3 #include "refs-internal.h"
5 #include "../iterator.h"
7 /* FIXME: This declaration shouldn't be here */
8 void read_loose_refs(const char *dirname, struct ref_dir *dir);
10 void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
12 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
13 dir->entries[dir->nr++] = entry;
14 /* optimize for the case that entries are added in order */
16 (dir->nr == dir->sorted + 1 &&
17 strcmp(dir->entries[dir->nr - 2]->name,
18 dir->entries[dir->nr - 1]->name) < 0))
19 dir->sorted = dir->nr;
22 struct ref_dir *get_ref_dir(struct ref_entry *entry)
25 assert(entry->flag & REF_DIR);
26 dir = &entry->u.subdir;
27 if (entry->flag & REF_INCOMPLETE) {
28 read_loose_refs(entry->name, dir);
31 * Manually add refs/bisect, which, being
32 * per-worktree, might not appear in the directory
33 * listing for refs/ in the main repo.
35 if (!strcmp(entry->name, "refs/")) {
36 int pos = search_ref_dir(dir, "refs/bisect/", 12);
38 struct ref_entry *child_entry;
39 child_entry = create_dir_entry(dir->ref_store,
42 add_entry_to_dir(dir, child_entry);
45 entry->flag &= ~REF_INCOMPLETE;
50 struct ref_entry *create_ref_entry(const char *refname,
51 const unsigned char *sha1, int flag,
54 struct ref_entry *ref;
57 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
58 die("Reference has invalid format: '%s'", refname);
59 FLEX_ALLOC_STR(ref, name, refname);
60 hashcpy(ref->u.value.oid.hash, sha1);
61 oidclr(&ref->u.value.peeled);
66 struct ref_cache *create_ref_cache(struct files_ref_store *refs)
68 struct ref_cache *ret = xcalloc(1, sizeof(*ret));
70 ret->root = create_dir_entry(refs, "", 0, 1);
74 static void clear_ref_dir(struct ref_dir *dir);
76 static void free_ref_entry(struct ref_entry *entry)
78 if (entry->flag & REF_DIR) {
80 * Do not use get_ref_dir() here, as that might
81 * trigger the reading of loose refs.
83 clear_ref_dir(&entry->u.subdir);
88 void free_ref_cache(struct ref_cache *cache)
90 free_ref_entry(cache->root);
95 * Clear and free all entries in dir, recursively.
97 static void clear_ref_dir(struct ref_dir *dir)
100 for (i = 0; i < dir->nr; i++)
101 free_ref_entry(dir->entries[i]);
103 dir->sorted = dir->nr = dir->alloc = 0;
107 struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
108 const char *dirname, size_t len,
111 struct ref_entry *direntry;
112 FLEX_ALLOC_MEM(direntry, name, dirname, len);
113 direntry->u.subdir.ref_store = ref_store;
114 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
118 static int ref_entry_cmp(const void *a, const void *b)
120 struct ref_entry *one = *(struct ref_entry **)a;
121 struct ref_entry *two = *(struct ref_entry **)b;
122 return strcmp(one->name, two->name);
125 static void sort_ref_dir(struct ref_dir *dir);
127 struct string_slice {
132 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
134 const struct string_slice *key = key_;
135 const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
136 int cmp = strncmp(key->str, ent->name, key->len);
139 return '\0' - (unsigned char)ent->name[key->len];
142 int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
144 struct ref_entry **r;
145 struct string_slice key;
147 if (refname == NULL || !dir->nr)
153 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
154 ref_entry_cmp_sslice);
159 return r - dir->entries;
163 * Search for a directory entry directly within dir (without
164 * recursing). Sort dir if necessary. subdirname must be a directory
165 * name (i.e., end in '/'). If mkdir is set, then create the
166 * directory if it is missing; otherwise, return NULL if the desired
167 * directory cannot be found. dir must already be complete.
169 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
170 const char *subdirname, size_t len,
173 int entry_index = search_ref_dir(dir, subdirname, len);
174 struct ref_entry *entry;
175 if (entry_index == -1) {
179 * Since dir is complete, the absence of a subdir
180 * means that the subdir really doesn't exist;
181 * therefore, create an empty record for it but mark
182 * the record complete.
