process,
1462                                  &pp->children[i].err,
1463                                  pp->data,
1464                                  &pp->children[i].data);
1465         if (!code) {
1466                 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1467                 strbuf_reset(&pp->children[i].err);
1468                 return 1;
1469         }
1470         pp->children[i].process.err = -1;
1471         pp->children[i].process.stdout_to_stderr = 1;
1472         pp->children[i].process.no_stdin = 1;
1473
1474         if (start_command(&pp->children[i].process)) {
1475                 code = pp->start_failure(&pp->children[i].err,
1476                                          pp->data,
1477                                          &pp->children[i].data);
1478                 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1479                 strbuf_reset(&pp->children[i].err);
1480                 if (code)
1481                         pp->shutdown = 1;
1482                 return code;
1483         }
1484
1485         pp->nr_processes++;
1486         pp->children[i].state = GIT_CP_WORKING;
1487         pp->pfd[i].fd = pp->children[i].process.err;
1488         return 0;
1489 }
1490
1491 static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1492 {
1493         int i;
1494
1495         while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1496                 if (errno == EINTR)
1497                         continue;
1498                 pp_cleanup(pp);
1499                 die_errno("poll");
1500         }
1501
1502         /* Buffer output from all pipes. */
1503         for (i = 0; i < pp->max_processes; i++) {
1504                 if (pp->children[i].state == GIT_CP_WORKING &&
1505                     pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1506                         int n = strbuf_read_once(&pp->children[i].err,
1507                                                  pp->children[i].process.err, 0);
1508                         if (n == 0) {
1509                                 close(pp->children[i].process.err);
1510                                 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1511                         } else if (n < 0)
1512                                 if (errno != EAGAIN)
1513                                         die_errno("read");
1514                 }
1515         }
1516 }
1517
1518 static void pp_output(struct parallel_processes *pp)
1519 {
1520         int i = pp->output_owner;
1521         if (pp->children[i].state == GIT_CP_WORKING &&
1522             pp->children[i].err.len) {
1523                 strbuf_write(&pp->children[i].err, stderr);
1524                 strbuf_reset(&pp->children[i].err);
1525         }
1526 }
1527
1528 static int pp_collect_finished(struct parallel_processes *pp)
1529 {
1530         int i, code;
1531         int n = pp->max_processes;
1532         int result = 0;
1533
1534         while (pp->nr_processes > 0) {
1535                 for (i = 0; i < pp->max_processes; i++)
1536                         if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1537                                 break;
1538                 if (i == pp->max_processes)
1539                         break;
1540
1541                 code = finish_command(&pp->children[i].process);
1542
1543                 code = pp->task_finished(code,
1544                                          &pp->children[i].err, pp->data,
1545                                          &pp->children[i].data);
1546
1547                 if (code)
1548                         result = code;
1549                 if (code < 0)
1550                         break;
1551
1552                 pp->nr_processes--;
1553                 pp->children[i].state = GIT_CP_FREE;
1554                 pp->pfd[i].fd = -1;
1555                 child_process_init(&pp->children[i].process);
1556
1557                 if (i != pp->output_owner) {
1558                         strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1559                         strbuf_reset(&pp->children[i].err);
1560                 } else {
1561                         strbuf_write(&pp->children[i].err, stderr);
1562                         strbuf_reset(&pp->children[i].err);
1563
1564                         /* Output all other finished child processes */
1565                         strbuf_write(&pp->buffered_output, stderr);
1566                         strbuf_reset(&pp->buffered_output);
1567
1568                         /*
1569                          * Pick next process to output live.
1570                          * NEEDSWORK:
1571                          * For now we pick it randomly by doing a round
1572                          * robin. Later we may want to pick the one with
1573                          * the most output or the longest or shortest
1574                          * running process time.
1575                          */
1576                         for (i = 0; i < n; i++)
1577                                 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1578                                         break;
1579                         pp->output_owner = (pp->output_owner + i) % n;
1580                 }
1581         }
1582         return result;
1583 }
1584
1585 int run_processes_parallel(int n,
1586                            get_next_task_fn get_next_task,
1587                            start_failure_fn start_failure,
1588                            task_finished_fn task_finished,
1589                            void *pp_cb)
1590 {
1591         int i, code;
1592         int output_timeout = 100;
1593         int spawn_cap = 4;
1594         struct parallel_processes pp;
1595
1596         pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1597         while (1) {
1598                 for (i = 0;
1599                     i < spawn_cap && !pp.shutdown &&
1600                     pp.nr_processes < pp.max_processes;
1601                     i++) {
1602                         code = pp_start_one(&pp);
1603                         if (!code)
1604                                 continue;
1605                         if (code < 0) {
1606                                 pp.shutdown = 1;
1607                                 kill_children(&pp, -code);
1608                         }
1609                         break;
1610                 }
1611                 if (!pp.nr_processes)
1612                         break;
1613                 pp_buffer_stderr(&pp, output_timeout);
1614                 pp_output(&pp);
1615                 code = pp_collect_finished(&pp);
1616                 if (code) {
1617                         pp.shutdown = 1;
1618                         if (code < 0)
1619                                 kill_children(&pp, -code);
1620                 }
1621         }
1622
1623         pp_cleanup(&pp);
1624         return 0;
1625 }