get_ref_dir(): don't call read_loose_refs() for "refs/bisect"
[git] / refs / files-backend.c
1 #include "../cache.h"
2 #include "../refs.h"
3 #include "refs-internal.h"
4 #include "../iterator.h"
5 #include "../dir-iterator.h"
6 #include "../lockfile.h"
7 #include "../object.h"
8 #include "../dir.h"
9
10 struct ref_lock {
11         char *ref_name;
12         struct lock_file *lk;
13         struct object_id old_oid;
14 };
15
16 struct ref_entry;
17
18 /*
19  * Information used (along with the information in ref_entry) to
20  * describe a single cached reference.  This data structure only
21  * occurs embedded in a union in struct ref_entry, and only when
22  * (ref_entry->flag & REF_DIR) is zero.
23  */
24 struct ref_value {
25         /*
26          * The name of the object to which this reference resolves
27          * (which may be a tag object).  If REF_ISBROKEN, this is
28          * null.  If REF_ISSYMREF, then this is the name of the object
29          * referred to by the last reference in the symlink chain.
30          */
31         struct object_id oid;
32
33         /*
34          * If REF_KNOWS_PEELED, then this field holds the peeled value
35          * of this reference, or null if the reference is known not to
36          * be peelable.  See the documentation for peel_ref() for an
37          * exact definition of "peelable".
38          */
39         struct object_id peeled;
40 };
41
42 struct files_ref_store;
43
44 /*
45  * Information used (along with the information in ref_entry) to
46  * describe a level in the hierarchy of references.  This data
47  * structure only occurs embedded in a union in struct ref_entry, and
48  * only when (ref_entry.flag & REF_DIR) is set.  In that case,
49  * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
50  * in the directory have already been read:
51  *
52  *     (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
53  *         or packed references, already read.
54  *
55  *     (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
56  *         references that hasn't been read yet (nor has any of its
57  *         subdirectories).
58  *
59  * Entries within a directory are stored within a growable array of
60  * pointers to ref_entries (entries, nr, alloc).  Entries 0 <= i <
61  * sorted are sorted by their component name in strcmp() order and the
62  * remaining entries are unsorted.
63  *
64  * Loose references are read lazily, one directory at a time.  When a
65  * directory of loose references is read, then all of the references
66  * in that directory are stored, and REF_INCOMPLETE stubs are created
67  * for any subdirectories, but the subdirectories themselves are not
68  * read.  The reading is triggered by get_ref_dir().
69  */
70 struct ref_dir {
71         int nr, alloc;
72
73         /*
74          * Entries with index 0 <= i < sorted are sorted by name.  New
75          * entries are appended to the list unsorted, and are sorted
76          * only when required; thus we avoid the need to sort the list
77          * after the addition of every reference.
78          */
79         int sorted;
80
81         /* A pointer to the files_ref_store that contains this ref_dir. */
82         struct files_ref_store *ref_store;
83
84         struct ref_entry **entries;
85 };
86
87 /*
88  * Bit values for ref_entry::flag.  REF_ISSYMREF=0x01,
89  * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
90  * public values; see refs.h.
91  */
92
93 /*
94  * The field ref_entry->u.value.peeled of this value entry contains
95  * the correct peeled value for the reference, which might be
96  * null_sha1 if the reference is not a tag or if it is broken.
97  */
98 #define REF_KNOWS_PEELED 0x10
99
100 /* ref_entry represents a directory of references */
101 #define REF_DIR 0x20
102
103 /*
104  * Entry has not yet been read from disk (used only for REF_DIR
105  * entries representing loose references)
106  */
107 #define REF_INCOMPLETE 0x40
108
109 /*
110  * A ref_entry represents either a reference or a "subdirectory" of
111  * references.
112  *
113  * Each directory in the reference namespace is represented by a
114  * ref_entry with (flags & REF_DIR) set and containing a subdir member
115  * that holds the entries in that directory that have been read so
116  * far.  If (flags & REF_INCOMPLETE) is set, then the directory and
117  * its subdirectories haven't been read yet.  REF_INCOMPLETE is only
118  * used for loose reference directories.
119  *
120  * References are represented by a ref_entry with (flags & REF_DIR)
121  * unset and a value member that describes the reference's value.  The
122  * flag member is at the ref_entry level, but it is also needed to
123  * interpret the contents of the value field (in other words, a
124  * ref_value object is not very much use without the enclosing
125  * ref_entry).
126  *
127  * Reference names cannot end with slash and directories' names are
128  * always stored with a trailing slash (except for the top-level
129  * directory, which is always denoted by "").  This has two nice
130  * consequences: (1) when the entries in each subdir are sorted
131  * lexicographically by name (as they usually are), the references in
132  * a whole tree can be generated in lexicographic order by traversing
133  * the tree in left-to-right, depth-first order; (2) the names of
134  * references and subdirectories cannot conflict, and therefore the
135  * presence of an empty subdirectory does not block the creation of a
136  * similarly-named reference.  (The fact that reference names with the
137  * same leading components can conflict *with each other* is a
138  * separate issue that is regulated by verify_refname_available().)
139  *
140  * Please note that the name field contains the fully-qualified
141  * reference (or subdirectory) name.  Space could be saved by only
142  * storing the relative names.  But that would require the full names
143  * to be generated on the fly when iterating in do_for_each_ref(), and
144  * would break callback functions, who have always been able to assume
145  * that the name strings that they are passed will not be freed during
146  * the iteration.
147  */
148 struct ref_entry {
149         unsigned char flag; /* ISSYMREF? ISPACKED? */
150         union {
151                 struct ref_value value; /* if not (flags&REF_DIR) */
152                 struct ref_dir subdir; /* if (flags&REF_DIR) */
153         } u;
154         /*
155          * The full name of the reference (e.g., "refs/heads/master")
156          * or the full name of the directory with a trailing slash
157          * (e.g., "refs/heads/"):
158          */
159         char name[FLEX_ARRAY];
160 };
161
162 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
163 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len);
164 static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
165                                           const char *dirname, size_t len,
166                                           int incomplete);
167 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry);
168 static int files_log_ref_write(struct files_ref_store *refs,
169                                const char *refname, const unsigned char *old_sha1,
170                                const unsigned char *new_sha1, const char *msg,
171                                int flags, struct strbuf *err);
172
173 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
174 {
175         struct ref_dir *dir;
176         assert(entry->flag & REF_DIR);
177         dir = &entry->u.subdir;
178         if (entry->flag & REF_INCOMPLETE) {
179                 read_loose_refs(entry->name, dir);
180
181                 /*
182                  * Manually add refs/bisect, which, being
183                  * per-worktree, might not appear in the directory
184                  * listing for refs/ in the main repo.
185                  */
186                 if (!strcmp(entry->name, "refs/")) {
187                         int pos = search_ref_dir(dir, "refs/bisect/", 12);
188                         if (pos < 0) {
189                                 struct ref_entry *child_entry;
190                                 child_entry = create_dir_entry(dir->ref_store,
191                                                                "refs/bisect/",
192                                                                12, 1);
193                                 add_entry_to_dir(dir, child_entry);
194                         }
195                 }
196                 entry->flag &= ~REF_INCOMPLETE;
197         }
198         return dir;
199 }
200
201 static struct ref_entry *create_ref_entry(const char *refname,
202                                           const unsigned char *sha1, int flag,
203                                           int check_name)
204 {
205         struct ref_entry *ref;
206
207         if (check_name &&
208             check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
209                 die("Reference has invalid format: '%s'", refname);
210         FLEX_ALLOC_STR(ref, name, refname);
211         hashcpy(ref->u.value.oid.hash, sha1);
212         oidclr(&ref->u.value.peeled);
213         ref->flag = flag;
214         return ref;
215 }
216
217 static void clear_ref_dir(struct ref_dir *dir);
218
219 static void free_ref_entry(struct ref_entry *entry)
220 {
221         if (entry->flag & REF_DIR) {
222                 /*
223                  * Do not use get_ref_dir() here, as that might
224                  * trigger the reading of loose refs.
225                  */
226                 clear_ref_dir(&entry->u.subdir);
227         }
228         free(entry);
229 }
230
231 /*
232  * Add a ref_entry to the end of dir (unsorted).  Entry is always
233  * stored directly in dir; no recursion into subdirectories is
234  * done.
235  */
236 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
237 {
238         ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
239         dir->entries[dir->nr++] = entry;
240         /* optimize for the case that entries are added in order */
241         if (dir->nr == 1 ||
242             (dir->nr == dir->sorted + 1 &&
243              strcmp(dir->entries[dir->nr - 2]->name,
244                     dir->entries[dir->nr - 1]->name) < 0))
245                 dir->sorted = dir->nr;
246 }
247
248 /*
249  * Clear and free all entries in dir, recursively.
250  */
251 static void clear_ref_dir(struct ref_dir *dir)
252 {
253         int i;
254         for (i = 0; i < dir->nr; i++)
255                 free_ref_entry(dir->entries[i]);
256         free(dir->entries);
257         dir->sorted = dir->nr = dir->alloc = 0;
258         dir->entries = NULL;
259 }
260
261 /*
262  * Create a struct ref_entry object for the specified dirname.
263  * dirname is the name of the directory with a trailing slash (e.g.,
264  * "refs/heads/") or "" for the top-level directory.
265  */
266 static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
267                                           const char *dirname, size_t len,
268                                           int incomplete)
269 {
270         struct ref_entry *direntry;
271         FLEX_ALLOC_MEM(direntry, name, dirname, len);
272         direntry->u.subdir.ref_store = ref_store;
273         direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
274         return direntry;
275 }
276
277 static int ref_entry_cmp(const void *a, const void *b)
278 {
279         struct ref_entry *one = *(struct ref_entry **)a;
280         struct ref_entry *two = *(struct ref_entry **)b;
281         return strcmp(one->name, two->name);
282 }
283
284 static void sort_ref_dir(struct ref_dir *dir);
285
286 struct string_slice {
287         size_t len;
288         const char *str;
289 };
290
291 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
292 {
293         const struct string_slice *key = key_;
294         const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
295         int cmp = strncmp(key->str, ent->name, key->len);
296         if (cmp)
297                 return cmp;
298         return '\0' - (unsigned char)ent->name[key->len];
299 }
300
301 /*
302  * Return the index of the entry with the given refname from the
303  * ref_dir (non-recursively), sorting dir if necessary.  Return -1 if
304  * no such entry is found.  dir must already be complete.
305  */
306 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
307 {
308         struct ref_entry **r;
309         struct string_slice key;
310
311         if (refname == NULL || !dir->nr)
312                 return -1;
313
314         sort_ref_dir(dir);
315         key.len = len;
316         key.str = refname;
317         r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
318                     ref_entry_cmp_sslice);
319
320         if (r == NULL)
321                 return -1;
322
323         return r - dir->entries;
324 }
325
326 /*
327  * Search for a directory entry directly within dir (without
328  * recursing).  Sort dir if necessary.  subdirname must be a directory
329  * name (i.e., end in '/').  If mkdir is set, then create the
330  * directory if it is missing; otherwise, return NULL if the desired
331  * directory cannot be found.  dir must already be complete.
332  */
333 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
334                                          const char *subdirname, size_t len,
335                                          int mkdir)
336 {
337         int entry_index = search_ref_dir(dir, subdirname, len);
338         struct ref_entry *entry;
339         if (entry_index == -1) {
340                 if (!mkdir)
341                         return NULL;
342                 /*
343                  * Since dir is complete, the absence of a subdir
344                  * means that the subdir really doesn't exist;
345                  * therefore, create an empty record for it but mark
346                  * the record complete.
347                  */
348                 entry = create_dir_entry(dir->ref_store, subdirname, len, 0);
349                 add_entry_to_dir(dir, entry);
350         } else {
351                 entry = dir->entries[entry_index];
352         }
353         return get_ref_dir(entry);
354 }
355
356 /*
357  * If refname is a reference name, find the ref_dir within the dir
358  * tree that should hold refname.  If refname is a directory name
359  * (i.e., ends in '/'), then return that ref_dir itself.  dir must
360  * represent the top-level directory and must already be complete.
361  * Sort ref_dirs and recurse into subdirectories as necessary.  If
362  * mkdir is set, then create any missing directories; otherwise,
363  * return NULL if the desired directory cannot be found.
364  */
365 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
366                                            const char *refname, int mkdir)
367 {
368         const char *slash;
369         for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
370                 size_t dirnamelen = slash - refname + 1;
371                 struct ref_dir *subdir;
372                 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
373                 if (!subdir) {
374                         dir = NULL;
375                         break;
376                 }
377                 dir = subdir;
378         }
379
380         return dir;
381 }
382
383 /*
384  * Find the value entry with the given name in dir, sorting ref_dirs
385  * and recursing into subdirectories as necessary.  If the name is not
386  * found or it corresponds to a directory entry, return NULL.
387  */
388 static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
389 {
390         int entry_index;
391         struct ref_entry *entry;
392         dir = find_containing_dir(dir, refname, 0);
393         if (!dir)
394                 return NULL;
395         entry_index = search_ref_dir(dir, refname, strlen(refname));
396         if (entry_index == -1)
397                 return NULL;
398         entry = dir->entries[entry_index];
399         return (entry->flag & REF_DIR) ? NULL : entry;
400 }
401
402 /*
403  * Remove the entry with the given name from dir, recursing into
404  * subdirectories as necessary.  If refname is the name of a directory
405  * (i.e., ends with '/'), then remove the directory and its contents.
406  * If the removal was successful, return the number of entries
407  * remaining in the directory entry that contained the deleted entry.
408  * If the name was not found, return -1.  Please note that this
409  * function only deletes the entry from the cache; it does not delete
410  * it from the filesystem or ensure that other cache entries (which
411  * might be symbolic references to the removed entry) are updated.
412  * Nor does it remove any containing dir entries that might be made
413  * empty by the removal.  dir must represent the top-level directory
414  * and must already be complete.
415  */
416 static int remove_entry(struct ref_dir *dir, const char *refname)
417 {
418         int refname_len = strlen(refname);
419         int entry_index;
420         struct ref_entry *entry;
421         int is_dir = refname[refname_len - 1] == '/';
422         if (is_dir) {
423                 /*
424                  * refname represents a reference directory.  Remove
425                  * the trailing slash; otherwise we will get the
426                  * directory *representing* refname rather than the
427                  * one *containing* it.
428                  */
429                 char *dirname = xmemdupz(refname, refname_len - 1);
430                 dir = find_containing_dir(dir, dirname, 0);
431                 free(dirname);
432         } else {
433                 dir = find_containing_dir(dir, refname, 0);
434         }
435         if (!dir)
436                 return -1;
437         entry_index = search_ref_dir(dir, refname, refname_len);
438         if (entry_index == -1)
439                 return -1;
440         entry = dir->entries[entry_index];
441
442         memmove(&dir->entries[entry_index],
443                 &dir->entries[entry_index + 1],
444                 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
445                 );
446         dir->nr--;
447         if (dir->sorted > entry_index)
448                 dir->sorted--;
449         free_ref_entry(entry);
450         return dir->nr;
451 }
452
453 /*
454  * Add a ref_entry to the ref_dir (unsorted), recursing into
455  * subdirectories as necessary.  dir must represent the top-level
456  * directory.  Return 0 on success.
457  */
458 static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
459 {
460         dir = find_containing_dir(dir, ref->name, 1);
461         if (!dir)
462                 return -1;
463         add_entry_to_dir(dir, ref);
464         return 0;
465 }
466
467 /*
468  * Emit a warning and return true iff ref1 and ref2 have the same name
469  * and the same sha1.  Die if they have the same name but different
470  * sha1s.
471  */
472 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
473 {
474         if (strcmp(ref1->name, ref2->name))
475                 return 0;
476
477         /* Duplicate name; make sure that they don't conflict: */
478
479         if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
480                 /* This is impossible by construction */
481                 die("Reference directory conflict: %s", ref1->name);
482
483         if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
484                 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
485
486         warning("Duplicated ref: %s", ref1->name);
487         return 1;
488 }
489
490 /*
491  * Sort the entries in dir non-recursively (if they are not already
492  * sorted) and remove any duplicate entries.
493  */
494 static void sort_ref_dir(struct ref_dir *dir)
495 {
496         int i, j;
497         struct ref_entry *last = NULL;
498
499         /*
500          * This check also prevents passing a zero-length array to qsort(),
501          * which is a problem on some platforms.
502          */
503         if (dir->sorted == dir->nr)
504                 return;
505
506         QSORT(dir->entries, dir->nr, ref_entry_cmp);
507
508         /* Remove any duplicates: */
509         for (i = 0, j = 0; j < dir->nr; j++) {
510                 struct ref_entry *entry = dir->entries[j];
511                 if (last && is_dup_ref(last, entry))
512                         free_ref_entry(entry);
513                 else
514                         last = dir->entries[i++] = entry;
515         }
516         dir->sorted = dir->nr = i;
517 }
518
519 /*
520  * Return true if refname, which has the specified oid and flags, can
521  * be resolved to an object in the database. If the referred-to object
522  * does not exist, emit a warning and return false.
523  */
524 static int ref_resolves_to_object(const char *refname,
525                                   const struct object_id *oid,
526                                   unsigned int flags)
527 {
528         if (flags & REF_ISBROKEN)
529                 return 0;
530         if (!has_sha1_file(oid->hash)) {
531                 error("%s does not point to a valid object!", refname);
532                 return 0;
533         }
534         return 1;
535 }
536
537 /*
538  * Return true if the reference described by entry can be resolved to
539  * an object in the database; otherwise, emit a warning and return
540  * false.
541  */
542 static int entry_resolves_to_object(struct ref_entry *entry)
543 {
544         return ref_resolves_to_object(entry->name,
545                                       &entry->u.value.oid, entry->flag);
546 }
547
548 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
549
550 /*
551  * Call fn for each reference in dir that has index in the range
552  * offset <= index < dir->nr.  Recurse into subdirectories that are in
553  * that index range, sorting them before iterating.  This function
554  * does not sort dir itself; it should be sorted beforehand.  fn is
555  * called for all references, including broken ones.
556  */
557 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
558                                     each_ref_entry_fn fn, void *cb_data)
559 {
560         int i;
561         assert(dir->sorted == dir->nr);
562         for (i = offset; i < dir->nr; i++) {
563                 struct ref_entry *entry = dir->entries[i];
564                 int retval;
565                 if (entry->flag & REF_DIR) {
566                         struct ref_dir *subdir = get_ref_dir(entry);
567                         sort_ref_dir(subdir);
568                         retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
569                 } else {
570                         retval = fn(entry, cb_data);
571                 }
572                 if (retval)
573                         return retval;
574         }
575         return 0;
576 }
577
578 /*
579  * Load all of the refs from the dir into our in-memory cache. The hard work
580  * of loading loose refs is done by get_ref_dir(), so we just need to recurse
581  * through all of the sub-directories. We do not even need to care about
582  * sorting, as traversal order does not matter to us.