184 entry = create_dir_entry(dir->ref_store, subdirname, len, 0);
185 add_entry_to_dir(dir, entry);
187 entry = dir->entries[entry_index];
189 return get_ref_dir(entry);
192 struct ref_dir *find_containing_dir(struct ref_dir *dir,
193 const char *refname, int mkdir)
196 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
197 size_t dirnamelen = slash - refname + 1;
198 struct ref_dir *subdir;
199 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
210 struct ref_entry *find_ref_entry(struct ref_dir *dir, const char *refname)
213 struct ref_entry *entry;
214 dir = find_containing_dir(dir, refname, 0);
217 entry_index = search_ref_dir(dir, refname, strlen(refname));
218 if (entry_index == -1)
220 entry = dir->entries[entry_index];
221 return (entry->flag & REF_DIR) ? NULL : entry;
224 int remove_entry_from_dir(struct ref_dir *dir, const char *refname)
226 int refname_len = strlen(refname);
228 struct ref_entry *entry;
229 int is_dir = refname[refname_len - 1] == '/';
232 * refname represents a reference directory. Remove
233 * the trailing slash; otherwise we will get the
234 * directory *representing* refname rather than the
235 * one *containing* it.
237 char *dirname = xmemdupz(refname, refname_len - 1);
238 dir = find_containing_dir(dir, dirname, 0);
241 dir = find_containing_dir(dir, refname, 0);
245 entry_index = search_ref_dir(dir, refname, refname_len);
246 if (entry_index == -1)
248 entry = dir->entries[entry_index];
250 memmove(&dir->entries[entry_index],
251 &dir->entries[entry_index + 1],
252 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
255 if (dir->sorted > entry_index)
257 free_ref_entry(entry);
261 int add_ref_entry(struct ref_dir *dir, struct ref_entry *ref)
263 dir = find_containing_dir(dir, ref->name, 1);
266 add_entry_to_dir(dir, ref);
271 * Emit a warning and return true iff ref1 and ref2 have the same name
272 * and the same sha1. Die if they have the same name but different
275 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
277 if (strcmp(ref1->name, ref2->name))
280 /* Duplicate name; make sure that they don't conflict: */
282 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
283 /* This is impossible by construction */
284 die("Reference directory conflict: %s", ref1->name);
286 if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
287 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
289 warning("Duplicated ref: %s", ref1->name);
294 * Sort the entries in dir non-recursively (if they are not already
295 * sorted) and remove any duplicate entries.
297 static void sort_ref_dir(struct ref_dir *dir)
300 struct ref_entry *last = NULL;
303 * This check also prevents passing a zero-length array to qsort(),
304 * which is a problem on some platforms.
306 if (dir->sorted == dir->nr)
309 QSORT(dir->entries, dir->nr, ref_entry_cmp);
311 /* Remove any duplicates: */
312 for (i = 0, j = 0; j < dir->nr; j++) {
313 struct ref_entry *entry = dir->entries[j];
314 if (last && is_dup_ref(last, entry))
315 free_ref_entry(entry);
317 last = dir->entries[i++] = entry;
319 dir->sorted = dir->nr = i;
322 int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
323 each_ref_entry_fn fn, void *cb_data)
326 assert(dir->sorted == dir->nr);
327 for (i = offset; i < dir->nr; i++) {
328 struct ref_entry *entry = dir->entries[i];
330 if (entry->flag & REF_DIR) {
331 struct ref_dir *subdir = get_ref_dir(entry);
332 sort_ref_dir(subdir);
333 retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
335 retval = fn(entry, cb_data);
343 void prime_ref_dir(struct ref_dir *dir)
346 * The hard work of loading loose refs is done by get_ref_dir(), so we
347 * just need to recurse through all of the sub-directories. We do not
348 * even need to care about sorting, as traversal order does not matter
352 for (i = 0; i < dir->nr; i++) {
353 struct ref_entry *entry = dir->entries[i];
354 if (entry->flag & REF_DIR)
355 prime_ref_dir(get_ref_dir(entry));
360 * A level in the reference hierarchy that is currently being iterated
363 struct cache_ref_iterator_level {
365 * The ref_dir being iterated over at this level. The ref_dir
366 * is sorted before being stored here.
