cache-tree: avoid infinite loop on zero-entry tree
[git] / cache-tree.c
1 #include "cache.h"
2 #include "tree.h"
3 #include "tree-walk.h"
4 #include "cache-tree.h"
5
6 #ifndef DEBUG
7 #define DEBUG 0
8 #endif
9
10 struct cache_tree *cache_tree(void)
11 {
12         struct cache_tree *it = xcalloc(1, sizeof(struct cache_tree));
13         it->entry_count = -1;
14         return it;
15 }
16
17 void cache_tree_free(struct cache_tree **it_p)
18 {
19         int i;
20         struct cache_tree *it = *it_p;
21
22         if (!it)
23                 return;
24         for (i = 0; i < it->subtree_nr; i++)
25                 if (it->down[i]) {
26                         cache_tree_free(&it->down[i]->cache_tree);
27                         free(it->down[i]);
28                 }
29         free(it->down);
30         free(it);
31         *it_p = NULL;
32 }
33
34 static int subtree_name_cmp(const char *one, int onelen,
35                             const char *two, int twolen)
36 {
37         if (onelen < twolen)
38                 return -1;
39         if (twolen < onelen)
40                 return 1;
41         return memcmp(one, two, onelen);
42 }
43
44 static int subtree_pos(struct cache_tree *it, const char *path, int pathlen)
45 {
46         struct cache_tree_sub **down = it->down;
47         int lo, hi;
48         lo = 0;
49         hi = it->subtree_nr;
50         while (lo < hi) {
51                 int mi = (lo + hi) / 2;
52                 struct cache_tree_sub *mdl = down[mi];
53                 int cmp = subtree_name_cmp(path, pathlen,
54                                            mdl->name, mdl->namelen);
55                 if (!cmp)
56                         return mi;
57                 if (cmp < 0)
58                         hi = mi;
59                 else
60                         lo = mi + 1;
61         }
62         return -lo-1;
63 }
64
65 static struct cache_tree_sub *find_subtree(struct cache_tree *it,
66                                            const char *path,
67                                            int pathlen,
68                                            int create)
69 {
70         struct cache_tree_sub *down;
71         int pos = subtree_pos(it, path, pathlen);
72         if (0 <= pos)
73                 return it->down[pos];
74         if (!create)
75                 return NULL;
76
77         pos = -pos-1;
78         ALLOC_GROW(it->down, it->subtree_nr + 1, it->subtree_alloc);
79         it->subtree_nr++;
80
81         down = xmalloc(sizeof(*down) + pathlen + 1);
82         down->cache_tree = NULL;
83         down->namelen = pathlen;
84         memcpy(down->name, path, pathlen);
85         down->name[pathlen] = 0;
86
87         if (pos < it->subtree_nr)
88                 memmove(it->down + pos + 1,
89                         it->down + pos,
90                         sizeof(down) * (it->subtree_nr - pos - 1));
91         it->down[pos] = down;
92         return down;
93 }
94
95 struct cache_tree_sub *cache_tree_sub(struct cache_tree *it, const char *path)
96 {
97         int pathlen = strlen(path);
98         return find_subtree(it, path, pathlen, 1);
99 }
100
101 static int do_invalidate_path(struct cache_tree *it, const char *path)
102 {
103         /* a/b/c
104          * ==> invalidate self
105          * ==> find "a", have it invalidate "b/c"
106          * a
107          * ==> invalidate self
108          * ==> if "a" exists as a subtree, remove it.