583  */
584 static void prime_ref_dir(struct ref_dir *dir)
585 {
586         int i;
587         for (i = 0; i < dir->nr; i++) {
588                 struct ref_entry *entry = dir->entries[i];
589                 if (entry->flag & REF_DIR)
590                         prime_ref_dir(get_ref_dir(entry));
591         }
592 }
593
594 /*
595  * A level in the reference hierarchy that is currently being iterated
596  * through.
597  */
598 struct cache_ref_iterator_level {
599         /*
600          * The ref_dir being iterated over at this level. The ref_dir
601          * is sorted before being stored here.
602          */
603         struct ref_dir *dir;
604
605         /*
606          * The index of the current entry within dir (which might
607          * itself be a directory). If index == -1, then the iteration
608          * hasn't yet begun. If index == dir->nr, then the iteration
609          * through this level is over.
610          */
611         int index;
612 };
613
614 /*
615  * Represent an iteration through a ref_dir in the memory cache. The
616  * iteration recurses through subdirectories.
617  */
618 struct cache_ref_iterator {
619         struct ref_iterator base;
620
621         /*
622          * The number of levels currently on the stack. This is always
623          * at least 1, because when it becomes zero the iteration is
624          * ended and this struct is freed.
625          */
626         size_t levels_nr;
627
628         /* The number of levels that have been allocated on the stack */
629         size_t levels_alloc;
630
631         /*
632          * A stack of levels. levels[0] is the uppermost level that is
633          * being iterated over in this iteration. (This is not
634          * necessary the top level in the references hierarchy. If we
635          * are iterating through a subtree, then levels[0] will hold
636          * the ref_dir for that subtree, and subsequent levels will go
637          * on from there.)
638          */
639         struct cache_ref_iterator_level *levels;
640 };
641
642 static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
643 {
644         struct cache_ref_iterator *iter =
645                 (struct cache_ref_iterator *)ref_iterator;
646
647         while (1) {
648                 struct cache_ref_iterator_level *level =
649                         &iter->levels[iter->levels_nr - 1];
650                 struct ref_dir *dir = level->dir;
651                 struct ref_entry *entry;
652
653                 if (level->index == -1)
654                         sort_ref_dir(dir);
655
656                 if (++level->index == level->dir->nr) {
657                         /* This level is exhausted; pop up a level */
658                         if (--iter->levels_nr == 0)
659                                 return ref_iterator_abort(ref_iterator);
660
661                         continue;
662                 }
663
664                 entry = dir->entries[level->index];
665
666                 if (entry->flag & REF_DIR) {
667                         /* push down a level */
668                         ALLOC_GROW(iter->levels, iter->levels_nr + 1,
669                                    iter->levels_alloc);
670
671                         level = &iter->levels[iter->levels_nr++];
672                         level->dir = get_ref_dir(entry);
673                         level->index = -1;
674                 } else {
675                         iter->base.refname = entry->name;
676                         iter->base.oid = &entry->u.value.oid;
677                         iter->base.flags = entry->flag;
678                         return ITER_OK;
679                 }
680         }
681 }
682
683 static enum peel_status peel_entry(struct ref_entry *entry, int repeel);
684
685 static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
686                                    struct object_id *peeled)
687 {
688         struct cache_ref_iterator *iter =
689                 (struct cache_ref_iterator *)ref_iterator;
690         struct cache_ref_iterator_level *level;
691         struct ref_entry *entry;
692
693         level = &iter->levels[iter->levels_nr - 1];
694
695         if (level->index == -1)
696                 die("BUG: peel called before advance for cache iterator");
697
698         entry = level->dir->entries[level->index];
699
700         if (peel_entry(entry, 0))
701                 return -1;
702         oidcpy(peeled, &entry->u.value.peeled);
703         return 0;
704 }
705
706 static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
707 {
708         struct cache_ref_iterator *iter =
709                 (struct cache_ref_iterator *)ref_iterator;
710
711         free(iter->levels);
712         base_ref_iterator_free(ref_iterator);
713         return ITER_DONE;
714 }
715
716 static struct ref_iterator_vtable cache_ref_iterator_vtable = {
717         cache_ref_iterator_advance,
718         cache_ref_iterator_peel,
719         cache_ref_iterator_abort
720 };
721
722 static struct ref_iterator *cache_ref_iterator_begin(struct ref_dir *dir)
723 {
724         struct cache_ref_iterator *iter;
725         struct ref_iterator *ref_iterator;
726         struct cache_ref_iterator_level *level;
727
728         iter = xcalloc(1, sizeof(*iter));
729         ref_iterator = &iter->base;
730         base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
731         ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
732
733         iter->levels_nr = 1;
734         level = &iter->levels[0];
735         level->index = -1;
736         level->dir = dir;
737
738         return ref_iterator;
739 }
740
741 struct nonmatching_ref_data {
742         const struct string_list *skip;
743         const char *conflicting_refname;
744 };
745
746 static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
747 {
748         struct nonmatching_ref_data *data = vdata;
749
750         if (data->skip && string_list_has_string(data->skip, entry->name))
751                 return 0;
752
753         data->conflicting_refname = entry->name;
754         return 1;
755 }
756
757 /*
758  * Return 0 if a reference named refname could be created without
759  * conflicting with the name of an existing reference in dir.
760  * See verify_refname_available for more information.
761  */
762 static int verify_refname_available_dir(const char *refname,
763                                         const struct string_list *extras,
764                                         const struct string_list *skip,
765                                         struct ref_dir *dir,
766                                         struct strbuf *err)
767 {
768         const char *slash;
769         const char *extra_refname;
770         int pos;
771         struct strbuf dirname = STRBUF_INIT;
772         int ret = -1;
773
774         /*
775          * For the sake of comments in this function, suppose that
776          * refname is "refs/foo/bar".
777          */
778
779         assert(err);
780
781         strbuf_grow(&dirname, strlen(refname) + 1);
782         for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
783                 /* Expand dirname to the new prefix, not including the trailing slash: */
784                 strbuf_add(&dirname, refname + dirname.len, slash - refname - dirname.len);
785
786                 /*
787                  * We are still at a leading dir of the refname (e.g.,
788                  * "refs/foo"; if there is a reference with that name,
789                  * it is a conflict, *unless* it is in skip.
790                  */
791                 if (dir) {
792                         pos = search_ref_dir(dir, dirname.buf, dirname.len);
793                         if (pos >= 0 &&
794                             (!skip || !string_list_has_string(skip, dirname.buf))) {
795                                 /*
796                                  * We found a reference whose name is
797                                  * a proper prefix of refname; e.g.,
798                                  * "refs/foo", and is not in skip.
799                                  */
800                                 strbuf_addf(err, "'%s' exists; cannot create '%s'",
801                                             dirname.buf, refname);
802                                 goto cleanup;
803                         }
804                 }
805
806                 if (extras && string_list_has_string(extras, dirname.buf) &&
807                     (!skip || !string_list_has_string(skip, dirname.buf))) {
808                         strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
809                                     refname, dirname.buf);
810                         goto cleanup;
811                 }
812
813                 /*
814                  * Otherwise, we can try to continue our search with
815                  * the next component. So try to look up the
816                  * directory, e.g., "refs/foo/". If we come up empty,
817                  * we know there is nothing under this whole prefix,
818                  * but even in that case we still have to continue the
819                  * search for conflicts with extras.
820                  */
821                 strbuf_addch(&dirname, '/');
822                 if (dir) {
823                         pos = search_ref_dir(dir, dirname.buf, dirname.len);
824                         if (pos < 0) {
825                                 /*
826                                  * There was no directory "refs/foo/",
827                                  * so there is nothing under this
828                                  * whole prefix. So there is no need
829                                  * to continue looking for conflicting
830                                  * references. But we need to continue
831                                  * looking for conflicting extras.
832                                  */
833                                 dir = NULL;
834                         } else {
835                                 dir = get_ref_dir(dir->entries[pos]);
836                         }
837                 }
838         }
839
840         /*
841          * We are at the leaf of our refname (e.g., "refs/foo/bar").
842          * There is no point in searching for a reference with that
843          * name, because a refname isn't considered to conflict with
844          * itself. But we still need to check for references whose
845          * names are in the "refs/foo/bar/" namespace, because they
846          * *do* conflict.
847          */
848         strbuf_addstr(&dirname, refname + dirname.len);
849         strbuf_addch(&dirname, '/');
850
851         if (dir) {
852                 pos = search_ref_dir(dir, dirname.buf, dirname.len);
853
854                 if (pos >= 0) {
855                         /*
856                          * We found a directory named "$refname/"
857                          * (e.g., "refs/foo/bar/"). It is a problem
858                          * iff it contains any ref that is not in
859                          * "skip".
860                          */
861                         struct nonmatching_ref_data data;
862
863                         data.skip = skip;
864                         data.conflicting_refname = NULL;
865                         dir = get_ref_dir(dir->entries[pos]);
866                         sort_ref_dir(dir);
867                         if (do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data)) {
868                                 strbuf_addf(err, "'%s' exists; cannot create '%s'",
869                                             data.conflicting_refname, refname);
870                                 goto cleanup;
871                         }
872                 }
873         }
874
875         extra_refname = find_descendant_ref(dirname.buf, extras, skip);
876         if (extra_refname)
877                 strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
878                             refname, extra_refname);
879         else
880                 ret = 0;
881
882 cleanup:
883         strbuf_release(&dirname);
884         return ret;
885 }
886
887 struct packed_ref_cache {
888         struct ref_entry *root;
889
890         /*
891          * Count of references to the data structure in this instance,
892          * including the pointer from files_ref_store::packed if any.
893          * The data will not be freed as long as the reference count
894          * is nonzero.
895          */
896         unsigned int referrers;
897
898         /*
899          * Iff the packed-refs file associated with this instance is
900          * currently locked for writing, this points at the associated
901          * lock (which is owned by somebody else).  The referrer count
902          * is also incremented when the file is locked and decremented
903          * when it is unlocked.
904          */
905         struct lock_file *lock;
906
907         /* The metadata from when this packed-refs cache was read */
908         struct stat_validity validity;
909 };
910
911 /*
912  * Future: need to be in "struct repository"
913  * when doing a full libification.
914  */
915 struct files_ref_store {
916         struct ref_store base;
917         unsigned int store_flags;
918
919         char *gitdir;
920         char *gitcommondir;
921         char *packed_refs_path;
922
923         struct ref_entry *loose;
924         struct packed_ref_cache *packed;
925 };
926
927 /* Lock used for the main packed-refs file: */
928 static struct lock_file packlock;
929
930 /*
931  * Increment the reference count of *packed_refs.
932  */
933 static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
934 {
935         packed_refs->referrers++;
936 }
937
938 /*
939  * Decrease the reference count of *packed_refs.  If it goes to zero,
940  * free *packed_refs and return true; otherwise return false.
941  */
942 static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
943 {
944         if (!--packed_refs->referrers) {
945                 free_ref_entry(packed_refs->root);
946                 stat_validity_clear(&packed_refs->validity);
947                 free(packed_refs);
948                 return 1;
949         } else {
950                 return 0;
951         }
952 }
953
954 static void clear_packed_ref_cache(struct files_ref_store *refs)
955 {
956         if (refs->packed) {
957                 struct packed_ref_cache *packed_refs = refs->packed;
958
959                 if (packed_refs->lock)
960                         die("internal error: packed-ref cache cleared while locked");
961                 refs->packed = NULL;
962                 release_packed_ref_cache(packed_refs);
963         }
964 }
965
966 static void clear_loose_ref_cache(struct files_ref_store *refs)
967 {
968         if (refs->loose) {
969                 free_ref_entry(refs->loose);
970                 refs->loose = NULL;
971         }
972 }
973
974 /*
975  * Create a new submodule ref cache and add it to the internal
976  * set of caches.
977  */
978 static struct ref_store *files_ref_store_create(const char *gitdir,
979                                                 unsigned int flags)
980 {
981         struct files_ref_store *refs = xcalloc(1, sizeof(*refs));
982         struct ref_store *ref_store = (struct ref_store *)refs;
983         struct strbuf sb = STRBUF_INIT;
984
985         base_ref_store_init(ref_store, &refs_be_files);
986         refs->store_flags = flags;
987
988         refs->gitdir = xstrdup(gitdir);
989         get_common_dir_noenv(&sb, gitdir);
990         refs->gitcommondir = strbuf_detach(&sb, NULL);
991         strbuf_addf(&sb, "%s/packed-refs", refs->gitcommondir);
992         refs->packed_refs_path = strbuf_detach(&sb, NULL);
993
994         return ref_store;
995 }
996
997 /*
998  * Die if refs is not the main ref store. caller is used in any
999  * necessary error messages.
1000  */
1001 static void files_assert_main_repository(struct files_ref_store *refs,
1002                                          const char *caller)
1003 {
1004         if (refs->store_flags & REF_STORE_MAIN)
1005                 return;
1006
1007         die("BUG: operation %s only allowed for main ref store", caller);
1008 }
1009
1010 /*
1011  * Downcast ref_store to files_ref_store. Die if ref_store is not a
1012  * files_ref_store. required_flags is compared with ref_store's
1013  * store_flags to ensure the ref_store has all required capabilities.
1014  * "caller" is used in any necessary error messages.
1015  */
1016 static struct files_ref_store *files_downcast(struct ref_store *ref_store,
1017                                               unsigned int required_flags,
1018                                               const char *caller)
1019 {
1020         struct files_ref_store *refs;
1021
1022         if (ref_store->be != &refs_be_files)
1023                 die("BUG: ref_store is type \"%s\" not \"files\" in %s",
1024                     ref_store->be->name, caller);
1025
1026         refs = (struct files_ref_store *)ref_store;
1027
1028         if ((refs->store_flags & required_flags) != required_flags)
1029                 die("BUG: operation %s requires abilities 0x%x, but only have 0x%x",
1030                     caller, required_flags, refs->store_flags);
1031
1032         return refs;
1033 }
1034
1035 /* The length of a peeled reference line in packed-refs, including EOL: */
1036 #define PEELED_LINE_LENGTH 42
1037
1038 /*
1039  * The packed-refs header line that we write out.  Perhaps other
1040  * traits will be added later.  The trailing space is required.
1041  */
1042 static const char PACKED_REFS_HEADER[] =
1043         "# pack-refs with: peeled fully-peeled \n";
1044
1045 /*
1046  * Parse one line from a packed-refs file.  Write the SHA1 to sha1.
1047  * Return a pointer to the refname within the line (null-terminated),
1048  * or NULL if there was a problem.
1049  */
1050 static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
1051 {
1052         const char *ref;
1053
1054         /*
1055          * 42: the answer to everything.
1056          *
1057          * In this case, it happens to be the answer to
1058          *  40 (length of sha1 hex representation)
1059          *  +1 (space in between hex and name)
1060          *  +1 (newline at the end of the line)
1061          */
1062         if (line->len <= 42)
1063                 return NULL;
1064
1065         if (get_sha1_hex(line->buf, sha1) < 0)
1066                 return NULL;
1067         if (!isspace(line->buf[40]))
1068                 return NULL;
1069
1070         ref = line->buf + 41;
1071         if (isspace(*ref))
1072                 return NULL;
1073
1074         if (line->buf[line->len - 1] != '\n')
1075                 return NULL;
1076         line->buf[--line->len] = 0;
1077
1078         return ref;
1079 }
1080
1081 /*
1082  * Read f, which is a packed-refs file, into dir.
1083  *
1084  * A comment line of the form "# pack-refs with: " may contain zero or
1085  * more traits. We interpret the traits as follows:
1086  *
1087  *   No traits:
1088  *
1089  *      Probably no references are peeled. But if the file contains a
1090  *      peeled value for a reference, we will use it.
1091  *
1092  *   peeled:
1093  *
1094  *      References under "refs/tags/", if they *can* be peeled, *are*
1095  *      peeled in this file. References outside of "refs/tags/" are
1096  *      probably not peeled even if they could have been, but if we find
1097  *      a peeled value for such a reference we will use it.
1098  *
1099  *   fully-peeled:
1100  *
1101  *      All references in the file that can be peeled are peeled.
1102  *      Inversely (and this is more important), any references in the
1103  *      file for which no peeled value is recorded is not peelable. This
1104  *      trait should typically be written alongside "peeled" for
1105  *      compatibility with older clients, but we do not require it
1106  *      (i.e., "peeled" is a no-op if "fully-peeled" is set).
1107  */
1108 static void read_packed_refs(FILE *f, struct ref_dir *dir)
1109 {
1110         struct ref_entry *last = NULL;
1111         struct strbuf line = STRBUF_INIT;
1112         enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1113
1114         while (strbuf_getwholeline(&line, f, '\n') != EOF) {
1115                 unsigned char sha1[20];
1116                 const char *refname;
1117                 const char *traits;
1118
1119                 if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
1120                         if (strstr(traits, " fully-peeled "))
1121                                 peeled = PEELED_FULLY;
1122                         else if (strstr(traits, " peeled "))
1123                                 peeled = PEELED_TAGS;
1124                         /* perhaps other traits later as well */
1125                         continue;
1126                 }
1127
1128                 refname = parse_ref_line(&line, sha1);
1129                 if (refname) {
1130                         int flag = REF_ISPACKED;
1131
1132                         if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1133                                 if (!refname_is_safe(refname))
1134                                         die("packed refname is dangerous: %s", refname);
1135                                 hashclr(sha1);
1136                                 flag |= REF_BAD_NAME | REF_ISBROKEN;
1137                         }
1138                         last = create_ref_entry(refname, sha1, flag, 0);
1139                         if (peeled == PEELED_FULLY ||
1140                             (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1141                                 last->flag |= REF_KNOWS_PEELED;
1142                         add_ref(dir, last);
1143                         continue;
1144                 }
1145                 if (last &&
1146                     line.buf[0] == '^' &&
1147                     line.len == PEELED_LINE_LENGTH &&
1148                     line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1149                     !get_sha1_hex(line.buf + 1, sha1)) {
1150                         hashcpy(last->u.value.peeled.hash, sha1);
1151                         /*
1152                          * Regardless of what the file header said,
1153                          * we definitely know the value of *this*
1154                          * reference:
1155                          */
1156                         last->flag |= REF_KNOWS_PEELED;
1157                 }
1158         }
1159
1160         strbuf_release(&line);
1161 }
1162
1163 static const char *files_packed_refs_path(struct files_ref_store *refs)
1164 {
1165         return refs->packed_refs_path;
1166 }
1167
1168 static void files_reflog_path(struct files_ref_store *refs,
1169                               struct strbuf *sb,
1170                               const char *refname)
1171 {
1172         if (!refname) {
1173                 /*
1174                  * FIXME: of course this is wrong in multi worktree
1175                  * setting. To be fixed real soon.
