Merge branch 'jk/t6300-cleanup' into maint
[git] / levenshtein.c
1 #include "cache.h"
2 #include "levenshtein.h"
3
4 /*
5  * This function implements the Damerau-Levenshtein algorithm to
6  * calculate a distance between strings.
7  *
8  * Basically, it says how many letters need to be swapped, substituted,
9  * deleted from, or added to string1, at least, to get string2.
10  *
11  * The idea is to build a distance matrix for the substrings of both
12  * strings.  To avoid a large space complexity, only the last three rows
13  * are kept in memory (if swaps had the same or higher cost as one deletion
14  * plus one insertion, only two rows would be needed).
15  *
16  * At any stage, "i + 1" denotes the length of the current substring of
17  * string1 that the distance is calculated for.
18  *
19  * row2 holds the current row, row1 the previous row (i.e. for the substring
20  * of string1 of length "i"), and row0 the row before that.
21  *
22  * In other words, at the start of the big loop, row2[j + 1] contains the
23  * Damerau-Levenshtein distance between the substring of string1 of length
24  * "i" and the substring of string2 of length "j + 1".
25  *
26  * All the big loop does is determine the partial minimum-cost paths.
27  *
28  * It does so by calculating the costs of the path ending in characters
29  * i (in string1) and j (in string2), respectively, given that the last
30  * operation is a substitution, a swap, a deletion, or an insertion.
31  *
32  * This implementation allows the costs to be weighted:
33  *
34  * - w (as in "sWap")
35  * - s (as in "Substitution")
36  * - a (for insertion, AKA "Add")
37  * - d (as in "Deletion")
38  *
39  * Note that this algorithm calculates a distance _iff_ d == a.
40  */
41 int levenshtein(const char *string1, const char *string2,
42                 int w, int s, int a, int d)
43 {
44         int len1 = strlen(string1), len2 = strlen(string2);
45         int *row0, *row1, *row2;
46         int i, j;
47
48         ALLOC_ARRAY(row0, len2 + 1);
49         ALLOC_ARRAY(row1, len2 + 1);
50         ALLOC_ARRAY(row2, len2 + 1);
51
52         for (j = 0; j <= len2; j++)
53                 row1[j] = j * a;
54         for (i = 0; i < len1; i++) {
55                 int *dummy;
56
57                 row2[0] = (i + 1) * d;
58                 for (j = 0; j < len2; j++) {
59                         /* substitution */
60                         row2[j + 1] = row1[j] + s * (string1[i] != string2[j]);
61                         /* swap */
62                         if (i > 0 && j > 0 && string1[i - 1] == string2[j] &&
63                                         string1[i] == string2[j - 1] &&
64                                         row2[j + 1] > row0[j - 1] + w)
65                                 row2[j + 1] = row0[j - 1] + w;
66                         /* deletion */
67                         if (row2[j + 1] > row1[j + 1] + d)
68                                 row2[j + 1] = row1[j + 1] + d;
69                         /* insertion */
70                         if (row2[j + 1] > row2[j] + a)
71                                 row2[j + 1] = row2[j] + a;
72                 }
73
74                 dummy = row0;
75                 row0 = row1;
76                 row1 = row2;
77                 row2 = dummy;
78         }
79
80         i = row1[len2];
81         free(row0);
82         free(row1);
83         free(row2);
84
85         return i;
86 }