109          */
110         const char *slash;
111         int namelen;
112         struct cache_tree_sub *down;
113
114 #if DEBUG
115         fprintf(stderr, "cache-tree invalidate <%s>\n", path);
116 #endif
117
118         if (!it)
119                 return 0;
120         slash = strchrnul(path, '/');
121         namelen = slash - path;
122         it->entry_count = -1;
123         if (!*slash) {
124                 int pos;
125                 pos = subtree_pos(it, path, namelen);
126                 if (0 <= pos) {
127                         cache_tree_free(&it->down[pos]->cache_tree);
128                         free(it->down[pos]);
129                         /* 0 1 2 3 4 5
130                          *       ^     ^subtree_nr = 6
131                          *       pos
132                          * move 4 and 5 up one place (2 entries)
133                          * 2 = 6 - 3 - 1 = subtree_nr - pos - 1
134                          */
135                         memmove(it->down+pos, it->down+pos+1,
136                                 sizeof(struct cache_tree_sub *) *
137                                 (it->subtree_nr - pos - 1));
138                         it->subtree_nr--;
139                 }
140                 return 1;
141         }
142         down = find_subtree(it, path, namelen, 0);
143         if (down)
144                 do_invalidate_path(down->cache_tree, slash + 1);
145         return 1;
146 }
147
148 void cache_tree_invalidate_path(struct index_state *istate, const char *path)
149 {
150         if (do_invalidate_path(istate->cache_tree, path))
151                 istate->cache_changed |= CACHE_TREE_CHANGED;
152 }
153
154 static int verify_cache(struct cache_entry **cache,
155                         int entries, int flags)
156 {
157         int i, funny;
158         int silent = flags & WRITE_TREE_SILENT;
159
160         /* Verify that the tree is merged */
161         funny = 0;
162         for (i = 0; i < entries; i++) {
163                 const struct cache_entry *ce = cache[i];
164                 if (ce_stage(ce)) {
165                         if (silent)
166                                 return -1;
167                         if (10 < ++funny) {
168                                 fprintf(stderr, "...\n");
169                                 break;
170                         }
171                         fprintf(stderr, "%s: unmerged (%s)\n",
172                                 ce->name, sha1_to_hex(ce->sha1));
173                 }
174         }
175         if (funny)
176                 return -1;
177
178         /* Also verify that the cache does not have path and path/file
179          * at the same time.  At this point we know the cache has only
180          * stage 0 entries.
181          */
182         funny = 0;
183         for (i = 0; i < entries - 1; i++) {
184                 /* path/file always comes after path because of the way
185                  * the cache is sorted.  Also path can appear only once,
186                  * which means conflicting one would immediately follow.
187                  */
188                 const char *this_name = cache[i]->name;
189                 const char *next_name = cache[i+1]->name;
190                 int this_len = strlen(this_name);
191                 if (this_len < strlen(next_name) &&
192                     strncmp(this_name, next_name, this_len) == 0 &&
193                     next_name[this_len] == '/') {
194                         if (10 < ++funny) {
195                                 fprintf(stderr, "...\n");
196                                 break;
197                         }
198                         fprintf(stderr, "You have both %s and %s\n",
199                                 this_name, next_name);
200                 }
201         }
202         if (funny)
203                 return -1;
204         return 0;
205 }
206
207 static void discard_unused_subtrees(struct cache_tree *it)
208 {
209         struct cache_tree_sub **down = it->down;
210         int nr = it->subtree_nr;
211         int dst, src;
212         for (dst = src = 0; src < nr; src++) {
213                 struct cache_tree_sub *s = down[src];
214                 if (s->used)
215                         down[dst++] = s;
216                 else {
217                         cache_tree_free(&s->cache_tree);
218                         free(s);
219                         it->subtree_nr--;
220                 }
221         }
222 }
223
224 int cache_tree_fully_valid(struct cache_tree *it)
225 {
226         int i;
227         if (!it)
228                 return 0;
229         if (it->entry_count < 0 || !has_sha1_file(it->sha1))
230                 return 0;
231         for (i = 0; i < it->subtree_nr; i++) {
232                 if (!cache_tree_fully_valid(it->down[i]->cache_tree))
233                         return 0;
234         }
235         return 1;
236 }
237
238 static int update_one(struct cache_tree *it,
239                       struct cache_entry **cache,
240                       int entries,
241                       const char *base,
242                       int baselen,
243                       int *skip_count,
244                       int flags)
245 {
246         struct strbuf buffer;
247         int missing_ok = flags & WRITE_TREE_MISSING_OK;
248         int dryrun = flags & WRITE_TREE_DRY_RUN;
249         int to_invalidate = 0;
250         int i;
251
252         *skip_count = 0;
253
254         if (0 <= it->entry_count && has_sha1_file(it->sha1))
255                 return it->entry_count;
256
257         /*
258          * We first scan for subtrees and update them; we start by
259          * marking existing subtrees -- the ones that are unmarked
260          * should not be in the result.