371 * The index of the current entry within dir (which might
372 * itself be a directory). If index == -1, then the iteration
373 * hasn't yet begun. If index == dir->nr, then the iteration
374 * through this level is over.
380 * Represent an iteration through a ref_dir in the memory cache. The
381 * iteration recurses through subdirectories.
383 struct cache_ref_iterator {
384 struct ref_iterator base;
387 * The number of levels currently on the stack. This is always
388 * at least 1, because when it becomes zero the iteration is
389 * ended and this struct is freed.
393 /* The number of levels that have been allocated on the stack */
397 * A stack of levels. levels[0] is the uppermost level that is
398 * being iterated over in this iteration. (This is not
399 * necessary the top level in the references hierarchy. If we
400 * are iterating through a subtree, then levels[0] will hold
401 * the ref_dir for that subtree, and subsequent levels will go
404 struct cache_ref_iterator_level *levels;
407 static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
409 struct cache_ref_iterator *iter =
410 (struct cache_ref_iterator *)ref_iterator;
413 struct cache_ref_iterator_level *level =
414 &iter->levels[iter->levels_nr - 1];
415 struct ref_dir *dir = level->dir;
416 struct ref_entry *entry;
418 if (level->index == -1)
421 if (++level->index == level->dir->nr) {
422 /* This level is exhausted; pop up a level */
423 if (--iter->levels_nr == 0)
424 return ref_iterator_abort(ref_iterator);
429 entry = dir->entries[level->index];
431 if (entry->flag & REF_DIR) {
432 /* push down a level */
433 ALLOC_GROW(iter->levels, iter->levels_nr + 1,
436 level = &iter->levels[iter->levels_nr++];
437 level->dir = get_ref_dir(entry);
440 iter->base.refname = entry->name;
441 iter->base.oid = &entry->u.value.oid;
442 iter->base.flags = entry->flag;
448 enum peel_status peel_entry(struct ref_entry *entry, int repeel)
450 enum peel_status status;
452 if (entry->flag & REF_KNOWS_PEELED) {
454 entry->flag &= ~REF_KNOWS_PEELED;
455 oidclr(&entry->u.value.peeled);
457 return is_null_oid(&entry->u.value.peeled) ?
458 PEEL_NON_TAG : PEEL_PEELED;
461 if (entry->flag & REF_ISBROKEN)
463 if (entry->flag & REF_ISSYMREF)
464 return PEEL_IS_SYMREF;
466 status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
467 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
468 entry->flag |= REF_KNOWS_PEELED;
472 static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
473 struct object_id *peeled)
475 struct cache_ref_iterator *iter =
476 (struct cache_ref_iterator *)ref_iterator;
477 struct cache_ref_iterator_level *level;
478 struct ref_entry *entry;
480 level = &iter->levels[iter->levels_nr - 1];
482 if (level->index == -1)
483 die("BUG: peel called before advance for cache iterator");
485 entry = level->dir->entries[level->index];
487 if (peel_entry(entry, 0))
489 oidcpy(peeled, &entry->u.value.peeled);
493 static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
495 struct cache_ref_iterator *iter =
496 (struct cache_ref_iterator *)ref_iterator;
499 base_ref_iterator_free(ref_iterator);
503 static struct ref_iterator_vtable cache_ref_iterator_vtable = {
504 cache_ref_iterator_advance,
505 cache_ref_iterator_peel,
506 cache_ref_iterator_abort
509 struct ref_iterator *cache_ref_iterator_begin(struct ref_dir *dir)
511 struct cache_ref_iterator *iter;
512 struct ref_iterator *ref_iterator;
513 struct cache_ref_iterator_level *level;
515 iter = xcalloc(1, sizeof(*iter));
516 ref_iterator = &iter->base;
517 base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
518 ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
521 level = &iter->levels[0];