1176                  */
1177                 strbuf_addf(sb, "%s/logs", refs->gitcommondir);
1178                 return;
1179         }
1180
1181         switch (ref_type(refname)) {
1182         case REF_TYPE_PER_WORKTREE:
1183         case REF_TYPE_PSEUDOREF:
1184                 strbuf_addf(sb, "%s/logs/%s", refs->gitdir, refname);
1185                 break;
1186         case REF_TYPE_NORMAL:
1187                 strbuf_addf(sb, "%s/logs/%s", refs->gitcommondir, refname);
1188                 break;
1189         default:
1190                 die("BUG: unknown ref type %d of ref %s",
1191                     ref_type(refname), refname);
1192         }
1193 }
1194
1195 static void files_ref_path(struct files_ref_store *refs,
1196                            struct strbuf *sb,
1197                            const char *refname)
1198 {
1199         switch (ref_type(refname)) {
1200         case REF_TYPE_PER_WORKTREE:
1201         case REF_TYPE_PSEUDOREF:
1202                 strbuf_addf(sb, "%s/%s", refs->gitdir, refname);
1203                 break;
1204         case REF_TYPE_NORMAL:
1205                 strbuf_addf(sb, "%s/%s", refs->gitcommondir, refname);
1206                 break;
1207         default:
1208                 die("BUG: unknown ref type %d of ref %s",
1209                     ref_type(refname), refname);
1210         }
1211 }
1212
1213 /*
1214  * Get the packed_ref_cache for the specified files_ref_store,
1215  * creating it if necessary.
1216  */
1217 static struct packed_ref_cache *get_packed_ref_cache(struct files_ref_store *refs)
1218 {
1219         const char *packed_refs_file = files_packed_refs_path(refs);
1220
1221         if (refs->packed &&
1222             !stat_validity_check(&refs->packed->validity, packed_refs_file))
1223                 clear_packed_ref_cache(refs);
1224
1225         if (!refs->packed) {
1226                 FILE *f;
1227
1228                 refs->packed = xcalloc(1, sizeof(*refs->packed));
1229                 acquire_packed_ref_cache(refs->packed);
1230                 refs->packed->root = create_dir_entry(refs, "", 0, 0);
1231                 f = fopen(packed_refs_file, "r");
1232                 if (f) {
1233                         stat_validity_update(&refs->packed->validity, fileno(f));
1234                         read_packed_refs(f, get_ref_dir(refs->packed->root));
1235                         fclose(f);
1236                 }
1237         }
1238         return refs->packed;
1239 }
1240
1241 static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1242 {
1243         return get_ref_dir(packed_ref_cache->root);
1244 }
1245
1246 static struct ref_dir *get_packed_refs(struct files_ref_store *refs)
1247 {
1248         return get_packed_ref_dir(get_packed_ref_cache(refs));
1249 }
1250
1251 /*
1252  * Add a reference to the in-memory packed reference cache.  This may
1253  * only be called while the packed-refs file is locked (see
1254  * lock_packed_refs()).  To actually write the packed-refs file, call
1255  * commit_packed_refs().
1256  */
1257 static void add_packed_ref(struct files_ref_store *refs,
1258                            const char *refname, const unsigned char *sha1)
1259 {
1260         struct packed_ref_cache *packed_ref_cache = get_packed_ref_cache(refs);
1261
1262         if (!packed_ref_cache->lock)
1263                 die("internal error: packed refs not locked");
1264         add_ref(get_packed_ref_dir(packed_ref_cache),
1265                 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1266 }
1267
1268 /*
1269  * Read the loose references from the namespace dirname into dir
1270  * (without recursing).  dirname must end with '/'.  dir must be the
1271  * directory entry corresponding to dirname.
1272  */
1273 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1274 {
1275         struct files_ref_store *refs = dir->ref_store;
1276         DIR *d;
1277         struct dirent *de;
1278         int dirnamelen = strlen(dirname);
1279         struct strbuf refname;
1280         struct strbuf path = STRBUF_INIT;
1281         size_t path_baselen;
1282
1283         files_ref_path(refs, &path, dirname);
1284         path_baselen = path.len;
1285
1286         d = opendir(path.buf);
1287         if (!d) {
1288                 strbuf_release(&path);
1289                 return;
1290         }
1291
1292         strbuf_init(&refname, dirnamelen + 257);
1293         strbuf_add(&refname, dirname, dirnamelen);
1294
1295         while ((de = readdir(d)) != NULL) {
1296                 unsigned char sha1[20];
1297                 struct stat st;
1298                 int flag;
1299
1300                 if (de->d_name[0] == '.')
1301                         continue;
1302                 if (ends_with(de->d_name, ".lock"))
1303                         continue;
1304                 strbuf_addstr(&refname, de->d_name);
1305                 strbuf_addstr(&path, de->d_name);
1306                 if (stat(path.buf, &st) < 0) {
1307                         ; /* silently ignore */
1308                 } else if (S_ISDIR(st.st_mode)) {
1309                         strbuf_addch(&refname, '/');
1310                         add_entry_to_dir(dir,
1311                                          create_dir_entry(refs, refname.buf,
1312                                                           refname.len, 1));
1313                 } else {
1314                         if (!refs_resolve_ref_unsafe(&refs->base,
1315                                                      refname.buf,
1316                                                      RESOLVE_REF_READING,
1317                                                      sha1, &flag)) {
1318                                 hashclr(sha1);
1319                                 flag |= REF_ISBROKEN;
1320                         } else if (is_null_sha1(sha1)) {
1321                                 /*
1322                                  * It is so astronomically unlikely
1323                                  * that NULL_SHA1 is the SHA-1 of an
1324                                  * actual object that we consider its
1325                                  * appearance in a loose reference
1326                                  * file to be repo corruption
1327                                  * (probably due to a software bug).
1328                                  */
1329                                 flag |= REF_ISBROKEN;
1330                         }
1331
1332                         if (check_refname_format(refname.buf,
1333                                                  REFNAME_ALLOW_ONELEVEL)) {
1334                                 if (!refname_is_safe(refname.buf))
1335                                         die("loose refname is dangerous: %s", refname.buf);
1336                                 hashclr(sha1);
1337                                 flag |= REF_BAD_NAME | REF_ISBROKEN;
1338                         }
1339                         add_entry_to_dir(dir,
1340                                          create_ref_entry(refname.buf, sha1, flag, 0));
1341                 }
1342                 strbuf_setlen(&refname, dirnamelen);
1343                 strbuf_setlen(&path, path_baselen);
1344         }
1345         strbuf_release(&refname);
1346         strbuf_release(&path);
1347         closedir(d);
1348 }
1349
1350 static struct ref_dir *get_loose_refs(struct files_ref_store *refs)
1351 {
1352         if (!refs->loose) {
1353                 /*
1354                  * Mark the top-level directory complete because we
1355                  * are about to read the only subdirectory that can
1356                  * hold references:
1357                  */
1358                 refs->loose = create_dir_entry(refs, "", 0, 0);
1359                 /*
1360                  * Create an incomplete entry for "refs/":
1361                  */
1362                 add_entry_to_dir(get_ref_dir(refs->loose),
1363                                  create_dir_entry(refs, "refs/", 5, 1));
1364         }
1365         return get_ref_dir(refs->loose);
1366 }
1367
1368 /*
1369  * Return the ref_entry for the given refname from the packed
1370  * references.  If it does not exist, return NULL.
1371  */
1372 static struct ref_entry *get_packed_ref(struct files_ref_store *refs,
1373                                         const char *refname)
1374 {
1375         return find_ref(get_packed_refs(refs), refname);
1376 }
1377
1378 /*
1379  * A loose ref file doesn't exist; check for a packed ref.
1380  */
1381 static int resolve_packed_ref(struct files_ref_store *refs,
1382                               const char *refname,
1383                               unsigned char *sha1, unsigned int *flags)
1384 {
1385         struct ref_entry *entry;
1386
1387         /*
1388          * The loose reference file does not exist; check for a packed
1389          * reference.
1390          */
1391         entry = get_packed_ref(refs, refname);
1392         if (entry) {
1393                 hashcpy(sha1, entry->u.value.oid.hash);
1394                 *flags |= REF_ISPACKED;
1395                 return 0;
1396         }
1397         /* refname is not a packed reference. */
1398         return -1;
1399 }
1400
1401 static int files_read_raw_ref(struct ref_store *ref_store,
1402                               const char *refname, unsigned char *sha1,
1403                               struct strbuf *referent, unsigned int *type)
1404 {
1405         struct files_ref_store *refs =
1406                 files_downcast(ref_store, REF_STORE_READ, "read_raw_ref");
1407         struct strbuf sb_contents = STRBUF_INIT;
1408         struct strbuf sb_path = STRBUF_INIT;
1409         const char *path;
1410         const char *buf;
1411         struct stat st;
1412         int fd;
1413         int ret = -1;
1414         int save_errno;
1415         int remaining_retries = 3;
1416
1417         *type = 0;
1418         strbuf_reset(&sb_path);
1419
1420         files_ref_path(refs, &sb_path, refname);
1421
1422         path = sb_path.buf;
1423
1424 stat_ref:
1425         /*
1426          * We might have to loop back here to avoid a race
1427          * condition: first we lstat() the file, then we try
1428          * to read it as a link or as a file.  But if somebody
1429          * changes the type of the file (file <-> directory
1430          * <-> symlink) between the lstat() and reading, then
1431          * we don't want to report that as an error but rather
1432          * try again starting with the lstat().
1433          *
1434          * We'll keep a count of the retries, though, just to avoid
1435          * any confusing situation sending us into an infinite loop.
1436          */
1437
1438         if (remaining_retries-- <= 0)
1439                 goto out;
1440
1441         if (lstat(path, &st) < 0) {
1442                 if (errno != ENOENT)
1443                         goto out;
1444                 if (resolve_packed_ref(refs, refname, sha1, type)) {
1445                         errno = ENOENT;
1446                         goto out;
1447                 }
1448                 ret = 0;
1449                 goto out;
1450         }
1451
1452         /* Follow "normalized" - ie "refs/.." symlinks by hand */
1453         if (S_ISLNK(st.st_mode)) {
1454                 strbuf_reset(&sb_contents);
1455                 if (strbuf_readlink(&sb_contents, path, 0) < 0) {
1456                         if (errno == ENOENT || errno == EINVAL)
1457                                 /* inconsistent with lstat; retry */
1458                                 goto stat_ref;
1459                         else
1460                                 goto out;
1461                 }
1462                 if (starts_with(sb_contents.buf, "refs/") &&
1463                     !check_refname_format(sb_contents.buf, 0)) {
1464                         strbuf_swap(&sb_contents, referent);
1465                         *type |= REF_ISSYMREF;
1466                         ret = 0;
1467                         goto out;
1468                 }
1469                 /*
1470                  * It doesn't look like a refname; fall through to just
1471                  * treating it like a non-symlink, and reading whatever it
1472                  * points to.
1473                  */
1474         }
1475
1476         /* Is it a directory? */
1477         if (S_ISDIR(st.st_mode)) {
1478                 /*
1479                  * Even though there is a directory where the loose
1480                  * ref is supposed to be, there could still be a
1481                  * packed ref:
1482                  */
1483                 if (resolve_packed_ref(refs, refname, sha1, type)) {
1484                         errno = EISDIR;
1485                         goto out;
1486                 }
1487                 ret = 0;
1488                 goto out;
1489         }
1490
1491         /*
1492          * Anything else, just open it and try to use it as
1493          * a ref
1494          */
1495         fd = open(path, O_RDONLY);
1496         if (fd < 0) {
1497                 if (errno == ENOENT && !S_ISLNK(st.st_mode))
1498                         /* inconsistent with lstat; retry */
1499                         goto stat_ref;
1500                 else
1501                         goto out;
1502         }
1503         strbuf_reset(&sb_contents);
1504         if (strbuf_read(&sb_contents, fd, 256) < 0) {
1505                 int save_errno = errno;
1506                 close(fd);
1507                 errno = save_errno;
1508                 goto out;
1509         }
1510         close(fd);
1511         strbuf_rtrim(&sb_contents);
1512         buf = sb_contents.buf;
1513         if (starts_with(buf, "ref:")) {
1514                 buf += 4;
1515                 while (isspace(*buf))
1516                         buf++;
1517
1518                 strbuf_reset(referent);
1519                 strbuf_addstr(referent, buf);
1520                 *type |= REF_ISSYMREF;
1521                 ret = 0;
1522                 goto out;
1523         }
1524
1525         /*
1526          * Please note that FETCH_HEAD has additional
1527          * data after the sha.
1528          */
1529         if (get_sha1_hex(buf, sha1) ||
1530             (buf[40] != '\0' && !isspace(buf[40]))) {
1531                 *type |= REF_ISBROKEN;
1532                 errno = EINVAL;
1533                 goto out;
1534         }
1535
1536         ret = 0;
1537
1538 out:
1539         save_errno = errno;
1540         strbuf_release(&sb_path);
1541         strbuf_release(&sb_contents);
1542         errno = save_errno;
1543         return ret;
1544 }
1545
1546 static void unlock_ref(struct ref_lock *lock)
1547 {
1548         /* Do not free lock->lk -- atexit() still looks at them */
1549         if (lock->lk)
1550                 rollback_lock_file(lock->lk);
1551         free(lock->ref_name);
1552         free(lock);
1553 }
1554
1555 /*
1556  * Lock refname, without following symrefs, and set *lock_p to point
1557  * at a newly-allocated lock object. Fill in lock->old_oid, referent,
1558  * and type similarly to read_raw_ref().
1559  *
1560  * The caller must verify that refname is a "safe" reference name (in
1561  * the sense of refname_is_safe()) before calling this function.
1562  *
1563  * If the reference doesn't already exist, verify that refname doesn't
1564  * have a D/F conflict with any existing references. extras and skip
1565  * are passed to verify_refname_available_dir() for this check.
1566  *
1567  * If mustexist is not set and the reference is not found or is
1568  * broken, lock the reference anyway but clear sha1.
1569  *
1570  * Return 0 on success. On failure, write an error message to err and
1571  * return TRANSACTION_NAME_CONFLICT or TRANSACTION_GENERIC_ERROR.
1572  *
1573  * Implementation note: This function is basically
1574  *
1575  *     lock reference
1576  *     read_raw_ref()
1577  *
1578  * but it includes a lot more code to
1579  * - Deal with possible races with other processes
1580  * - Avoid calling verify_refname_available_dir() when it can be
1581  *   avoided, namely if we were successfully able to read the ref
1582  * - Generate informative error messages in the case of failure
1583  */
1584 static int lock_raw_ref(struct files_ref_store *refs,
1585                         const char *refname, int mustexist,
1586                         const struct string_list *extras,
1587                         const struct string_list *skip,
1588                         struct ref_lock **lock_p,
1589                         struct strbuf *referent,
1590                         unsigned int *type,
1591                         struct strbuf *err)
1592 {
1593         struct ref_lock *lock;
1594         struct strbuf ref_file = STRBUF_INIT;
1595         int attempts_remaining = 3;
1596         int ret = TRANSACTION_GENERIC_ERROR;
1597
1598         assert(err);
1599         files_assert_main_repository(refs, "lock_raw_ref");
1600
1601         *type = 0;
1602
1603         /* First lock the file so it can't change out from under us. */
1604
1605         *lock_p = lock = xcalloc(1, sizeof(*lock));
1606
1607         lock->ref_name = xstrdup(refname);
1608         files_ref_path(refs, &ref_file, refname);
1609
1610 retry:
1611         switch (safe_create_leading_directories(ref_file.buf)) {
1612         case SCLD_OK:
1613                 break; /* success */
1614         case SCLD_EXISTS:
1615                 /*
1616                  * Suppose refname is "refs/foo/bar". We just failed
1617                  * to create the containing directory, "refs/foo",
1618                  * because there was a non-directory in the way. This
1619                  * indicates a D/F conflict, probably because of
1620                  * another reference such as "refs/foo". There is no
1621                  * reason to expect this error to be transitory.
1622                  */
1623                 if (refs_verify_refname_available(&refs->base, refname,
1624                                                   extras, skip, err)) {
1625                         if (mustexist) {
1626                                 /*
1627                                  * To the user the relevant error is
1628                                  * that the "mustexist" reference is
1629                                  * missing:
1630                                  */
1631                                 strbuf_reset(err);
1632                                 strbuf_addf(err, "unable to resolve reference '%s'",
1633                                             refname);
1634                         } else {
1635                                 /*
1636                                  * The error message set by
1637                                  * verify_refname_available_dir() is OK.
1638                                  */
1639                                 ret = TRANSACTION_NAME_CONFLICT;
1640                         }
1641                 } else {
1642                         /*
1643                          * The file that is in the way isn't a loose
1644                          * reference. Report it as a low-level
1645                          * failure.
1646                          */
1647                         strbuf_addf(err, "unable to create lock file %s.lock; "
1648                                     "non-directory in the way",
1649                                     ref_file.buf);
1650                 }
1651                 goto error_return;
1652         case SCLD_VANISHED:
1653                 /* Maybe another process was tidying up. Try again. */
1654                 if (--attempts_remaining > 0)
1655                         goto retry;
1656                 /* fall through */
1657         default:
1658                 strbuf_addf(err, "unable to create directory for %s",
1659                             ref_file.buf);
1660                 goto error_return;
1661         }
1662
1663         if (!lock->lk)
1664                 lock->lk = xcalloc(1, sizeof(struct lock_file));
1665
1666         if (hold_lock_file_for_update(lock->lk, ref_file.buf, LOCK_NO_DEREF) < 0) {
1667                 if (errno == ENOENT && --attempts_remaining > 0) {
1668                         /*
1669                          * Maybe somebody just deleted one of the
1670                          * directories leading to ref_file.  Try
1671                          * again:
1672                          */
1673                         goto retry;
1674                 } else {
1675                         unable_to_lock_message(ref_file.buf, errno, err);
1676                         goto error_return;
1677                 }
1678         }
1679
1680         /*
1681          * Now we hold the lock and can read the reference without
1682          * fear that its value will change.
1683          */
1684
1685         if (files_read_raw_ref(&refs->base, refname,
1686                                lock->old_oid.hash, referent, type)) {
1687                 if (errno == ENOENT) {
1688                         if (mustexist) {
1689                                 /* Garden variety missing reference. */
1690                                 strbuf_addf(err, "unable to resolve reference '%s'",
1691                                             refname);
1692                                 goto error_return;
1693                         } else {
1694                                 /*
1695                                  * Reference is missing, but that's OK. We
1696                                  * know that there is not a conflict with
1697                                  * another loose reference because
1698                                  * (supposing that we are trying to lock
1699                                  * reference "refs/foo/bar"):
1700                                  *
1701                                  * - We were successfully able to create
1702                                  *   the lockfile refs/foo/bar.lock, so we
1703                                  *   know there cannot be a loose reference
1704                                  *   named "refs/foo".
1705                                  *
1706                                  * - We got ENOENT and not EISDIR, so we
1707                                  *   know that there cannot be a loose
1708                                  *   reference named "refs/foo/bar/baz".
1709                                  */
1710                         }
1711                 } else if (errno == EISDIR) {
1712                         /*
1713                          * There is a directory in the way. It might have
1714                          * contained references that have been deleted. If
1715                          * we don't require that the reference already
1716                          * exists, try to remove the directory so that it
1717                          * doesn't cause trouble when we want to rename the
1718                          * lockfile into place later.