261          */
262         for (i = 0; i < it->subtree_nr; i++)
263                 it->down[i]->used = 0;
264
265         /*
266          * Find the subtrees and update them.
267          */
268         i = 0;
269         while (i < entries) {
270                 const struct cache_entry *ce = cache[i];
271                 struct cache_tree_sub *sub;
272                 const char *path, *slash;
273                 int pathlen, sublen, subcnt, subskip;
274
275                 path = ce->name;
276                 pathlen = ce_namelen(ce);
277                 if (pathlen <= baselen || memcmp(base, path, baselen))
278                         break; /* at the end of this level */
279
280                 slash = strchr(path + baselen, '/');
281                 if (!slash) {
282                         i++;
283                         continue;
284                 }
285                 /*
286                  * a/bbb/c (base = a/, slash = /c)
287                  * ==>
288                  * path+baselen = bbb/c, sublen = 3
289                  */
290                 sublen = slash - (path + baselen);
291                 sub = find_subtree(it, path + baselen, sublen, 1);
292                 if (!sub->cache_tree)
293                         sub->cache_tree = cache_tree();
294                 subcnt = update_one(sub->cache_tree,
295                                     cache + i, entries - i,
296                                     path,
297                                     baselen + sublen + 1,
298                                     &subskip,
299                                     flags);
300                 if (subcnt < 0)
301                         return subcnt;
302                 if (!subcnt)
303                         die("index cache-tree records empty sub-tree");
304                 i += subcnt;
305                 sub->count = subcnt; /* to be used in the next loop */
306                 *skip_count += subskip;
307                 sub->used = 1;
308         }
309
310         discard_unused_subtrees(it);
311
312         /*
313          * Then write out the tree object for this level.
314          */
315         strbuf_init(&buffer, 8192);
316
317         i = 0;
318         while (i < entries) {
319                 const struct cache_entry *ce = cache[i];
320                 struct cache_tree_sub *sub;
321                 const char *path, *slash;
322                 int pathlen, entlen;
323                 const unsigned char *sha1;
324                 unsigned mode;
325
326                 path = ce->name;
327                 pathlen = ce_namelen(ce);
328                 if (pathlen <= baselen || memcmp(base, path, baselen))
329                         break; /* at the end of this level */
330
331                 slash = strchr(path + baselen, '/');
332                 if (slash) {
333                         entlen = slash - (path + baselen);
334                         sub = find_subtree(it, path + baselen, entlen, 0);
335                         if (!sub)
336                                 die("cache-tree.c: '%.*s' in '%s' not found",
337                                     entlen, path + baselen, path);
338                         i += sub->count;
339                         sha1 = sub->cache_tree->sha1;
340                         mode = S_IFDIR;
341                         if (sub->cache_tree->entry_count < 0)
342                                 to_invalidate = 1;
343                 }
344                 else {
345                         sha1 = ce->sha1;
346                         mode = ce->ce_mode;
347                         entlen = pathlen - baselen;
348                         i++;
349                 }
350                 if (mode != S_IFGITLINK && !missing_ok && !has_sha1_file(sha1)) {
351                         strbuf_release(&buffer);
352                         return error("invalid object %06o %s for '%.*s'",
353                                 mode, sha1_to_hex(sha1), entlen+baselen, path);
354                 }
355
356                 /*
357                  * CE_REMOVE entries are removed before the index is
358                  * written to disk. Skip them to remain consistent
359                  * with the future on-disk index.