1719                          */
1720                         if (mustexist) {
1721                                 /* Garden variety missing reference. */
1722                                 strbuf_addf(err, "unable to resolve reference '%s'",
1723                                             refname);
1724                                 goto error_return;
1725                         } else if (remove_dir_recursively(&ref_file,
1726                                                           REMOVE_DIR_EMPTY_ONLY)) {
1727                                 if (verify_refname_available_dir(
1728                                                     refname, extras, skip,
1729                                                     get_loose_refs(refs),
1730                                                     err)) {
1731                                         /*
1732                                          * The error message set by
1733                                          * verify_refname_available() is OK.
1734                                          */
1735                                         ret = TRANSACTION_NAME_CONFLICT;
1736                                         goto error_return;
1737                                 } else {
1738                                         /*
1739                                          * We can't delete the directory,
1740                                          * but we also don't know of any
1741                                          * references that it should
1742                                          * contain.
1743                                          */
1744                                         strbuf_addf(err, "there is a non-empty directory '%s' "
1745                                                     "blocking reference '%s'",
1746                                                     ref_file.buf, refname);
1747                                         goto error_return;
1748                                 }
1749                         }
1750                 } else if (errno == EINVAL && (*type & REF_ISBROKEN)) {
1751                         strbuf_addf(err, "unable to resolve reference '%s': "
1752                                     "reference broken", refname);
1753                         goto error_return;
1754                 } else {
1755                         strbuf_addf(err, "unable to resolve reference '%s': %s",
1756                                     refname, strerror(errno));
1757                         goto error_return;
1758                 }
1759
1760                 /*
1761                  * If the ref did not exist and we are creating it,
1762                  * make sure there is no existing packed ref whose
1763                  * name begins with our refname, nor a packed ref
1764                  * whose name is a proper prefix of our refname.
1765                  */
1766                 if (verify_refname_available_dir(
1767                                     refname, extras, skip,
1768                                     get_packed_refs(refs),
1769                                     err)) {
1770                         goto error_return;
1771                 }
1772         }
1773
1774         ret = 0;
1775         goto out;
1776
1777 error_return:
1778         unlock_ref(lock);
1779         *lock_p = NULL;
1780
1781 out:
1782         strbuf_release(&ref_file);
1783         return ret;
1784 }
1785
1786 /*
1787  * Peel the entry (if possible) and return its new peel_status.  If
1788  * repeel is true, re-peel the entry even if there is an old peeled
1789  * value that is already stored in it.
1790  *
1791  * It is OK to call this function with a packed reference entry that
1792  * might be stale and might even refer to an object that has since
1793  * been garbage-collected.  In such a case, if the entry has
1794  * REF_KNOWS_PEELED then leave the status unchanged and return
1795  * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1796  */
1797 static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1798 {
1799         enum peel_status status;
1800
1801         if (entry->flag & REF_KNOWS_PEELED) {
1802                 if (repeel) {
1803                         entry->flag &= ~REF_KNOWS_PEELED;
1804                         oidclr(&entry->u.value.peeled);
1805                 } else {
1806                         return is_null_oid(&entry->u.value.peeled) ?
1807                                 PEEL_NON_TAG : PEEL_PEELED;
1808                 }
1809         }
1810         if (entry->flag & REF_ISBROKEN)
1811                 return PEEL_BROKEN;
1812         if (entry->flag & REF_ISSYMREF)
1813                 return PEEL_IS_SYMREF;
1814
1815         status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
1816         if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1817                 entry->flag |= REF_KNOWS_PEELED;
1818         return status;
1819 }
1820
1821 static int files_peel_ref(struct ref_store *ref_store,
1822                           const char *refname, unsigned char *sha1)
1823 {
1824         struct files_ref_store *refs =
1825                 files_downcast(ref_store, REF_STORE_READ | REF_STORE_ODB,
1826                                "peel_ref");
1827         int flag;
1828         unsigned char base[20];
1829
1830         if (current_ref_iter && current_ref_iter->refname == refname) {
1831                 struct object_id peeled;
1832
1833                 if (ref_iterator_peel(current_ref_iter, &peeled))
1834                         return -1;
1835                 hashcpy(sha1, peeled.hash);
1836                 return 0;
1837         }
1838
1839         if (refs_read_ref_full(ref_store, refname,
1840                                RESOLVE_REF_READING, base, &flag))
1841                 return -1;
1842
1843         /*
1844          * If the reference is packed, read its ref_entry from the
1845          * cache in the hope that we already know its peeled value.
1846          * We only try this optimization on packed references because
1847          * (a) forcing the filling of the loose reference cache could
1848          * be expensive and (b) loose references anyway usually do not
1849          * have REF_KNOWS_PEELED.
1850          */
1851         if (flag & REF_ISPACKED) {
1852                 struct ref_entry *r = get_packed_ref(refs, refname);
1853                 if (r) {
1854                         if (peel_entry(r, 0))
1855                                 return -1;
1856                         hashcpy(sha1, r->u.value.peeled.hash);
1857                         return 0;
1858                 }
1859         }
1860
1861         return peel_object(base, sha1);
1862 }
1863
1864 struct files_ref_iterator {
1865         struct ref_iterator base;
1866
1867         struct packed_ref_cache *packed_ref_cache;
1868         struct ref_iterator *iter0;
1869         unsigned int flags;
1870 };
1871
1872 static int files_ref_iterator_advance(struct ref_iterator *ref_iterator)
1873 {
1874         struct files_ref_iterator *iter =
1875                 (struct files_ref_iterator *)ref_iterator;
1876         int ok;
1877
1878         while ((ok = ref_iterator_advance(iter->iter0)) == ITER_OK) {
1879                 if (iter->flags & DO_FOR_EACH_PER_WORKTREE_ONLY &&
1880                     ref_type(iter->iter0->refname) != REF_TYPE_PER_WORKTREE)
1881                         continue;
1882
1883                 if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
1884                     !ref_resolves_to_object(iter->iter0->refname,
1885                                             iter->iter0->oid,
1886                                             iter->iter0->flags))
1887                         continue;
1888
1889                 iter->base.refname = iter->iter0->refname;
1890                 iter->base.oid = iter->iter0->oid;
1891                 iter->base.flags = iter->iter0->flags;
1892                 return ITER_OK;
1893         }
1894
1895         iter->iter0 = NULL;
1896         if (ref_iterator_abort(ref_iterator) != ITER_DONE)
1897                 ok = ITER_ERROR;
1898
1899         return ok;
1900 }
1901
1902 static int files_ref_iterator_peel(struct ref_iterator *ref_iterator,
1903                                    struct object_id *peeled)
1904 {
1905         struct files_ref_iterator *iter =
1906                 (struct files_ref_iterator *)ref_iterator;
1907
1908         return ref_iterator_peel(iter->iter0, peeled);
1909 }
1910
1911 static int files_ref_iterator_abort(struct ref_iterator *ref_iterator)
1912 {
1913         struct files_ref_iterator *iter =
1914                 (struct files_ref_iterator *)ref_iterator;
1915         int ok = ITER_DONE;
1916
1917         if (iter->iter0)
1918                 ok = ref_iterator_abort(iter->iter0);
1919
1920         release_packed_ref_cache(iter->packed_ref_cache);
1921         base_ref_iterator_free(ref_iterator);
1922         return ok;
1923 }
1924
1925 static struct ref_iterator_vtable files_ref_iterator_vtable = {
1926         files_ref_iterator_advance,
1927         files_ref_iterator_peel,
1928         files_ref_iterator_abort
1929 };
1930
1931 static struct ref_iterator *files_ref_iterator_begin(
1932                 struct ref_store *ref_store,
1933                 const char *prefix, unsigned int flags)
1934 {
1935         struct files_ref_store *refs;
1936         struct ref_dir *loose_dir, *packed_dir;
1937         struct ref_iterator *loose_iter, *packed_iter;
1938         struct files_ref_iterator *iter;
1939         struct ref_iterator *ref_iterator;
1940
1941         if (ref_paranoia < 0)
1942                 ref_paranoia = git_env_bool("GIT_REF_PARANOIA", 0);
1943         if (ref_paranoia)
1944                 flags |= DO_FOR_EACH_INCLUDE_BROKEN;
1945
1946         refs = files_downcast(ref_store,
1947                               REF_STORE_READ | (ref_paranoia ? 0 : REF_STORE_ODB),
1948                               "ref_iterator_begin");
1949
1950         iter = xcalloc(1, sizeof(*iter));
1951         ref_iterator = &iter->base;
1952         base_ref_iterator_init(ref_iterator, &files_ref_iterator_vtable);
1953
1954         /*
1955          * We must make sure that all loose refs are read before
1956          * accessing the packed-refs file; this avoids a race
1957          * condition if loose refs are migrated to the packed-refs
1958          * file by a simultaneous process, but our in-memory view is
1959          * from before the migration. We ensure this as follows:
1960          * First, we call prime_ref_dir(), which pre-reads the loose
1961          * references for the subtree into the cache. (If they've
1962          * already been read, that's OK; we only need to guarantee
1963          * that they're read before the packed refs, not *how much*
1964          * before.) After that, we call get_packed_ref_cache(), which
1965          * internally checks whether the packed-ref cache is up to
1966          * date with what is on disk, and re-reads it if not.
1967          */
1968
1969         loose_dir = get_loose_refs(refs);
1970
1971         if (prefix && *prefix)
1972                 loose_dir = find_containing_dir(loose_dir, prefix, 0);
1973
1974         if (loose_dir) {
1975                 prime_ref_dir(loose_dir);
1976                 loose_iter = cache_ref_iterator_begin(loose_dir);
1977         } else {
1978                 /* There's nothing to iterate over. */
1979                 loose_iter = empty_ref_iterator_begin();
1980         }
1981
1982         iter->packed_ref_cache = get_packed_ref_cache(refs);
1983         acquire_packed_ref_cache(iter->packed_ref_cache);
1984         packed_dir = get_packed_ref_dir(iter->packed_ref_cache);
1985
1986         if (prefix && *prefix)
1987                 packed_dir = find_containing_dir(packed_dir, prefix, 0);
1988
1989         if (packed_dir) {
1990                 packed_iter = cache_ref_iterator_begin(packed_dir);
1991         } else {
1992                 /* There's nothing to iterate over. */
1993                 packed_iter = empty_ref_iterator_begin();
1994         }
1995
1996         iter->iter0 = overlay_ref_iterator_begin(loose_iter, packed_iter);
1997         iter->flags = flags;
1998
1999         return ref_iterator;
2000 }
2001
2002 /*
2003  * Verify that the reference locked by lock has the value old_sha1.
2004  * Fail if the reference doesn't exist and mustexist is set. Return 0
2005  * on success. On error, write an error message to err, set errno, and
2006  * return a negative value.
2007  */
2008 static int verify_lock(struct ref_store *ref_store, struct ref_lock *lock,
2009                        const unsigned char *old_sha1, int mustexist,
2010                        struct strbuf *err)
2011 {
2012         assert(err);
2013
2014         if (refs_read_ref_full(ref_store, lock->ref_name,
2015                                mustexist ? RESOLVE_REF_READING : 0,
2016                                lock->old_oid.hash, NULL)) {
2017                 if (old_sha1) {
2018                         int save_errno = errno;
2019                         strbuf_addf(err, "can't verify ref '%s'", lock->ref_name);
2020                         errno = save_errno;
2021                         return -1;
2022                 } else {
2023                         oidclr(&lock->old_oid);
2024                         return 0;
2025                 }
2026         }
2027         if (old_sha1 && hashcmp(lock->old_oid.hash, old_sha1)) {
2028                 strbuf_addf(err, "ref '%s' is at %s but expected %s",
2029                             lock->ref_name,
2030                             oid_to_hex(&lock->old_oid),
2031                             sha1_to_hex(old_sha1));
2032                 errno = EBUSY;
2033                 return -1;
2034         }
2035         return 0;
2036 }
2037
2038 static int remove_empty_directories(struct strbuf *path)
2039 {
2040         /*
2041          * we want to create a file but there is a directory there;
2042          * if that is an empty directory (or a directory that contains
2043          * only empty directories), remove them.
2044          */
2045         return remove_dir_recursively(path, REMOVE_DIR_EMPTY_ONLY);
2046 }
2047
2048 static int create_reflock(const char *path, void *cb)
2049 {
2050         struct lock_file *lk = cb;
2051
2052         return hold_lock_file_for_update(lk, path, LOCK_NO_DEREF) < 0 ? -1 : 0;
2053 }
2054
2055 /*
2056  * Locks a ref returning the lock on success and NULL on failure.
2057  * On failure errno is set to something meaningful.
2058  */
2059 static struct ref_lock *lock_ref_sha1_basic(struct files_ref_store *refs,
2060                                             const char *refname,
2061                                             const unsigned char *old_sha1,
2062                                             const struct string_list *extras,
2063                                             const struct string_list *skip,
2064                                             unsigned int flags, int *type,
2065                                             struct strbuf *err)
2066 {
2067         struct strbuf ref_file = STRBUF_INIT;
2068         struct ref_lock *lock;
2069         int last_errno = 0;
2070         int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
2071         int resolve_flags = RESOLVE_REF_NO_RECURSE;
2072         int resolved;
2073
2074         files_assert_main_repository(refs, "lock_ref_sha1_basic");
2075         assert(err);
2076
2077         lock = xcalloc(1, sizeof(struct ref_lock));
2078
2079         if (mustexist)
2080                 resolve_flags |= RESOLVE_REF_READING;
2081         if (flags & REF_DELETING)
2082                 resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
2083
2084         files_ref_path(refs, &ref_file, refname);
2085         resolved = !!refs_resolve_ref_unsafe(&refs->base,
2086                                              refname, resolve_flags,
2087                                              lock->old_oid.hash, type);
2088         if (!resolved && errno == EISDIR) {
2089                 /*
2090                  * we are trying to lock foo but we used to
2091                  * have foo/bar which now does not exist;
2092                  * it is normal for the empty directory 'foo'
2093                  * to remain.
2094                  */
2095                 if (remove_empty_directories(&ref_file)) {
2096                         last_errno = errno;
2097                         if (!verify_refname_available_dir(
2098                                             refname, extras, skip,
2099                                             get_loose_refs(refs), err))
2100                                 strbuf_addf(err, "there are still refs under '%s'",
2101                                             refname);
2102                         goto error_return;
2103                 }
2104                 resolved = !!refs_resolve_ref_unsafe(&refs->base,
2105                                                      refname, resolve_flags,
2106                                                      lock->old_oid.hash, type);
2107         }
2108         if (!resolved) {
2109                 last_errno = errno;
2110                 if (last_errno != ENOTDIR ||
2111                     !verify_refname_available_dir(
2112                                     refname, extras, skip,
2113                                     get_loose_refs(refs), err))
2114                         strbuf_addf(err, "unable to resolve reference '%s': %s",
2115                                     refname, strerror(last_errno));
2116
2117                 goto error_return;
2118         }
2119
2120         /*
2121          * If the ref did not exist and we are creating it, make sure
2122          * there is no existing packed ref whose name begins with our
2123          * refname, nor a packed ref whose name is a proper prefix of
2124          * our refname.
2125          */
2126         if (is_null_oid(&lock->old_oid) &&
2127             verify_refname_available_dir(refname, extras, skip,
2128                                          get_packed_refs(refs),
2129                                          err)) {
2130                 last_errno = ENOTDIR;
2131                 goto error_return;
2132         }
2133
2134         lock->lk = xcalloc(1, sizeof(struct lock_file));
2135
2136         lock->ref_name = xstrdup(refname);
2137
2138         if (raceproof_create_file(ref_file.buf, create_reflock, lock->lk)) {
2139                 last_errno = errno;
2140                 unable_to_lock_message(ref_file.buf, errno, err);
2141                 goto error_return;
2142         }
2143
2144         if (verify_lock(&refs->base, lock, old_sha1, mustexist, err)) {
2145                 last_errno = errno;
2146                 goto error_return;
2147         }
2148         goto out;
2149
2150  error_return:
2151         unlock_ref(lock);
2152         lock = NULL;
2153
2154  out:
2155         strbuf_release(&ref_file);
2156         errno = last_errno;
2157         return lock;
2158 }
2159
2160 /*
2161  * Write an entry to the packed-refs file for the specified refname.
2162  * If peeled is non-NULL, write it as the entry's peeled value.
2163  */
2164 static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2165                                unsigned char *peeled)
2166 {
2167         fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2168         if (peeled)
2169                 fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2170 }
2171
2172 /*
2173  * An each_ref_entry_fn that writes the entry to a packed-refs file.
2174  */
2175 static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2176 {
2177         enum peel_status peel_status = peel_entry(entry, 0);
2178
2179         if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2180                 error("internal error: %s is not a valid packed reference!",
2181                       entry->name);
2182         write_packed_entry(cb_data, entry->name, entry->u.value.oid.hash,
2183                            peel_status == PEEL_PEELED ?
2184                            entry->u.value.peeled.hash : NULL);
2185         return 0;
2186 }
2187
2188 /*
2189  * Lock the packed-refs file for writing. Flags is passed to
2190  * hold_lock_file_for_update(). Return 0 on success. On errors, set
2191  * errno appropriately and return a nonzero value.
2192  */
2193 static int lock_packed_refs(struct files_ref_store *refs, int flags)
2194 {
2195         static int timeout_configured = 0;
2196         static int timeout_value = 1000;
2197         struct packed_ref_cache *packed_ref_cache;
2198
2199         files_assert_main_repository(refs, "lock_packed_refs");
2200
2201         if (!timeout_configured) {
2202                 git_config_get_int("core.packedrefstimeout", &timeout_value);
2203                 timeout_configured = 1;
2204         }
2205
2206         if (hold_lock_file_for_update_timeout(
2207                             &packlock, files_packed_refs_path(refs),
2208                             flags, timeout_value) < 0)
2209                 return -1;
2210         /*
2211          * Get the current packed-refs while holding the lock.  If the
2212          * packed-refs file has been modified since we last read it,
2213          * this will automatically invalidate the cache and re-read
2214          * the packed-refs file.
2215          */
2216         packed_ref_cache = get_packed_ref_cache(refs);
2217         packed_ref_cache->lock = &packlock;
2218         /* Increment the reference count to prevent it from being freed: */
2219         acquire_packed_ref_cache(packed_ref_cache);
2220         return 0;
2221 }
2222
2223 /*
2224  * Write the current version of the packed refs cache from memory to
2225  * disk. The packed-refs file must already be locked for writing (see
2226  * lock_packed_refs()). Return zero on success. On errors, set errno
2227  * and return a nonzero value
2228  */
2229 static int commit_packed_refs(struct files_ref_store *refs)
2230 {
2231         struct packed_ref_cache *packed_ref_cache =
2232                 get_packed_ref_cache(refs);
2233         int error = 0;
2234         int save_errno = 0;
2235         FILE *out;
2236
2237         files_assert_main_repository(refs, "commit_packed_refs");
2238
2239         if (!packed_ref_cache->lock)
2240                 die("internal error: packed-refs not locked");
2241
2242         out = fdopen_lock_file(packed_ref_cache->lock, "w");
2243         if (!out)
2244                 die_errno("unable to fdopen packed-refs descriptor");
2245
2246         fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2247         do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2248                                  0, write_packed_entry_fn, out);
2249
2250         if (commit_lock_file(packed_ref_cache->lock)) {
2251                 save_errno = errno;
2252                 error = -1;
2253         }
2254         packed_ref_cache->lock = NULL;
2255         release_packed_ref_cache(packed_ref_cache);
2256         errno = save_errno;
2257         return error;
2258 }
2259
2260 /*
2261  * Rollback the lockfile for the packed-refs file, and discard the
2262  * in-memory packed reference cache.  (The packed-refs file will be
2263  * read anew if it is needed again after this function is called.)
2264  */
2265 static void rollback_packed_refs(struct files_ref_store *refs)
2266 {
2267         struct packed_ref_cache *packed_ref_cache =
2268                 get_packed_ref_cache(refs);
2269
2270         files_assert_main_repository(refs, "rollback_packed_refs");
2271
2272         if (!packed_ref_cache->lock)
2273                 die("internal error: packed-refs not locked");
2274         rollback_lock_file(packed_ref_cache->lock);
2275         packed_ref_cache->lock = NULL;
2276         release_packed_ref_cache(packed_ref_cache);
2277         clear_packed_ref_cache(refs);
2278 }
2279
2280 struct ref_to_prune {
2281         struct ref_to_prune *next;
2282         unsigned char sha1[20];
2283         char name[FLEX_ARRAY];
2284 };
2285
2286 struct pack_refs_cb_data {
2287         unsigned int flags;
2288         struct ref_dir *packed_refs;
2289         struct ref_to_prune *ref_to_prune;
2290 };
2291
2292 /*
2293  * An each_ref_entry_fn that is run over loose references only.  If
2294  * the loose reference can be packed, add an entry in the packed ref
2295  * cache.  If the reference should be pruned, also add it to
2296  * ref_to_prune in the pack_refs_cb_data.
2297  */
2298 static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2299 {
2300         struct pack_refs_cb_data *cb = cb_data;
2301         enum peel_status peel_status;
2302         struct ref_entry *packed_entry;
2303         int is_tag_ref = starts_with(entry->name, "refs/tags/");
2304
2305         /* Do not pack per-worktree refs: */
2306         if (ref_type(entry->name) != REF_TYPE_NORMAL)
2307                 return 0;
2308
2309         /* ALWAYS pack tags */
2310         if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2311                 return 0;
2312
2313         /* Do not pack symbolic or broken refs: */
2314         if ((entry->flag & REF_ISSYMREF) || !entry_resolves_to_object(entry))
2315                 return 0;
2316
2317         /* Add a packed ref cache entry equivalent to the loose entry. */
2318         peel_status = peel_entry(entry, 1);
2319         if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2320                 die("internal error peeling reference %s (%s)",
2321                     entry->name, oid_to_hex(&entry->u.value.oid));
2322         packed_entry = find_ref(cb->packed_refs, entry->name);
2323         if (packed_entry) {
2324                 /* Overwrite existing packed entry with info from loose entry */
2325                 packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2326                 oidcpy(&packed_entry->u.value.oid, &entry->u.value.oid);
2327         } else {
2328                 packed_entry = create_ref_entry(entry->name, entry->u.value.oid.hash,
2329                                                 REF_ISPACKED | REF_KNOWS_PEELED, 0);
2330                 add_ref(cb->packed_refs, packed_entry);
2331         }
2332         oidcpy(&packed_entry->u.value.peeled, &entry->u.value.peeled);
2333
2334         /* Schedule the loose reference for pruning if requested. */
2335         if ((cb->flags & PACK_REFS_PRUNE)) {
2336                 struct ref_to_prune *n;
2337                 FLEX_ALLOC_STR(n, name, entry->name);
2338                 hashcpy(n->sha1, entry->u.value.oid.hash);
2339                 n->next = cb->ref_to_prune;
2340                 cb->ref_to_prune = n;
2341         }
2342         return 0;
2343 }
2344
2345 enum {
2346         REMOVE_EMPTY_PARENTS_REF = 0x01,
2347         REMOVE_EMPTY_PARENTS_REFLOG = 0x02
2348 };
2349
2350 /*
2351  * Remove empty parent directories associated with the specified
2352  * reference and/or its reflog, but spare [logs/]refs/ and immediate
2353  * subdirs. flags is a combination of REMOVE_EMPTY_PARENTS_REF and/or
2354  * REMOVE_EMPTY_PARENTS_REFLOG.
2355  */
2356 static void try_remove_empty_parents(struct files_ref_store *refs,
2357                                      const char *refname,
2358                                      unsigned int flags)
2359 {
2360         struct strbuf buf = STRBUF_INIT;
2361         struct strbuf sb = STRBUF_INIT;
2362         char *p, *q;
2363         int i;
2364
2365         strbuf_addstr(&buf, refname);
2366         p = buf.buf;
2367         for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2368                 while (*p && *p != '/')
2369                         p++;
2370                 /* tolerate duplicate slashes; see check_refname_format() */
2371                 while (*p == '/')
2372                         p++;
2373         }
2374         q = buf.buf + buf.len;
2375         while (flags & (REMOVE_EMPTY_PARENTS_REF | REMOVE_EMPTY_PARENTS_REFLOG)) {
2376                 while (q > p && *q != '/')
2377                         q--;
2378                 while (q > p && *(q-1) == '/')
2379                         q--;
2380                 if (q == p)
2381                         break;
2382                 strbuf_setlen(&buf, q - buf.buf);
2383
2384                 strbuf_reset(&sb);
2385                 files_ref_path(refs, &sb, buf.buf);
2386                 if ((flags & REMOVE_EMPTY_PARENTS_REF) && rmdir(sb.buf))
2387                         flags &= ~REMOVE_EMPTY_PARENTS_REF;
2388
2389                 strbuf_reset(&sb);
2390                 files_reflog_path(refs, &sb, buf.buf);
2391                 if ((flags & REMOVE_EMPTY_PARENTS_REFLOG) && rmdir(sb.buf))
2392                         flags &= ~REMOVE_EMPTY_PARENTS_REFLOG;
2393         }
2394         strbuf_release(&buf);
2395         strbuf_release(&sb);
2396 }
2397
2398 /* make sure nobody touched the ref, and unlink */
2399 static void prune_ref(struct files_ref_store *refs, struct ref_to_prune *r)
2400 {
2401         struct ref_transaction *transaction;
2402         struct strbuf err = STRBUF_INIT;
2403
2404         if (check_refname_format(r->name, 0))
2405                 return;
2406
2407         transaction = ref_store_transaction_begin(&refs->base, &err);
2408         if (!transaction ||
2409             ref_transaction_delete(transaction, r->name, r->sha1,
2410                                    REF_ISPRUNING | REF_NODEREF, NULL, &err) ||
2411             ref_transaction_commit(transaction, &err)) {
2412                 ref_transaction_free(transaction);
2413                 error("%s", err.buf);
2414                 strbuf_release(&err);
2415                 return;
2416         }
2417         ref_transaction_free(transaction);
2418         strbuf_release(&err);
2419 }
2420
2421 static void prune_refs(struct files_ref_store *refs, struct ref_to_prune *r)
2422 {
2423         while (r) {
2424                 prune_ref(refs, r);
2425                 r = r->next;
2426         }
2427 }
2428
2429 static int files_pack_refs(struct ref_store *ref_store, unsigned int flags)
2430 {
2431         struct files_ref_store *refs =
2432                 files_downcast(ref_store, REF_STORE_WRITE | REF_STORE_ODB,
2433                                "pack_refs");
2434         struct pack_refs_cb_data cbdata;
2435
2436         memset(&cbdata, 0, sizeof(cbdata));
2437         cbdata.flags = flags;
2438
2439         lock_packed_refs(refs, LOCK_DIE_ON_ERROR);
2440         cbdata.packed_refs = get_packed_refs(refs);
2441
2442         do_for_each_entry_in_dir(get_loose_refs(refs), 0,
2443                                  pack_if_possible_fn, &cbdata);
2444
2445         if (commit_packed_refs(refs))
2446                 die_errno("unable to overwrite old ref-pack file");
2447
2448         prune_refs(refs, cbdata.ref_to_prune);
2449         return 0;
2450 }
2451
2452 /*
2453  * Rewrite the packed-refs file, omitting any refs listed in
2454  * 'refnames'. On error, leave packed-refs unchanged, write an error
2455  * message to 'err', and return a nonzero value.
2456  *
2457  * The refs in 'refnames' needn't be sorted. `err` must not be NULL.
2458  */
2459 static int repack_without_refs(struct files_ref_store *refs,
2460                                struct string_list *refnames, struct strbuf *err)
2461 {
2462         struct ref_dir *packed;
2463         struct string_list_item *refname;
2464         int ret, needs_repacking = 0, removed = 0;
2465
2466         files_assert_main_repository(refs, "repack_without_refs");
2467         assert(err);
2468
2469         /* Look for a packed ref */
2470         for_each_string_list_item(refname, refnames) {
2471                 if (get_packed_ref(refs, refname->string)) {
2472                         needs_repacking = 1;
2473                         break;
2474                 }
2475         }
2476
2477         /* Avoid locking if we have nothing to do */
2478         if (!needs_repacking)
2479                 return 0; /* no refname exists in packed refs */
2480
2481         if (lock_packed_refs(refs, 0)) {
2482                 unable_to_lock_message(files_packed_refs_path(refs), errno, err);
2483                 return -1;
2484         }
2485         packed = get_packed_refs(refs);
2486
2487         /* Remove refnames from the cache */
2488         for_each_string_list_item(refname, refnames)
2489                 if (remove_entry(packed, refname->string) != -1)
2490                         removed = 1;
2491         if (!removed) {
2492                 /*
2493                  * All packed entries disappeared while we were
2494                  * acquiring the lock.
2495                  */
2496                 rollback_packed_refs(refs);
2497                 return 0;
2498         }
2499
2500         /* Write what remains */
2501         ret = commit_packed_refs(refs);
2502         if (ret)
2503                 strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2504                             strerror(errno));
2505         return ret;
2506 }
2507
2508 static int files_delete_refs(struct ref_store *ref_store,
2509                              struct string_list *refnames, unsigned int flags)
2510 {
2511         struct files_ref_store *refs =
2512                 files_downcast(ref_store, REF_STORE_WRITE, "delete_refs");
2513         struct strbuf err = STRBUF_INIT;
2514         int i, result = 0;
2515
2516         if (!refnames->nr)
2517                 return 0;
2518
2519         result = repack_without_refs(refs, refnames, &err);
2520         if (result) {
2521                 /*
2522                  * If we failed to rewrite the packed-refs file, then
2523                  * it is unsafe to try to remove loose refs, because
2524                  * doing so might expose an obsolete packed value for
2525                  * a reference that might even point at an object that
2526                  * has been garbage collected.
2527                  */
2528                 if (refnames->nr == 1)
2529                         error(_("could not delete reference %s: %s"),
2530                               refnames->items[0].string, err.buf);
2531                 else
2532                         error(_("could not delete references: %s"), err.buf);
2533
2534                 goto out;
2535         }
2536
2537         for (i = 0; i < refnames->nr; i++) {
2538                 const char *refname = refnames->items[i].string;
2539
2540                 if (refs_delete_ref(&refs->base, NULL, refname, NULL, flags))
2541                         result |= error(_("could not remove reference %s"), refname);
2542         }
2543
2544 out:
2545         strbuf_release(&err);
2546         return result;
2547 }
2548
2549 /*
2550  * People using contrib's git-new-workdir have .git/logs/refs ->
2551  * /some/other/path/.git/logs/refs, and that may live on another device.
2552  *
2553  * IOW, to avoid cross device rename errors, the temporary renamed log must
2554  * live into logs/refs.
2555  */
2556 #define TMP_RENAMED_LOG  "refs/.tmp-renamed-log"
2557
2558 struct rename_cb {
2559         const char *tmp_renamed_log;
2560         int true_errno;
2561 };
2562
2563 static int rename_tmp_log_callback(const char *path, void *cb_data)
2564 {
2565         struct rename_cb *cb = cb_data;
2566
2567         if (rename(cb->tmp_renamed_log, path)) {
2568                 /*
2569                  * rename(a, b) when b is an existing directory ought
2570                  * to result in ISDIR, but Solaris 5.8 gives ENOTDIR.
2571                  * Sheesh. Record the true errno for error reporting,
2572                  * but report EISDIR to raceproof_create_file() so
2573                  * that it knows to retry.
2574                  */
2575                 cb->true_errno = errno;
2576                 if (errno == ENOTDIR)
2577                         errno = EISDIR;
2578                 return -1;
2579         } else {
2580                 return 0;
2581         }
2582 }
2583
2584 static int rename_tmp_log(struct files_ref_store *refs, const char *newrefname)
2585 {
2586         struct strbuf path = STRBUF_INIT;
2587         struct strbuf tmp = STRBUF_INIT;
2588         struct rename_cb cb;
2589         int ret;
2590
2591         files_reflog_path(refs, &path, newrefname);
2592         files_reflog_path(refs, &tmp, TMP_RENAMED_LOG);
2593         cb.tmp_renamed_log = tmp.buf;
2594         ret = raceproof_create_file(path.buf, rename_tmp_log_callback, &cb);
2595         if (ret) {
2596                 if (errno == EISDIR)
2597                         error("directory not empty: %s", path.buf);
2598                 else
2599                         error("unable to move logfile %s to %s: %s",
2600                               tmp.buf, path.buf,
2601                               strerror(cb.true_errno));
2602         }
2603
2604         strbuf_release(&path);
2605         strbuf_release(&tmp);
2606         return ret;
2607 }
2608
2609 static int files_verify_refname_available(struct ref_store *ref_store,
2610                                           const char *newname,
2611                                           const struct string_list *extras,
2612                                           const struct string_list *skip,
2613                                           struct strbuf *err)
2614 {
2615         struct files_ref_store *refs =
2616                 files_downcast(ref_store, REF_STORE_READ, "verify_refname_available");
2617         struct ref_dir *packed_refs = get_packed_refs(refs);
2618         struct ref_dir *loose_refs = get_loose_refs(refs);
2619
2620         if (verify_refname_available_dir(newname, extras, skip,
2621                                          packed_refs, err) ||
2622             verify_refname_available_dir(newname, extras, skip,
2623                                          loose_refs, err))
2624                 return -1;
2625
2626         return 0;
2627 }
2628
2629 static int write_ref_to_lockfile(struct ref_lock *lock,
2630                                  const unsigned char *sha1, struct strbuf *err);
2631 static int commit_ref_update(struct files_ref_store *refs,
2632                              struct ref_lock *lock,
2633                              const unsigned char *sha1, const char *logmsg,
2634                              struct strbuf *err);
2635
2636 static int files_rename_ref(struct ref_store *ref_store,
2637                             const char *oldrefname, const char *newrefname,
2638                             const char *logmsg)
2639 {
2640         struct files_ref_store *refs =
2641                 files_downcast(ref_store, REF_STORE_WRITE, "rename_ref");
2642         unsigned char sha1[20], orig_sha1[20];
2643         int flag = 0, logmoved = 0;
2644         struct ref_lock *lock;
2645         struct stat loginfo;
2646         struct strbuf sb_oldref = STRBUF_INIT;
2647         struct strbuf sb_newref = STRBUF_INIT;
2648         struct strbuf tmp_renamed_log = STRBUF_INIT;
2649         int log, ret;
2650         struct strbuf err = STRBUF_INIT;
2651
2652         files_reflog_path(refs, &sb_oldref, oldrefname);
2653         files_reflog_path(refs, &sb_newref, newrefname);
2654         files_reflog_path(refs, &tmp_renamed_log, TMP_RENAMED_LOG);
2655
2656         log = !lstat(sb_oldref.buf, &loginfo);
2657         if (log && S_ISLNK(loginfo.st_mode)) {
2658                 ret = error("reflog for %s is a symlink", oldrefname);
2659                 goto out;
2660         }
2661
2662         if (!refs_resolve_ref_unsafe(&refs->base, oldrefname,
2663                                      RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2664                                 orig_sha1, &flag)) {
2665                 ret = error("refname %s not found", oldrefname);
2666                 goto out;
2667         }
2668
2669         if (flag & REF_ISSYMREF) {
2670                 ret = error("refname %s is a symbolic ref, renaming it is not supported",
2671                             oldrefname);
2672                 goto out;
2673         }
2674         if (!refs_rename_ref_available(&refs->base, oldrefname, newrefname)) {
2675                 ret = 1;
2676                 goto out;
2677         }
2678
2679         if (log && rename(sb_oldref.buf, tmp_renamed_log.buf)) {
2680                 ret = error("unable to move logfile logs/%s to logs/"TMP_RENAMED_LOG": %s",
2681                             oldrefname, strerror(errno));
2682                 goto out;
2683         }
2684
2685         if (refs_delete_ref(&refs->base, logmsg, oldrefname,
2686                             orig_sha1, REF_NODEREF)) {
2687                 error("unable to delete old %s", oldrefname);
2688                 goto rollback;
2689         }
2690
2691         /*
2692          * Since we are doing a shallow lookup, sha1 is not the
2693          * correct value to pass to delete_ref as old_sha1. But that
2694          * doesn't matter, because an old_sha1 check wouldn't add to
2695          * the safety anyway; we want to delete the reference whatever
2696          * its current value.
2697          */
2698         if (!refs_read_ref_full(&refs->base, newrefname,
2699                                 RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2700                                 sha1, NULL) &&
2701             refs_delete_ref(&refs->base, NULL, newrefname,
2702                             NULL, REF_NODEREF)) {
2703                 if (errno == EISDIR) {
2704                         struct strbuf path = STRBUF_INIT;
2705                         int result;
2706
2707                         files_ref_path(refs, &path, newrefname);
2708                         result = remove_empty_directories(&path);
2709                         strbuf_release(&path);
2710
2711                         if (result) {
2712                                 error("Directory not empty: %s", newrefname);
2713                                 goto rollback;
2714                         }
2715                 } else {
2716                         error("unable to delete existing %s", newrefname);
2717                         goto rollback;
2718                 }
2719         }
2720
2721         if (log && rename_tmp_log(refs, newrefname))
2722                 goto rollback;
2723
2724         logmoved = log;
2725
2726         lock = lock_ref_sha1_basic(refs, newrefname, NULL, NULL, NULL,
2727                                    REF_NODEREF, NULL, &err);
2728         if (!lock) {
2729                 error("unable to rename '%s' to '%s': %s", oldrefname, newrefname, err.buf);
2730                 strbuf_release(&err);
2731                 goto rollback;
2732         }
2733         hashcpy(lock->old_oid.hash, orig_sha1);
2734
2735         if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2736             commit_ref_update(refs, lock, orig_sha1, logmsg, &err)) {
2737                 error("unable to write current sha1 into %s: %s", newrefname, err.buf);
2738                 strbuf_release(&err);
2739                 goto rollback;
2740         }
2741
2742         ret = 0;
2743         goto out;
2744
2745  rollback:
2746         lock = lock_ref_sha1_basic(refs, oldrefname, NULL, NULL, NULL,
2747                                    REF_NODEREF, NULL, &err);
2748         if (!lock) {
2749                 error("unable to lock %s for rollback: %s", oldrefname, err.buf);
2750                 strbuf_release(&err);
2751                 goto rollbacklog;
2752         }
2753
2754         flag = log_all_ref_updates;
2755         log_all_ref_updates = LOG_REFS_NONE;
2756         if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2757             commit_ref_update(refs, lock, orig_sha1, NULL, &err)) {
2758                 error("unable to write current sha1 into %s: %s", oldrefname, err.buf);
2759                 strbuf_release(&err);
2760         }
2761         log_all_ref_updates = flag;
2762
2763  rollbacklog:
2764         if (logmoved && rename(sb_newref.buf, sb_oldref.buf))
2765                 error("unable to restore logfile %s from %s: %s",
2766                         oldrefname, newrefname, strerror(errno));
2767         if (!logmoved && log &&
2768             rename(tmp_renamed_log.buf, sb_oldref.buf))
2769                 error("unable to restore logfile %s from logs/"TMP_RENAMED_LOG": %s",
2770                         oldrefname, strerror(errno));
2771         ret = 1;
2772  out:
2773         strbuf_release(&sb_newref);
2774         strbuf_release(&sb_oldref);
2775         strbuf_release(&tmp_renamed_log);
2776
2777         return ret;
2778 }
2779
2780 static int close_ref(struct ref_lock *lock)
2781 {
2782         if (close_lock_file(lock->lk))
2783                 return -1;
2784         return 0;
2785 }
2786
2787 static int commit_ref(struct ref_lock *lock)
2788 {
2789         char *path = get_locked_file_path(lock->lk);
2790         struct stat st;
2791
2792         if (!lstat(path, &st) && S_ISDIR(st.st_mode)) {
2793                 /*
2794                  * There is a directory at the path we want to rename
2795                  * the lockfile to. Hopefully it is empty; try to
2796                  * delete it.