360                  */
361                 if (ce->ce_flags & CE_REMOVE) {
362                         *skip_count = *skip_count + 1;
363                         continue;
364                 }
365
366                 /*
367                  * CE_INTENT_TO_ADD entries exist on on-disk index but
368                  * they are not part of generated trees. Invalidate up
369                  * to root to force cache-tree users to read elsewhere.
370                  */
371                 if (ce->ce_flags & CE_INTENT_TO_ADD) {
372                         to_invalidate = 1;
373                         continue;
374                 }
375
376                 strbuf_grow(&buffer, entlen + 100);
377                 strbuf_addf(&buffer, "%o %.*s%c", mode, entlen, path + baselen, '\0');
378                 strbuf_add(&buffer, sha1, 20);
379
380 #if DEBUG
381                 fprintf(stderr, "cache-tree update-one %o %.*s\n",
382                         mode, entlen, path + baselen);
383 #endif
384         }
385
386         if (dryrun)
387                 hash_sha1_file(buffer.buf, buffer.len, tree_type, it->sha1);
388         else if (write_sha1_file(buffer.buf, buffer.len, tree_type, it->sha1)) {
389                 strbuf_release(&buffer);
390                 return -1;
391         }
392
393         strbuf_release(&buffer);
394         it->entry_count = to_invalidate ? -1 : i - *skip_count;
395 #if DEBUG
396         fprintf(stderr, "cache-tree update-one (%d ent, %d subtree) %s\n",
397                 it->entry_count, it->subtree_nr,
398                 sha1_to_hex(it->sha1));
399 #endif
400         return i;
401 }
402
403 int cache_tree_update(struct index_state *istate, int flags)
404 {
405         struct cache_tree *it = istate->cache_tree;
406         struct cache_entry **cache = istate->cache;
407         int entries = istate->cache_nr;
408         int skip, i = verify_cache(cache, entries, flags);
409
410         if (i)
411                 return i;
412         i = update_one(it, cache, entries, "", 0, &skip, flags);
413         if (i < 0)
414                 return i;
415         istate->cache_changed |= CACHE_TREE_CHANGED;
416         return 0;
417 }
418
419 static void write_one(struct strbuf *buffer, struct cache_tree *it,
420                       const char *path, int pathlen)
421 {
422         int i;
423
424         /* One "cache-tree" entry consists of the following:
425          * path (NUL terminated)
426          * entry_count, subtree_nr ("%d %d\n")
427          * tree-sha1 (missing if invalid)
428          * subtree_nr "cache-tree" entries for subtrees.
429          */
430         strbuf_grow(buffer, pathlen + 100);
431         strbuf_add(buffer, path, pathlen);
432         strbuf_addf(buffer, "%c%d %d\n", 0, it->entry_count, it->subtree_nr);
433
434 #if DEBUG
435         if (0 <= it->entry_count)
436                 fprintf(stderr, "cache-tree <%.*s> (%d ent, %d subtree) %s\n",
437                         pathlen, path, it->entry_count, it->subtree_nr,
438                         sha1_to_hex(it->sha1));
439         else
440                 fprintf(stderr, "cache-tree <%.*s> (%d subtree) invalid\n",
441                         pathlen, path, it->subtree_nr);
442 #endif
443
444         if (0 <= it->entry_count) {
445                 strbuf_add(buffer, it->sha1, 20);
446         }
447         for (i = 0; i < it->subtree_nr; i++) {
448                 struct cache_tree_sub *down = it->down[i];
449                 if (i) {
450                         struct cache_tree_sub *prev = it->down[i-1];
451                         if (subtree_name_cmp(down->name, down->namelen,
452                                              prev->name, prev->namelen) <= 0)
453                                 die("fatal - unsorted cache subtree");
454                 }
455                 write_one(buffer, down->cache_tree, down->name, down->namelen);
456         }
457 }
458
459 void cache_tree_write(struct strbuf *sb, struct cache_tree *root)
460 {
461         write_one(sb, root, "", 0);
462 }
463
464 static struct cache_tree *read_one(const char **buffer, unsigned long *size_p)
465 {
466         const char *buf = *buffer;
467         unsigned long size = *size_p;
468         const char *cp;
469         char *ep;
470         struct cache_tree *it;
471         int i, subtree_nr;
472
473         it = NULL;
474         /* skip name, but make sure name exists */
475         while (size && *buf) {
476                 size--;
477                 buf++;
478         }
479         if (!size)
480                 goto free_return;
481         buf++; size--;
482         it = cache_tree();
483
484         cp = buf;
485         it->entry_count = strtol(cp, &ep, 10);
486         if (cp == ep)