2797                  */
2798                 size_t len = strlen(path);
2799                 struct strbuf sb_path = STRBUF_INIT;
2800
2801                 strbuf_attach(&sb_path, path, len, len);
2802
2803                 /*
2804                  * If this fails, commit_lock_file() will also fail
2805                  * and will report the problem.
2806                  */
2807                 remove_empty_directories(&sb_path);
2808                 strbuf_release(&sb_path);
2809         } else {
2810                 free(path);
2811         }
2812
2813         if (commit_lock_file(lock->lk))
2814                 return -1;
2815         return 0;
2816 }
2817
2818 static int open_or_create_logfile(const char *path, void *cb)
2819 {
2820         int *fd = cb;
2821
2822         *fd = open(path, O_APPEND | O_WRONLY | O_CREAT, 0666);
2823         return (*fd < 0) ? -1 : 0;
2824 }
2825
2826 /*
2827  * Create a reflog for a ref. If force_create = 0, only create the
2828  * reflog for certain refs (those for which should_autocreate_reflog
2829  * returns non-zero). Otherwise, create it regardless of the reference
2830  * name. If the logfile already existed or was created, return 0 and
2831  * set *logfd to the file descriptor opened for appending to the file.
2832  * If no logfile exists and we decided not to create one, return 0 and
2833  * set *logfd to -1. On failure, fill in *err, set *logfd to -1, and
2834  * return -1.
2835  */
2836 static int log_ref_setup(struct files_ref_store *refs,
2837                          const char *refname, int force_create,
2838                          int *logfd, struct strbuf *err)
2839 {
2840         struct strbuf logfile_sb = STRBUF_INIT;
2841         char *logfile;
2842
2843         files_reflog_path(refs, &logfile_sb, refname);
2844         logfile = strbuf_detach(&logfile_sb, NULL);
2845
2846         if (force_create || should_autocreate_reflog(refname)) {
2847                 if (raceproof_create_file(logfile, open_or_create_logfile, logfd)) {
2848                         if (errno == ENOENT)
2849                                 strbuf_addf(err, "unable to create directory for '%s': "
2850                                             "%s", logfile, strerror(errno));
2851                         else if (errno == EISDIR)
2852                                 strbuf_addf(err, "there are still logs under '%s'",
2853                                             logfile);
2854                         else
2855                                 strbuf_addf(err, "unable to append to '%s': %s",
2856                                             logfile, strerror(errno));
2857
2858                         goto error;
2859                 }
2860         } else {
2861                 *logfd = open(logfile, O_APPEND | O_WRONLY, 0666);
2862                 if (*logfd < 0) {
2863                         if (errno == ENOENT || errno == EISDIR) {
2864                                 /*
2865                                  * The logfile doesn't already exist,
2866                                  * but that is not an error; it only
2867                                  * means that we won't write log
2868                                  * entries to it.
2869                                  */
2870                                 ;
2871                         } else {
2872                                 strbuf_addf(err, "unable to append to '%s': %s",
2873                                             logfile, strerror(errno));
2874                                 goto error;
2875                         }
2876                 }
2877         }
2878
2879         if (*logfd >= 0)
2880                 adjust_shared_perm(logfile);
2881
2882         free(logfile);
2883         return 0;
2884
2885 error:
2886         free(logfile);
2887         return -1;
2888 }
2889
2890 static int files_create_reflog(struct ref_store *ref_store,
2891                                const char *refname, int force_create,
2892                                struct strbuf *err)
2893 {
2894         struct files_ref_store *refs =
2895                 files_downcast(ref_store, REF_STORE_WRITE, "create_reflog");
2896         int fd;
2897
2898         if (log_ref_setup(refs, refname, force_create, &fd, err))
2899                 return -1;
2900
2901         if (fd >= 0)
2902                 close(fd);
2903
2904         return 0;
2905 }
2906
2907 static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
2908                             const unsigned char *new_sha1,
2909                             const char *committer, const char *msg)
2910 {
2911         int msglen, written;
2912         unsigned maxlen, len;
2913         char *logrec;
2914
2915         msglen = msg ? strlen(msg) : 0;
2916         maxlen = strlen(committer) + msglen + 100;
2917         logrec = xmalloc(maxlen);
2918         len = xsnprintf(logrec, maxlen, "%s %s %s\n",
2919                         sha1_to_hex(old_sha1),
2920                         sha1_to_hex(new_sha1),
2921                         committer);
2922         if (msglen)
2923                 len += copy_reflog_msg(logrec + len - 1, msg) - 1;
2924
2925         written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
2926         free(logrec);
2927         if (written != len)
2928                 return -1;
2929
2930         return 0;
2931 }
2932
2933 static int files_log_ref_write(struct files_ref_store *refs,
2934                                const char *refname, const unsigned char *old_sha1,
2935                                const unsigned char *new_sha1, const char *msg,
2936                                int flags, struct strbuf *err)
2937 {
2938         int logfd, result;
2939
2940         if (log_all_ref_updates == LOG_REFS_UNSET)
2941                 log_all_ref_updates = is_bare_repository() ? LOG_REFS_NONE : LOG_REFS_NORMAL;
2942
2943         result = log_ref_setup(refs, refname,
2944                                flags & REF_FORCE_CREATE_REFLOG,
2945                                &logfd, err);
2946
2947         if (result)
2948                 return result;
2949
2950         if (logfd < 0)
2951                 return 0;
2952         result = log_ref_write_fd(logfd, old_sha1, new_sha1,
2953                                   git_committer_info(0), msg);
2954         if (result) {
2955                 struct strbuf sb = STRBUF_INIT;
2956                 int save_errno = errno;
2957
2958                 files_reflog_path(refs, &sb, refname);
2959                 strbuf_addf(err, "unable to append to '%s': %s",
2960                             sb.buf, strerror(save_errno));
2961                 strbuf_release(&sb);
2962                 close(logfd);
2963                 return -1;
2964         }
2965         if (close(logfd)) {
2966                 struct strbuf sb = STRBUF_INIT;
2967                 int save_errno = errno;
2968
2969                 files_reflog_path(refs, &sb, refname);
2970                 strbuf_addf(err, "unable to append to '%s': %s",
2971                             sb.buf, strerror(save_errno));
2972                 strbuf_release(&sb);
2973                 return -1;
2974         }
2975         return 0;
2976 }
2977
2978 /*
2979  * Write sha1 into the open lockfile, then close the lockfile. On
2980  * errors, rollback the lockfile, fill in *err and
2981  * return -1.
2982  */
2983 static int write_ref_to_lockfile(struct ref_lock *lock,
2984                                  const unsigned char *sha1, struct strbuf *err)
2985 {
2986         static char term = '\n';
2987         struct object *o;
2988         int fd;
2989
2990         o = parse_object(sha1);
2991         if (!o) {
2992                 strbuf_addf(err,
2993                             "trying to write ref '%s' with nonexistent object %s",
2994                             lock->ref_name, sha1_to_hex(sha1));
2995                 unlock_ref(lock);
2996                 return -1;
2997         }
2998         if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
2999                 strbuf_addf(err,
3000                             "trying to write non-commit object %s to branch '%s'",
3001                             sha1_to_hex(sha1), lock->ref_name);
3002                 unlock_ref(lock);
3003                 return -1;
3004         }
3005         fd = get_lock_file_fd(lock->lk);
3006         if (write_in_full(fd, sha1_to_hex(sha1), 40) != 40 ||
3007             write_in_full(fd, &term, 1) != 1 ||
3008             close_ref(lock) < 0) {
3009                 strbuf_addf(err,
3010                             "couldn't write '%s'", get_lock_file_path(lock->lk));
3011                 unlock_ref(lock);
3012                 return -1;
3013         }
3014         return 0;
3015 }
3016
3017 /*
3018  * Commit a change to a loose reference that has already been written
3019  * to the loose reference lockfile. Also update the reflogs if
3020  * necessary, using the specified lockmsg (which can be NULL).
3021  */
3022 static int commit_ref_update(struct files_ref_store *refs,
3023                              struct ref_lock *lock,
3024                              const unsigned char *sha1, const char *logmsg,
3025                              struct strbuf *err)
3026 {
3027         files_assert_main_repository(refs, "commit_ref_update");
3028
3029         clear_loose_ref_cache(refs);
3030         if (files_log_ref_write(refs, lock->ref_name,
3031                                 lock->old_oid.hash, sha1,
3032                                 logmsg, 0, err)) {
3033                 char *old_msg = strbuf_detach(err, NULL);
3034                 strbuf_addf(err, "cannot update the ref '%s': %s",
3035                             lock->ref_name, old_msg);
3036                 free(old_msg);
3037                 unlock_ref(lock);
3038                 return -1;
3039         }
3040
3041         if (strcmp(lock->ref_name, "HEAD") != 0) {
3042                 /*
3043                  * Special hack: If a branch is updated directly and HEAD
3044                  * points to it (may happen on the remote side of a push
3045                  * for example) then logically the HEAD reflog should be
3046                  * updated too.
3047                  * A generic solution implies reverse symref information,
3048                  * but finding all symrefs pointing to the given branch
3049                  * would be rather costly for this rare event (the direct
3050                  * update of a branch) to be worth it.  So let's cheat and
3051                  * check with HEAD only which should cover 99% of all usage
3052                  * scenarios (even 100% of the default ones).
3053                  */
3054                 unsigned char head_sha1[20];
3055                 int head_flag;
3056                 const char *head_ref;
3057
3058                 head_ref = refs_resolve_ref_unsafe(&refs->base, "HEAD",
3059                                                    RESOLVE_REF_READING,
3060                                                    head_sha1, &head_flag);
3061                 if (head_ref && (head_flag & REF_ISSYMREF) &&
3062                     !strcmp(head_ref, lock->ref_name)) {
3063                         struct strbuf log_err = STRBUF_INIT;
3064                         if (files_log_ref_write(refs, "HEAD",
3065                                                 lock->old_oid.hash, sha1,
3066                                                 logmsg, 0, &log_err)) {
3067                                 error("%s", log_err.buf);
3068                                 strbuf_release(&log_err);
3069                         }
3070                 }
3071         }
3072
3073         if (commit_ref(lock)) {
3074                 strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3075                 unlock_ref(lock);
3076                 return -1;
3077         }
3078
3079         unlock_ref(lock);
3080         return 0;
3081 }
3082
3083 static int create_ref_symlink(struct ref_lock *lock, const char *target)
3084 {
3085         int ret = -1;
3086 #ifndef NO_SYMLINK_HEAD
3087         char *ref_path = get_locked_file_path(lock->lk);
3088         unlink(ref_path);
3089         ret = symlink(target, ref_path);
3090         free(ref_path);
3091
3092         if (ret)
3093                 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
3094 #endif
3095         return ret;
3096 }
3097
3098 static void update_symref_reflog(struct files_ref_store *refs,
3099                                  struct ref_lock *lock, const char *refname,
3100                                  const char *target, const char *logmsg)
3101 {
3102         struct strbuf err = STRBUF_INIT;
3103         unsigned char new_sha1[20];
3104         if (logmsg &&
3105             !refs_read_ref_full(&refs->base, target,
3106                                 RESOLVE_REF_READING, new_sha1, NULL) &&
3107             files_log_ref_write(refs, refname, lock->old_oid.hash,
3108                                 new_sha1, logmsg, 0, &err)) {
3109                 error("%s", err.buf);
3110                 strbuf_release(&err);
3111         }
3112 }
3113
3114 static int create_symref_locked(struct files_ref_store *refs,
3115                                 struct ref_lock *lock, const char *refname,
3116                                 const char *target, const char *logmsg)
3117 {
3118         if (prefer_symlink_refs && !create_ref_symlink(lock, target)) {
3119                 update_symref_reflog(refs, lock, refname, target, logmsg);
3120                 return 0;
3121         }
3122
3123         if (!fdopen_lock_file(lock->lk, "w"))
3124                 return error("unable to fdopen %s: %s",
3125                              lock->lk->tempfile.filename.buf, strerror(errno));
3126
3127         update_symref_reflog(refs, lock, refname, target, logmsg);
3128
3129         /* no error check; commit_ref will check ferror */
3130         fprintf(lock->lk->tempfile.fp, "ref: %s\n", target);
3131         if (commit_ref(lock) < 0)
3132                 return error("unable to write symref for %s: %s", refname,
3133                              strerror(errno));
3134         return 0;
3135 }
3136
3137 static int files_create_symref(struct ref_store *ref_store,
3138                                const char *refname, const char *target,
3139                                const char *logmsg)
3140 {
3141         struct files_ref_store *refs =
3142                 files_downcast(ref_store, REF_STORE_WRITE, "create_symref");
3143         struct strbuf err = STRBUF_INIT;
3144         struct ref_lock *lock;
3145         int ret;
3146
3147         lock = lock_ref_sha1_basic(refs, refname, NULL,
3148                                    NULL, NULL, REF_NODEREF, NULL,
3149                                    &err);
3150         if (!lock) {
3151                 error("%s", err.buf);
3152                 strbuf_release(&err);
3153                 return -1;
3154         }
3155
3156         ret = create_symref_locked(refs, lock, refname, target, logmsg);
3157         unlock_ref(lock);
3158         return ret;
3159 }
3160
3161 int set_worktree_head_symref(const char *gitdir, const char *target, const char *logmsg)
3162 {
3163         /*
3164          * FIXME: this obviously will not work well for future refs
3165          * backends. This function needs to die.
3166          */
3167         struct files_ref_store *refs =
3168                 files_downcast(get_main_ref_store(),
3169                                REF_STORE_WRITE,
3170                                "set_head_symref");
3171
3172         static struct lock_file head_lock;
3173         struct ref_lock *lock;
3174         struct strbuf head_path = STRBUF_INIT;
3175         const char *head_rel;
3176         int ret;
3177
3178         strbuf_addf(&head_path, "%s/HEAD", absolute_path(gitdir));
3179         if (hold_lock_file_for_update(&head_lock, head_path.buf,
3180                                       LOCK_NO_DEREF) < 0) {
3181                 struct strbuf err = STRBUF_INIT;
3182                 unable_to_lock_message(head_path.buf, errno, &err);
3183                 error("%s", err.buf);
3184                 strbuf_release(&err);
3185                 strbuf_release(&head_path);
3186                 return -1;
3187         }
3188
3189         /* head_rel will be "HEAD" for the main tree, "worktrees/wt/HEAD" for
3190            linked trees */
3191         head_rel = remove_leading_path(head_path.buf,
3192                                        absolute_path(get_git_common_dir()));
3193         /* to make use of create_symref_locked(), initialize ref_lock */
3194         lock = xcalloc(1, sizeof(struct ref_lock));
3195         lock->lk = &head_lock;
3196         lock->ref_name = xstrdup(head_rel);
3197
3198         ret = create_symref_locked(refs, lock, head_rel, target, logmsg);
3199
3200         unlock_ref(lock); /* will free lock */
3201         strbuf_release(&head_path);
3202         return ret;
3203 }
3204
3205 static int files_reflog_exists(struct ref_store *ref_store,
3206                                const char *refname)
3207 {
3208         struct files_ref_store *refs =
3209                 files_downcast(ref_store, REF_STORE_READ, "reflog_exists");
3210         struct strbuf sb = STRBUF_INIT;
3211         struct stat st;
3212         int ret;
3213
3214         files_reflog_path(refs, &sb, refname);
3215         ret = !lstat(sb.buf, &st) && S_ISREG(st.st_mode);
3216         strbuf_release(&sb);
3217         return ret;
3218 }
3219
3220 static int files_delete_reflog(struct ref_store *ref_store,
3221                                const char *refname)
3222 {
3223         struct files_ref_store *refs =
3224                 files_downcast(ref_store, REF_STORE_WRITE, "delete_reflog");
3225         struct strbuf sb = STRBUF_INIT;
3226         int ret;
3227
3228         files_reflog_path(refs, &sb, refname);
3229         ret = remove_path(sb.buf);
3230         strbuf_release(&sb);
3231         return ret;
3232 }
3233
3234 static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3235 {
3236         struct object_id ooid, noid;
3237         char *email_end, *message;
3238         unsigned long timestamp;
3239         int tz;
3240         const char *p = sb->buf;
3241
3242         /* old SP new SP name <email> SP time TAB msg LF */
3243         if (!sb->len || sb->buf[sb->len - 1] != '\n' ||
3244             parse_oid_hex(p, &ooid, &p) || *p++ != ' ' ||
3245             parse_oid_hex(p, &noid, &p) || *p++ != ' ' ||
3246             !(email_end = strchr(p, '>')) ||
3247             email_end[1] != ' ' ||
3248             !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3249             !message || message[0] != ' ' ||
3250             (message[1] != '+' && message[1] != '-') ||
3251             !isdigit(message[2]) || !isdigit(message[3]) ||
3252             !isdigit(message[4]) || !isdigit(message[5]))
3253                 return 0; /* corrupt? */
3254         email_end[1] = '\0';
3255         tz = strtol(message + 1, NULL, 10);
3256         if (message[6] != '\t')
3257                 message += 6;
3258         else
3259                 message += 7;
3260         return fn(&ooid, &noid, p, timestamp, tz, message, cb_data);
3261 }
3262
3263 static char *find_beginning_of_line(char *bob, char *scan)
3264 {
3265         while (bob < scan && *(--scan) != '\n')
3266                 ; /* keep scanning backwards */
3267         /*
3268          * Return either beginning of the buffer, or LF at the end of
3269          * the previous line.
3270          */
3271         return scan;
3272 }
3273
3274 static int files_for_each_reflog_ent_reverse(struct ref_store *ref_store,
3275                                              const char *refname,
3276                                              each_reflog_ent_fn fn,
3277                                              void *cb_data)
3278 {
3279         struct files_ref_store *refs =
3280                 files_downcast(ref_store, REF_STORE_READ,
3281                                "for_each_reflog_ent_reverse");
3282         struct strbuf sb = STRBUF_INIT;
3283         FILE *logfp;
3284         long pos;
3285         int ret = 0, at_tail = 1;
3286
3287         files_reflog_path(refs, &sb, refname);
3288         logfp = fopen(sb.buf, "r");
3289         strbuf_release(&sb);
3290         if (!logfp)
3291                 return -1;
3292
3293         /* Jump to the end */
3294         if (fseek(logfp, 0, SEEK_END) < 0)
3295                 return error("cannot seek back reflog for %s: %s",
3296                              refname, strerror(errno));
3297         pos = ftell(logfp);
3298         while (!ret && 0 < pos) {
3299                 int cnt;
3300                 size_t nread;
3301                 char buf[BUFSIZ];
3302                 char *endp, *scanp;
3303
3304                 /* Fill next block from the end */
3305                 cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3306                 if (fseek(logfp, pos - cnt, SEEK_SET))
3307                         return error("cannot seek back reflog for %s: %s",
3308                                      refname, strerror(errno));
3309                 nread = fread(buf, cnt, 1, logfp);
3310                 if (nread != 1)
3311                         return error("cannot read %d bytes from reflog for %s: %s",
3312                                      cnt, refname, strerror(errno));
3313                 pos -= cnt;
3314
3315                 scanp = endp = buf + cnt;
3316                 if (at_tail && scanp[-1] == '\n')
3317                         /* Looking at the final LF at the end of the file */
3318                         scanp--;
3319                 at_tail = 0;
3320
3321                 while (buf < scanp) {
3322                         /*
3323                          * terminating LF of the previous line, or the beginning
3324                          * of the buffer.
3325                          */
3326                         char *bp;
3327
3328                         bp = find_beginning_of_line(buf, scanp);
3329
3330                         if (*bp == '\n') {
3331                                 /*
3332                                  * The newline is the end of the previous line,
3333                                  * so we know we have complete line starting
3334                                  * at (bp + 1). Prefix it onto any prior data
3335                                  * we collected for the line and process it.
3336                                  */
3337                                 strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3338                                 scanp = bp;
3339                                 endp = bp + 1;
3340                                 ret = show_one_reflog_ent(&sb, fn, cb_data);
3341                                 strbuf_reset(&sb);
3342                                 if (ret)
3343                                         break;
3344                         } else if (!pos) {
3345                                 /*
3346                                  * We are at the start of the buffer, and the
3347                                  * start of the file; there is no previous
3348                                  * line, and we have everything for this one.
3349                                  * Process it, and we can end the loop.
3350                                  */
3351                                 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3352                                 ret = show_one_reflog_ent(&sb, fn, cb_data);
3353                                 strbuf_reset(&sb);
3354                                 break;
3355                         }
3356
3357                         if (bp == buf) {
3358                                 /*
3359                                  * We are at the start of the buffer, and there
3360                                  * is more file to read backwards. Which means
3361                                  * we are in the middle of a line. Note that we
3362                                  * may get here even if *bp was a newline; that
3363                                  * just means we are at the exact end of the
3364                                  * previous line, rather than some spot in the
3365                                  * middle.
3366                                  *
3367                                  * Save away what we have to be combined with
3368                                  * the data from the next read.
3369                                  */
3370                                 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3371                                 break;
3372                         }
3373                 }
3374
3375         }
3376         if (!ret && sb.len)
3377                 die("BUG: reverse reflog parser had leftover data");
3378
3379         fclose(logfp);
3380         strbuf_release(&sb);
3381         return ret;
3382 }
3383
3384 static int files_for_each_reflog_ent(struct ref_store *ref_store,
3385                                      const char *refname,
3386                                      each_reflog_ent_fn fn, void *cb_data)
3387 {
3388         struct files_ref_store *refs =
3389                 files_downcast(ref_store, REF_STORE_READ,
3390                                "for_each_reflog_ent");
3391         FILE *logfp;
3392         struct strbuf sb = STRBUF_INIT;
3393         int ret = 0;
3394
3395         files_reflog_path(refs, &sb, refname);
3396         logfp = fopen(sb.buf, "r");
3397         strbuf_release(&sb);
3398         if (!logfp)
3399                 return -1;
3400
3401         while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3402                 ret = show_one_reflog_ent(&sb, fn, cb_data);
3403         fclose(logfp);
3404         strbuf_release(&sb);
3405         return ret;
3406 }
3407
3408 struct files_reflog_iterator {
3409         struct ref_iterator base;
3410
3411         struct ref_store *ref_store;
3412         struct dir_iterator *dir_iterator;
3413         struct object_id oid;
3414 };
3415
3416 static int files_reflog_iterator_advance(struct ref_iterator *ref_iterator)
3417 {
3418         struct files_reflog_iterator *iter =
3419                 (struct files_reflog_iterator *)ref_iterator;
3420         struct dir_iterator *diter = iter->dir_iterator;
3421         int ok;
3422
3423         while ((ok = dir_iterator_advance(diter)) == ITER_OK) {
3424                 int flags;
3425
3426                 if (!S_ISREG(diter->st.st_mode))
3427                         continue;
3428                 if (diter->basename[0] == '.')
3429                         continue;
3430                 if (ends_with(diter->basename, ".lock"))
3431                         continue;
3432
3433                 if (refs_read_ref_full(iter->ref_store,
3434                                        diter->relative_path, 0,
3435                                        iter->oid.hash, &flags)) {
3436                         error("bad ref for %s", diter->path.buf);
3437                         continue;
3438                 }
3439
3440                 iter->base.refname = diter->relative_path;
3441                 iter->base.oid = &iter->oid;
3442                 iter->base.flags = flags;
3443                 return ITER_OK;
3444         }
3445
3446         iter->dir_iterator = NULL;
3447         if (ref_iterator_abort(ref_iterator) == ITER_ERROR)
3448                 ok = ITER_ERROR;
3449         return ok;
3450 }
3451
3452 static int files_reflog_iterator_peel(struct ref_iterator *ref_iterator,
3453                                    struct object_id *peeled)
3454 {
3455         die("BUG: ref_iterator_peel() called for reflog_iterator");
3456 }
3457
3458 static int files_reflog_iterator_abort(struct ref_iterator *ref_iterator)
3459 {
3460         struct files_reflog_iterator *iter =
3461                 (struct files_reflog_iterator *)ref_iterator;
3462         int ok = ITER_DONE;
3463
3464         if (iter->dir_iterator)
3465                 ok = dir_iterator_abort(iter->dir_iterator);
3466
3467         base_ref_iterator_free(ref_iterator);
3468         return ok;
3469 }
3470
3471 static struct ref_iterator_vtable files_reflog_iterator_vtable = {
3472         files_reflog_iterator_advance,
3473         files_reflog_iterator_peel,
3474         files_reflog_iterator_abort
3475 };
3476
3477 static struct ref_iterator *files_reflog_iterator_begin(struct ref_store *ref_store)
3478 {
3479         struct files_ref_store *refs =
3480                 files_downcast(ref_store, REF_STORE_READ,
3481                                "reflog_iterator_begin");
3482         struct files_reflog_iterator *iter = xcalloc(1, sizeof(*iter));
3483         struct ref_iterator *ref_iterator = &iter->base;
3484         struct strbuf sb = STRBUF_INIT;
3485
3486         base_ref_iterator_init(ref_iterator, &files_reflog_iterator_vtable);
3487         files_reflog_path(refs, &sb, NULL);
3488         iter->dir_iterator = dir_iterator_begin(sb.buf);
3489         iter->ref_store = ref_store;
3490         strbuf_release(&sb);
3491         return ref_iterator;
3492 }
3493
3494 static int ref_update_reject_duplicates(struct string_list *refnames,
3495                                         struct strbuf *err)
3496 {
3497         int i, n = refnames->nr;
3498
3499         assert(err);
3500
3501         for (i = 1; i < n; i++)
3502                 if (!strcmp(refnames->items[i - 1].string, refnames->items[i].string)) {
3503                         strbuf_addf(err,
3504                                     "multiple updates for ref '%s' not allowed.",
3505                                     refnames->items[i].string);
3506                         return 1;
3507                 }
3508         return 0;
3509 }
3510
3511 /*
3512  * If update is a direct update of head_ref (the reference pointed to
3513  * by HEAD), then add an extra REF_LOG_ONLY update for HEAD.
3514  */
3515 static int split_head_update(struct ref_update *update,
3516                              struct ref_transaction *transaction,
3517                              const char *head_ref,
3518                              struct string_list *affected_refnames,
3519                              struct strbuf *err)
3520 {
3521         struct string_list_item *item;
3522         struct ref_update *new_update;
3523
3524         if ((update->flags & REF_LOG_ONLY) ||
3525             (update->flags & REF_ISPRUNING) ||
3526             (update->flags & REF_UPDATE_VIA_HEAD))
3527                 return 0;
3528
3529         if (strcmp(update->refname, head_ref))
3530                 return 0;
3531
3532         /*
3533          * First make sure that HEAD is not already in the
3534          * transaction. This insertion is O(N) in the transaction
3535          * size, but it happens at most once per transaction.
3536          */
3537         item = string_list_insert(affected_refnames, "HEAD");
3538         if (item->util) {
3539                 /* An entry already existed */
3540                 strbuf_addf(err,
3541                             "multiple updates for 'HEAD' (including one "
3542                             "via its referent '%s') are not allowed",
3543                             update->refname);
3544                 return TRANSACTION_NAME_CONFLICT;
3545         }
3546
3547         new_update = ref_transaction_add_update(
3548                         transaction, "HEAD",
3549                         update->flags | REF_LOG_ONLY | REF_NODEREF,
3550                         update->new_sha1, update->old_sha1,
3551                         update->msg);
3552
3553         item->util = new_update;
3554
3555         return 0;
3556 }
3557
3558 /*
3559  * update is for a symref that points at referent and doesn't have
3560  * REF_NODEREF set. Split it into two updates:
3561  * - The original update, but with REF_LOG_ONLY and REF_NODEREF set
3562  * - A new, separate update for the referent reference
3563  * Note that the new update will itself be subject to splitting when
3564  * the iteration gets to it.
3565  */
3566 static int split_symref_update(struct files_ref_store *refs,
3567                                struct ref_update *update,
3568                                const char *referent,
3569                                struct ref_transaction *transaction,
3570                                struct string_list *affected_refnames,
3571                                struct strbuf *err)
3572 {
3573         struct string_list_item *item;
3574         struct ref_update *new_update;
3575         unsigned int new_flags;
3576
3577         /*
3578          * First make sure that referent is not already in the
3579          * transaction. This insertion is O(N) in the transaction
3580          * size, but it happens at most once per symref in a
3581          * transaction.
3582          */
3583         item = string_list_insert(affected_refnames, referent);
3584         if (item->util) {
3585                 /* An entry already existed */
3586                 strbuf_addf(err,
3587                             "multiple updates for '%s' (including one "
3588                             "via symref '%s') are not allowed",
3589                             referent, update->refname);
3590                 return TRANSACTION_NAME_CONFLICT;
3591         }
3592
3593         new_flags = update->flags;
3594         if (!strcmp(update->refname, "HEAD")) {
3595                 /*
3596                  * Record that the new update came via HEAD, so that
3597                  * when we process it, split_head_update() doesn't try
3598                  * to add another reflog update for HEAD. Note that
3599                  * this bit will be propagated if the new_update
3600                  * itself needs to be split.
3601                  */
3602                 new_flags |= REF_UPDATE_VIA_HEAD;
3603         }
3604
3605         new_update = ref_transaction_add_update(
3606                         transaction, referent, new_flags,
3607                         update->new_sha1, update->old_sha1,
3608                         update->msg);
3609
3610         new_update->parent_update = update;
3611
3612         /*
3613          * Change the symbolic ref update to log only. Also, it
3614          * doesn't need to check its old SHA-1 value, as that will be
3615          * done when new_update is processed.
3616          */
3617         update->flags |= REF_LOG_ONLY | REF_NODEREF;
3618         update->flags &= ~REF_HAVE_OLD;
3619
3620         item->util = new_update;
3621
3622         return 0;
3623 }
3624
3625 /*
3626  * Return the refname under which update was originally requested.
3627  */
3628 static const char *original_update_refname(struct ref_update *update)
3629 {
3630         while (update->parent_update)
3631                 update = update->parent_update;
3632
3633         return update->refname;
3634 }
3635
3636 /*
3637  * Check whether the REF_HAVE_OLD and old_oid values stored in update
3638  * are consistent with oid, which is the reference's current value. If
3639  * everything is OK, return 0; otherwise, write an error message to
3640  * err and return -1.
3641  */
3642 static int check_old_oid(struct ref_update *update, struct object_id *oid,
3643                          struct strbuf *err)
3644 {
3645         if (!(update->flags & REF_HAVE_OLD) ||
3646                    !hashcmp(oid->hash, update->old_sha1))
3647                 return 0;
3648
3649         if (is_null_sha1(update->old_sha1))
3650                 strbuf_addf(err, "cannot lock ref '%s': "
3651                             "reference already exists",
3652                             original_update_refname(update));
3653         else if (is_null_oid(oid))
3654                 strbuf_addf(err, "cannot lock ref '%s': "
3655                             "reference is missing but expected %s",
3656                             original_update_refname(update),
3657                             sha1_to_hex(update->old_sha1));
3658         else
3659                 strbuf_addf(err, "cannot lock ref '%s': "
3660                             "is at %s but expected %s",
3661                             original_update_refname(update),
3662                             oid_to_hex(oid),
3663                             sha1_to_hex(update->old_sha1));
3664
3665         return -1;
3666 }
3667
3668 /*
3669  * Prepare for carrying out update:
3670  * - Lock the reference referred to by update.
3671  * - Read the reference under lock.
3672  * - Check that its old SHA-1 value (if specified) is correct, and in
3673  *   any case record it in update->lock->old_oid for later use when
3674  *   writing the reflog.
3675  * - If it is a symref update without REF_NODEREF, split it up into a
3676  *   REF_LOG_ONLY update of the symref and add a separate update for
3677  *   the referent to transaction.
3678  * - If it is an update of head_ref, add a corresponding REF_LOG_ONLY
3679  *   update of HEAD.
3680  */
3681 static int lock_ref_for_update(struct files_ref_store *refs,
3682                                struct ref_update *update,
3683                                struct ref_transaction *transaction,
3684                                const char *head_ref,
3685                                struct string_list *affected_refnames,
3686                                struct strbuf *err)
3687 {
3688         struct strbuf referent = STRBUF_INIT;
3689         int mustexist = (update->flags & REF_HAVE_OLD) &&
3690                 !is_null_sha1(update->old_sha1);
3691         int ret;
3692         struct ref_lock *lock;
3693
3694         files_assert_main_repository(refs, "lock_ref_for_update");
3695
3696         if ((update->flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1))
3697                 update->flags |= REF_DELETING;
3698
3699         if (head_ref) {
3700                 ret = split_head_update(update, transaction, head_ref,
3701                                         affected_refnames, err);
3702                 if (ret)
3703                         return ret;
3704         }
3705
3706         ret = lock_raw_ref(refs, update->refname, mustexist,
3707                            affected_refnames, NULL,
3708                            &lock, &referent,
3709                            &update->type, err);
3710         if (ret) {
3711                 char *reason;
3712
3713                 reason = strbuf_detach(err, NULL);
3714                 strbuf_addf(err, "cannot lock ref '%s': %s",
3715                             original_update_refname(update), reason);
3716                 free(reason);
3717                 return ret;
3718         }
3719
3720         update->backend_data = lock;
3721
3722         if (update->type & REF_ISSYMREF) {
3723                 if (update->flags & REF_NODEREF) {
3724                         /*
3725                          * We won't be reading the referent as part of
3726                          * the transaction, so we have to read it here
3727                          * to record and possibly check old_sha1:
3728                          */
3729                         if (refs_read_ref_full(&refs->base,
3730                                                referent.buf, 0,
3731                                                lock->old_oid.hash, NULL)) {
3732                                 if (update->flags & REF_HAVE_OLD) {
3733                                         strbuf_addf(err, "cannot lock ref '%s': "
3734                                                     "error reading reference",
3735                                                     original_update_refname(update));
3736                                         return -1;
3737                                 }
3738                         } else if (check_old_oid(update, &lock->old_oid, err)) {
3739                                 return TRANSACTION_GENERIC_ERROR;
3740                         }
3741                 } else {
3742                         /*
3743                          * Create a new update for the reference this
3744                          * symref is pointing at. Also, we will record
3745                          * and verify old_sha1 for this update as part
3746                          * of processing the split-off update, so we
3747                          * don't have to do it here.
3748                          */
3749                         ret = split_symref_update(refs, update,
3750                                                   referent.buf, transaction,
3751                                                   affected_refnames, err);
3752                         if (ret)
3753                                 return ret;
3754                 }
3755         } else {
3756                 struct ref_update *parent_update;
3757
3758                 if (check_old_oid(update, &lock->old_oid, err))
3759                         return TRANSACTION_GENERIC_ERROR;
3760
3761                 /*
3762                  * If this update is happening indirectly because of a
3763                  * symref update, record the old SHA-1 in the parent
3764                  * update:
3765                  */
3766                 for (parent_update = update->parent_update;
3767                      parent_update;
3768                      parent_update = parent_update->parent_update) {
3769                         struct ref_lock *parent_lock = parent_update->backend_data;
3770                         oidcpy(&parent_lock->old_oid, &lock->old_oid);
3771                 }
3772         }
3773
3774         if ((update->flags & REF_HAVE_NEW) &&
3775             !(update->flags & REF_DELETING) &&
3776             !(update->flags & REF_LOG_ONLY)) {
3777                 if (!(update->type & REF_ISSYMREF) &&
3778                     !hashcmp(lock->old_oid.hash, update->new_sha1)) {
3779                         /*
3780                          * The reference already has the desired
3781                          * value, so we don't need to write it.