487                 goto free_return;
488         cp = ep;
489         subtree_nr = strtol(cp, &ep, 10);
490         if (cp == ep)
491                 goto free_return;
492         while (size && *buf && *buf != '\n') {
493                 size--;
494                 buf++;
495         }
496         if (!size)
497                 goto free_return;
498         buf++; size--;
499         if (0 <= it->entry_count) {
500                 if (size < 20)
501                         goto free_return;
502                 hashcpy(it->sha1, (const unsigned char*)buf);
503                 buf += 20;
504                 size -= 20;
505         }
506
507 #if DEBUG
508         if (0 <= it->entry_count)
509                 fprintf(stderr, "cache-tree <%s> (%d ent, %d subtree) %s\n",
510                         *buffer, it->entry_count, subtree_nr,
511                         sha1_to_hex(it->sha1));
512         else
513                 fprintf(stderr, "cache-tree <%s> (%d subtrees) invalid\n",
514                         *buffer, subtree_nr);
515 #endif
516
517         /*
518          * Just a heuristic -- we do not add directories that often but
519          * we do not want to have to extend it immediately when we do,
520          * hence +2.
521          */
522         it->subtree_alloc = subtree_nr + 2;
523         it->down = xcalloc(it->subtree_alloc, sizeof(struct cache_tree_sub *));
524         for (i = 0; i < subtree_nr; i++) {
525                 /* read each subtree */
526                 struct cache_tree *sub;
527                 struct cache_tree_sub *subtree;
528                 const char *name = buf;
529
530                 sub = read_one(&buf, &size);
531                 if (!sub)
532                         goto free_return;
533                 subtree = cache_tree_sub(it, name);
534                 subtree->cache_tree = sub;
535         }
536         if (subtree_nr != it->subtree_nr)
537                 die("cache-tree: internal error");
538         *buffer = buf;
539         *size_p = size;
540         return it;
541
542  free_return:
543         cache_tree_free(&it);
544         return NULL;
545 }
546
547 struct cache_tree *cache_tree_read(const char *buffer, unsigned long size)
548 {
549         if (buffer[0])
550                 return NULL; /* not the whole tree */
551         return read_one(&buffer, &size);
552 }
553
554 static struct cache_tree *cache_tree_find(struct cache_tree *it, const char *path)
555 {
556         if (!it)
557                 return NULL;
558         while (*path) {
559                 const char *slash;
560                 struct cache_tree_sub *sub;
561
562                 slash = strchrnul(path, '/');
563                 /*
564                  * Between path and slash is the name of the subtree
565                  * to look for.
566                  */
567                 sub = find_subtree(it, path, slash - path, 0);
568                 if (!sub)
569                         return NULL;
570                 it = sub->cache_tree;
571
572                 path = slash;
573                 while (*path == '/')
574                         path++;
575         }
576         return it;
577 }
578
579 int write_cache_as_tree(unsigned char *sha1, int flags, const char *prefix)
580 {
581         int entries, was_valid, newfd;
582         struct lock_file *lock_file;
583
584         /*
585          * We can't free this memory, it becomes part of a linked list
586          * parsed atexit()
587          */
588         lock_file = xcalloc(1, sizeof(struct lock_file));
589
590         newfd = hold_locked_index(lock_file, 1);
591
592         entries = read_cache();
593         if (entries < 0)
594                 return WRITE_TREE_UNREADABLE_INDEX;
595         if (flags & WRITE_TREE_IGNORE_CACHE_TREE)
596                 cache_tree_free(&(active_cache_tree));
597
598         if (!active_cache_tree)
599                 active_cache_tree = cache_tree();
600
601         was_valid = cache_tree_fully_valid(active_cache_tree);
602         if (!was_valid) {
603                 if (cache_tree_update(&the_index, flags) < 0)
604                         return WRITE_TREE_UNMERGED_INDEX;
605                 if (0 <= newfd) {
606                         if (!write_locked_index(&the_index, lock_file, COMMIT_LOCK))
607                                 newfd = -1;
608                 }
609                 /* Not being able to write is fine -- we are only interested
610                  * in updating the cache-tree part, and if the next caller
611                  * ends up using the old index with unupdated cache-tree part
612                  * it misses the work we did here, but that is just a
613                  * performance penalty and not a big deal.
614                  */
615         }
616
617         if (prefix) {
618                 struct cache_tree *subtree =
619                         cache_tree_find(active_cache_tree, prefix);
620                 if (!subtree)
621                         return WRITE_TREE_PREFIX_ERROR;
622                 hashcpy(sha1, subtree->sha1);
623         }
624         else
625                 hashcpy(sha1, active_cache_tree->sha1);
626
627         if (0 <= newfd)
628                 rollback_lock_file(lock_file);
629
630         return 0;
631 }
632
633 static void prime_cache_tree_rec(struct cache_tree *it, struct tree *tree)
634 {
635         struct tree_desc desc;
636         struct name_entry entry;
637         int cnt;
638
639         hashcpy(it->sha1, tree->object.sha1);
640         init_tree_desc(&desc, tree->buffer, tree->size);
641         cnt = 0;
642         while (tree_entry(&desc, &entry)) {
643                 if (!S_ISDIR(entry.mode))
644                         cnt++;
645                 else {
646                         struct cache_tree_sub *sub;
647                         struct tree *subtree = lookup_tree(entry.sha1);
648                         if (!subtree->object.parsed)
649                                 parse_tree(subtree);
650                         sub = cache_tree_sub(it, entry.path);
651                         sub->cache_tree = cache_tree();
652                         prime_cache_tree_rec(sub->cache_tree, subtree);
653                         cnt += sub->cache_tree->entry_count;
654                 }
655         }
656         it->entry_count = cnt;
657 }
658
659 void prime_cache_tree(struct index_state *istate, struct tree *tree)
660 {
661         cache_tree_free(&istate->cache_tree);
662         istate->cache_tree = cache_tree();
663         prime_cache_tree_rec(istate->cache_tree, tree);
664         istate->cache_changed |= CACHE_TREE_CHANGED;
665 }
666
667 /*
668  * find the cache_tree that corresponds to the current level without
669  * exploding the full path into textual form.  The root of the
670  * cache tree is given as "root", and our current level is "info".
671  * (1) When at root level, info->prev is NULL, so it is "root" itself.
672  * (2) Otherwise, find the cache_tree that corresponds to one level
673  *     above us, and find ourselves in there.
674  */
675 static struct cache_tree *find_cache_tree_from_traversal(struct cache_tree *root,
676                                                          struct traverse_info *info)
677 {
678         struct cache_tree *our_parent;
679
680         if (!info->prev)
681                 return root;
682         our_parent = find_cache_tree_from_traversal(root, info->prev);
683         return cache_tree_find(our_parent, info->name.path);
684 }
685
686 int cache_tree_matches_traversal(struct cache_tree *root,
687                                  struct name_entry *ent,
688                                  struct traverse_info *info)
689 {
690         struct cache_tree *it;
691
692         it = find_cache_tree_from_traversal(root, info);
693         it = cache_tree_find(it, ent->path);
694         if (it && it->entry_count > 0 && !hashcmp(ent->sha1, it->sha1))
695                 return it->entry_count;
696         return 0;
697 }
698
699 int update_main_cache_tree(int flags)
700 {
701         if (!the_index.cache_tree)
702                 the_index.cache_tree = cache_tree();
703         return cache_tree_update(&the_index, flags);
704 }