3782                          */
3783                 } else if (write_ref_to_lockfile(lock, update->new_sha1,
3784                                                  err)) {
3785                         char *write_err = strbuf_detach(err, NULL);
3786
3787                         /*
3788                          * The lock was freed upon failure of
3789                          * write_ref_to_lockfile():
3790                          */
3791                         update->backend_data = NULL;
3792                         strbuf_addf(err,
3793                                     "cannot update ref '%s': %s",
3794                                     update->refname, write_err);
3795                         free(write_err);
3796                         return TRANSACTION_GENERIC_ERROR;
3797                 } else {
3798                         update->flags |= REF_NEEDS_COMMIT;
3799                 }
3800         }
3801         if (!(update->flags & REF_NEEDS_COMMIT)) {
3802                 /*
3803                  * We didn't call write_ref_to_lockfile(), so
3804                  * the lockfile is still open. Close it to
3805                  * free up the file descriptor:
3806                  */
3807                 if (close_ref(lock)) {
3808                         strbuf_addf(err, "couldn't close '%s.lock'",
3809                                     update->refname);
3810                         return TRANSACTION_GENERIC_ERROR;
3811                 }
3812         }
3813         return 0;
3814 }
3815
3816 static int files_transaction_commit(struct ref_store *ref_store,
3817                                     struct ref_transaction *transaction,
3818                                     struct strbuf *err)
3819 {
3820         struct files_ref_store *refs =
3821                 files_downcast(ref_store, REF_STORE_WRITE,
3822                                "ref_transaction_commit");
3823         int ret = 0, i;
3824         struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3825         struct string_list_item *ref_to_delete;
3826         struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3827         char *head_ref = NULL;
3828         int head_type;
3829         struct object_id head_oid;
3830         struct strbuf sb = STRBUF_INIT;
3831
3832         assert(err);
3833
3834         if (transaction->state != REF_TRANSACTION_OPEN)
3835                 die("BUG: commit called for transaction that is not open");
3836
3837         if (!transaction->nr) {
3838                 transaction->state = REF_TRANSACTION_CLOSED;
3839                 return 0;
3840         }
3841
3842         /*
3843          * Fail if a refname appears more than once in the
3844          * transaction. (If we end up splitting up any updates using
3845          * split_symref_update() or split_head_update(), those
3846          * functions will check that the new updates don't have the
3847          * same refname as any existing ones.)
3848          */
3849         for (i = 0; i < transaction->nr; i++) {
3850                 struct ref_update *update = transaction->updates[i];
3851                 struct string_list_item *item =
3852                         string_list_append(&affected_refnames, update->refname);
3853
3854                 /*
3855                  * We store a pointer to update in item->util, but at
3856                  * the moment we never use the value of this field
3857                  * except to check whether it is non-NULL.
3858                  */
3859                 item->util = update;
3860         }
3861         string_list_sort(&affected_refnames);
3862         if (ref_update_reject_duplicates(&affected_refnames, err)) {
3863                 ret = TRANSACTION_GENERIC_ERROR;
3864                 goto cleanup;
3865         }
3866
3867         /*
3868          * Special hack: If a branch is updated directly and HEAD
3869          * points to it (may happen on the remote side of a push
3870          * for example) then logically the HEAD reflog should be
3871          * updated too.
3872          *
3873          * A generic solution would require reverse symref lookups,
3874          * but finding all symrefs pointing to a given branch would be
3875          * rather costly for this rare event (the direct update of a
3876          * branch) to be worth it. So let's cheat and check with HEAD
3877          * only, which should cover 99% of all usage scenarios (even
3878          * 100% of the default ones).
3879          *
3880          * So if HEAD is a symbolic reference, then record the name of
3881          * the reference that it points to. If we see an update of
3882          * head_ref within the transaction, then split_head_update()
3883          * arranges for the reflog of HEAD to be updated, too.
3884          */
3885         head_ref = refs_resolve_refdup(ref_store, "HEAD",
3886                                        RESOLVE_REF_NO_RECURSE,
3887                                        head_oid.hash, &head_type);
3888
3889         if (head_ref && !(head_type & REF_ISSYMREF)) {
3890                 free(head_ref);
3891                 head_ref = NULL;
3892         }
3893
3894         /*
3895          * Acquire all locks, verify old values if provided, check
3896          * that new values are valid, and write new values to the
3897          * lockfiles, ready to be activated. Only keep one lockfile
3898          * open at a time to avoid running out of file descriptors.
3899          */
3900         for (i = 0; i < transaction->nr; i++) {
3901                 struct ref_update *update = transaction->updates[i];
3902
3903                 ret = lock_ref_for_update(refs, update, transaction,
3904                                           head_ref, &affected_refnames, err);
3905                 if (ret)
3906                         goto cleanup;
3907         }
3908
3909         /* Perform updates first so live commits remain referenced */
3910         for (i = 0; i < transaction->nr; i++) {
3911                 struct ref_update *update = transaction->updates[i];
3912                 struct ref_lock *lock = update->backend_data;
3913
3914                 if (update->flags & REF_NEEDS_COMMIT ||
3915                     update->flags & REF_LOG_ONLY) {
3916                         if (files_log_ref_write(refs,
3917                                                 lock->ref_name,
3918                                                 lock->old_oid.hash,
3919                                                 update->new_sha1,
3920                                                 update->msg, update->flags,
3921                                                 err)) {
3922                                 char *old_msg = strbuf_detach(err, NULL);
3923
3924                                 strbuf_addf(err, "cannot update the ref '%s': %s",
3925                                             lock->ref_name, old_msg);
3926                                 free(old_msg);
3927                                 unlock_ref(lock);
3928                                 update->backend_data = NULL;
3929                                 ret = TRANSACTION_GENERIC_ERROR;
3930                                 goto cleanup;
3931                         }
3932                 }
3933                 if (update->flags & REF_NEEDS_COMMIT) {
3934                         clear_loose_ref_cache(refs);
3935                         if (commit_ref(lock)) {
3936                                 strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3937                                 unlock_ref(lock);
3938                                 update->backend_data = NULL;
3939                                 ret = TRANSACTION_GENERIC_ERROR;
3940                                 goto cleanup;
3941                         }
3942                 }
3943         }
3944         /* Perform deletes now that updates are safely completed */
3945         for (i = 0; i < transaction->nr; i++) {
3946                 struct ref_update *update = transaction->updates[i];
3947                 struct ref_lock *lock = update->backend_data;
3948
3949                 if (update->flags & REF_DELETING &&
3950                     !(update->flags & REF_LOG_ONLY)) {
3951                         if (!(update->type & REF_ISPACKED) ||
3952                             update->type & REF_ISSYMREF) {
3953                                 /* It is a loose reference. */
3954                                 strbuf_reset(&sb);
3955                                 files_ref_path(refs, &sb, lock->ref_name);
3956                                 if (unlink_or_msg(sb.buf, err)) {
3957                                         ret = TRANSACTION_GENERIC_ERROR;
3958                                         goto cleanup;
3959                                 }
3960                                 update->flags |= REF_DELETED_LOOSE;
3961                         }
3962
3963                         if (!(update->flags & REF_ISPRUNING))
3964                                 string_list_append(&refs_to_delete,
3965                                                    lock->ref_name);
3966                 }
3967         }
3968
3969         if (repack_without_refs(refs, &refs_to_delete, err)) {
3970                 ret = TRANSACTION_GENERIC_ERROR;
3971                 goto cleanup;
3972         }
3973
3974         /* Delete the reflogs of any references that were deleted: */
3975         for_each_string_list_item(ref_to_delete, &refs_to_delete) {
3976                 strbuf_reset(&sb);
3977                 files_reflog_path(refs, &sb, ref_to_delete->string);
3978                 if (!unlink_or_warn(sb.buf))
3979                         try_remove_empty_parents(refs, ref_to_delete->string,
3980                                                  REMOVE_EMPTY_PARENTS_REFLOG);
3981         }
3982
3983         clear_loose_ref_cache(refs);
3984
3985 cleanup:
3986         strbuf_release(&sb);
3987         transaction->state = REF_TRANSACTION_CLOSED;
3988
3989         for (i = 0; i < transaction->nr; i++) {
3990                 struct ref_update *update = transaction->updates[i];
3991                 struct ref_lock *lock = update->backend_data;
3992
3993                 if (lock)
3994                         unlock_ref(lock);
3995
3996                 if (update->flags & REF_DELETED_LOOSE) {
3997                         /*
3998                          * The loose reference was deleted. Delete any
3999                          * empty parent directories. (Note that this
4000                          * can only work because we have already
4001                          * removed the lockfile.)
4002                          */
4003                         try_remove_empty_parents(refs, update->refname,
4004                                                  REMOVE_EMPTY_PARENTS_REF);
4005                 }
4006         }
4007
4008         string_list_clear(&refs_to_delete, 0);
4009         free(head_ref);
4010         string_list_clear(&affected_refnames, 0);
4011
4012         return ret;
4013 }
4014
4015 static int ref_present(const char *refname,
4016                        const struct object_id *oid, int flags, void *cb_data)
4017 {
4018         struct string_list *affected_refnames = cb_data;
4019
4020         return string_list_has_string(affected_refnames, refname);
4021 }
4022
4023 static int files_initial_transaction_commit(struct ref_store *ref_store,
4024                                             struct ref_transaction *transaction,
4025                                             struct strbuf *err)
4026 {
4027         struct files_ref_store *refs =
4028                 files_downcast(ref_store, REF_STORE_WRITE,
4029                                "initial_ref_transaction_commit");
4030         int ret = 0, i;
4031         struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
4032
4033         assert(err);
4034
4035         if (transaction->state != REF_TRANSACTION_OPEN)
4036                 die("BUG: commit called for transaction that is not open");
4037
4038         /* Fail if a refname appears more than once in the transaction: */
4039         for (i = 0; i < transaction->nr; i++)
4040                 string_list_append(&affected_refnames,
4041                                    transaction->updates[i]->refname);
4042         string_list_sort(&affected_refnames);
4043         if (ref_update_reject_duplicates(&affected_refnames, err)) {
4044                 ret = TRANSACTION_GENERIC_ERROR;
4045                 goto cleanup;
4046         }
4047
4048         /*
4049          * It's really undefined to call this function in an active
4050          * repository or when there are existing references: we are
4051          * only locking and changing packed-refs, so (1) any
4052          * simultaneous processes might try to change a reference at
4053          * the same time we do, and (2) any existing loose versions of
4054          * the references that we are setting would have precedence
4055          * over our values. But some remote helpers create the remote
4056          * "HEAD" and "master" branches before calling this function,
4057          * so here we really only check that none of the references
4058          * that we are creating already exists.
4059          */
4060         if (refs_for_each_rawref(&refs->base, ref_present,
4061                                  &affected_refnames))
4062                 die("BUG: initial ref transaction called with existing refs");
4063
4064         for (i = 0; i < transaction->nr; i++) {
4065                 struct ref_update *update = transaction->updates[i];
4066
4067                 if ((update->flags & REF_HAVE_OLD) &&
4068                     !is_null_sha1(update->old_sha1))
4069                         die("BUG: initial ref transaction with old_sha1 set");
4070                 if (refs_verify_refname_available(&refs->base, update->refname,
4071                                                   &affected_refnames, NULL,
4072                                                   err)) {
4073                         ret = TRANSACTION_NAME_CONFLICT;
4074                         goto cleanup;
4075                 }
4076         }
4077
4078         if (lock_packed_refs(refs, 0)) {
4079                 strbuf_addf(err, "unable to lock packed-refs file: %s",
4080                             strerror(errno));
4081                 ret = TRANSACTION_GENERIC_ERROR;
4082                 goto cleanup;
4083         }
4084
4085         for (i = 0; i < transaction->nr; i++) {
4086                 struct ref_update *update = transaction->updates[i];
4087
4088                 if ((update->flags & REF_HAVE_NEW) &&
4089                     !is_null_sha1(update->new_sha1))
4090                         add_packed_ref(refs, update->refname, update->new_sha1);
4091         }
4092
4093         if (commit_packed_refs(refs)) {
4094                 strbuf_addf(err, "unable to commit packed-refs file: %s",
4095                             strerror(errno));
4096                 ret = TRANSACTION_GENERIC_ERROR;
4097                 goto cleanup;
4098         }
4099
4100 cleanup:
4101         transaction->state = REF_TRANSACTION_CLOSED;
4102         string_list_clear(&affected_refnames, 0);
4103         return ret;
4104 }
4105
4106 struct expire_reflog_cb {
4107         unsigned int flags;
4108         reflog_expiry_should_prune_fn *should_prune_fn;
4109         void *policy_cb;
4110         FILE *newlog;
4111         struct object_id last_kept_oid;
4112 };
4113
4114 static int expire_reflog_ent(struct object_id *ooid, struct object_id *noid,
4115                              const char *email, unsigned long timestamp, int tz,
4116                              const char *message, void *cb_data)
4117 {
4118         struct expire_reflog_cb *cb = cb_data;
4119         struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
4120
4121         if (cb->flags & EXPIRE_REFLOGS_REWRITE)
4122                 ooid = &cb->last_kept_oid;
4123
4124         if ((*cb->should_prune_fn)(ooid->hash, noid->hash, email, timestamp, tz,
4125                                    message, policy_cb)) {
4126                 if (!cb->newlog)
4127                         printf("would prune %s", message);
4128                 else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4129                         printf("prune %s", message);
4130         } else {
4131                 if (cb->newlog) {
4132                         fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
4133                                 oid_to_hex(ooid), oid_to_hex(noid),
4134                                 email, timestamp, tz, message);
4135                         oidcpy(&cb->last_kept_oid, noid);
4136                 }
4137                 if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4138                         printf("keep %s", message);
4139         }
4140         return 0;
4141 }
4142
4143 static int files_reflog_expire(struct ref_store *ref_store,
4144                                const char *refname, const unsigned char *sha1,
4145                                unsigned int flags,
4146                                reflog_expiry_prepare_fn prepare_fn,
4147                                reflog_expiry_should_prune_fn should_prune_fn,
4148                                reflog_expiry_cleanup_fn cleanup_fn,
4149                                void *policy_cb_data)
4150 {
4151         struct files_ref_store *refs =
4152                 files_downcast(ref_store, REF_STORE_WRITE, "reflog_expire");
4153         static struct lock_file reflog_lock;
4154         struct expire_reflog_cb cb;
4155         struct ref_lock *lock;
4156         struct strbuf log_file_sb = STRBUF_INIT;
4157         char *log_file;
4158         int status = 0;
4159         int type;
4160         struct strbuf err = STRBUF_INIT;
4161
4162         memset(&cb, 0, sizeof(cb));
4163         cb.flags = flags;
4164         cb.policy_cb = policy_cb_data;
4165         cb.should_prune_fn = should_prune_fn;
4166
4167         /*
4168          * The reflog file is locked by holding the lock on the
4169          * reference itself, plus we might need to update the
4170          * reference if --updateref was specified:
4171          */
4172         lock = lock_ref_sha1_basic(refs, refname, sha1,
4173                                    NULL, NULL, REF_NODEREF,
4174                                    &type, &err);
4175         if (!lock) {
4176                 error("cannot lock ref '%s': %s", refname, err.buf);
4177                 strbuf_release(&err);
4178                 return -1;
4179         }
4180         if (!refs_reflog_exists(ref_store, refname)) {
4181                 unlock_ref(lock);
4182                 return 0;
4183         }
4184
4185         files_reflog_path(refs, &log_file_sb, refname);
4186         log_file = strbuf_detach(&log_file_sb, NULL);
4187         if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4188                 /*
4189                  * Even though holding $GIT_DIR/logs/$reflog.lock has
4190                  * no locking implications, we use the lock_file
4191                  * machinery here anyway because it does a lot of the
4192                  * work we need, including cleaning up if the program
4193                  * exits unexpectedly.
4194                  */
4195                 if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
4196                         struct strbuf err = STRBUF_INIT;
4197                         unable_to_lock_message(log_file, errno, &err);
4198                         error("%s", err.buf);
4199                         strbuf_release(&err);
4200                         goto failure;
4201                 }
4202                 cb.newlog = fdopen_lock_file(&reflog_lock, "w");
4203                 if (!cb.newlog) {
4204                         error("cannot fdopen %s (%s)",
4205                               get_lock_file_path(&reflog_lock), strerror(errno));
4206                         goto failure;
4207                 }
4208         }
4209
4210         (*prepare_fn)(refname, sha1, cb.policy_cb);
4211         refs_for_each_reflog_ent(ref_store, refname, expire_reflog_ent, &cb);
4212         (*cleanup_fn)(cb.policy_cb);
4213
4214         if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4215                 /*
4216                  * It doesn't make sense to adjust a reference pointed
4217                  * to by a symbolic ref based on expiring entries in
4218                  * the symbolic reference's reflog. Nor can we update
4219                  * a reference if there are no remaining reflog
4220                  * entries.
4221                  */
4222                 int update = (flags & EXPIRE_REFLOGS_UPDATE_REF) &&
4223                         !(type & REF_ISSYMREF) &&
4224                         !is_null_oid(&cb.last_kept_oid);
4225
4226                 if (close_lock_file(&reflog_lock)) {
4227                         status |= error("couldn't write %s: %s", log_file,
4228                                         strerror(errno));
4229                 } else if (update &&
4230                            (write_in_full(get_lock_file_fd(lock->lk),
4231                                 oid_to_hex(&cb.last_kept_oid), GIT_SHA1_HEXSZ) != GIT_SHA1_HEXSZ ||
4232                             write_str_in_full(get_lock_file_fd(lock->lk), "\n") != 1 ||
4233                             close_ref(lock) < 0)) {
4234                         status |= error("couldn't write %s",
4235                                         get_lock_file_path(lock->lk));
4236                         rollback_lock_file(&reflog_lock);
4237                 } else if (commit_lock_file(&reflog_lock)) {
4238                         status |= error("unable to write reflog '%s' (%s)",
4239                                         log_file, strerror(errno));
4240                 } else if (update && commit_ref(lock)) {
4241                         status |= error("couldn't set %s", lock->ref_name);
4242                 }
4243         }
4244         free(log_file);
4245         unlock_ref(lock);
4246         return status;
4247
4248  failure:
4249         rollback_lock_file(&reflog_lock);
4250         free(log_file);
4251         unlock_ref(lock);
4252         return -1;
4253 }
4254
4255 static int files_init_db(struct ref_store *ref_store, struct strbuf *err)
4256 {
4257         struct files_ref_store *refs =
4258                 files_downcast(ref_store, REF_STORE_WRITE, "init_db");
4259         struct strbuf sb = STRBUF_INIT;
4260
4261         /*
4262          * Create .git/refs/{heads,tags}
4263          */
4264         files_ref_path(refs, &sb, "refs/heads");
4265         safe_create_dir(sb.buf, 1);
4266
4267         strbuf_reset(&sb);
4268         files_ref_path(refs, &sb, "refs/tags");
4269         safe_create_dir(sb.buf, 1);
4270
4271         strbuf_release(&sb);
4272         return 0;
4273 }
4274
4275 struct ref_storage_be refs_be_files = {
4276         NULL,
4277         "files",
4278         files_ref_store_create,
4279         files_init_db,
4280         files_transaction_commit,
4281         files_initial_transaction_commit,
4282
4283         files_pack_refs,
4284         files_peel_ref,
4285         files_create_symref,
4286         files_delete_refs,
4287         files_rename_ref,
4288
4289         files_ref_iterator_begin,
4290         files_read_raw_ref,
4291         files_verify_refname_available,
4292
4293         files_reflog_iterator_begin,
4294         files_for_each_reflog_ent,
4295         files_for_each_reflog_ent_reverse,
4296         files_reflog_exists,
4297         files_create_reflog,
4298         files_delete_reflog,
4299         files_reflog_expire
4300 };