8 const char *tree_type = "tree";
10 static int read_one_entry(const unsigned char *sha1, const char *base, int baselen, const char *pathname, unsigned mode, int stage)
14 struct cache_entry *ce;
17 return READ_TREE_RECURSIVE;
19 len = strlen(pathname);
20 size = cache_entry_size(baselen + len);
21 ce = xcalloc(1, size);
23 ce->ce_mode = create_ce_mode(mode);
24 ce->ce_flags = create_ce_flags(baselen + len, stage);
25 memcpy(ce->name, base, baselen);
26 memcpy(ce->name + baselen, pathname, len+1);
27 hashcpy(ce->sha1, sha1);
28 return add_cache_entry(ce, ADD_CACHE_OK_TO_ADD|ADD_CACHE_SKIP_DFCHECK);
31 static int match_tree_entry(const char *base, int baselen, const char *path, unsigned int mode, const char **paths)
38 pathlen = strlen(path);
39 while ((match = *paths++) != NULL) {
40 int matchlen = strlen(match);
42 if (baselen >= matchlen) {
43 /* If it doesn't match, move along... */
44 if (strncmp(base, match, matchlen))
46 /* The base is a subdirectory of a path which was specified. */
50 /* Does the base match? */
51 if (strncmp(base, match, baselen))
57 if (pathlen > matchlen)
60 if (matchlen > pathlen) {
61 if (match[pathlen] != '/')
67 if (strncmp(path, match, pathlen))
75 int read_tree_recursive(struct tree *tree,
76 const char *base, int baselen,
77 int stage, const char **match,
80 struct tree_desc desc;
81 struct name_entry entry;
86 desc.buf = tree->buffer;
87 desc.size = tree->size;
89 while (tree_entry(&desc, &entry)) {
90 if (!match_tree_entry(base, baselen, entry.path, entry.mode, match))
93 switch (fn(entry.sha1, base, baselen, entry.path, entry.mode, stage)) {
96 case READ_TREE_RECURSIVE:
101 if (S_ISDIR(entry.mode)) {
105 newbase = xmalloc(baselen + 1 + entry.pathlen);
106 memcpy(newbase, base, baselen);
107 memcpy(newbase + baselen, entry.path, entry.pathlen);
108 newbase[baselen + entry.pathlen] = '/';
109 retval = read_tree_recursive(lookup_tree(entry.sha1),
111 baselen + entry.pathlen + 1,
122 int read_tree(struct tree *tree, int stage, const char **match)
124 return read_tree_recursive(tree, "", 0, stage, match, read_one_entry);
127 struct tree *lookup_tree(const unsigned char *sha1)
129 struct object *obj = lookup_object(sha1);
131 struct tree *ret = alloc_tree_node();
132 created_object(sha1, &ret->object);
133 ret->object.type = OBJ_TREE;
137 obj->type = OBJ_TREE;
138 if (obj->type != OBJ_TREE) {
139 error("Object %s is a %s, not a tree",
140 sha1_to_hex(sha1), typename(obj->type));
143 return (struct tree *) obj;
146 static void track_tree_refs(struct tree *item)
149 struct object_refs *refs;
150 struct tree_desc desc;
151 struct name_entry entry;
153 /* Count how many entries there are.. */
154 desc.buf = item->buffer;
155 desc.size = item->size;
158 update_tree_entry(&desc);
161 /* Allocate object refs and walk it again.. */
163 refs = alloc_object_refs(n_refs);
164 desc.buf = item->buffer;
165 desc.size = item->size;
166 while (tree_entry(&desc, &entry)) {
169 if (S_ISDIR(entry.mode))
170 obj = &lookup_tree(entry.sha1)->object;
172 obj = &lookup_blob(entry.sha1)->object;
173 refs->ref[i++] = obj;
175 set_object_refs(&item->object, refs);
178 int parse_tree_buffer(struct tree *item, void *buffer, unsigned long size)
180 if (item->object.parsed)
182 item->object.parsed = 1;
183 item->buffer = buffer;
186 if (track_object_refs)
187 track_tree_refs(item);
191 int parse_tree(struct tree *item)
193 enum object_type type;
197 if (item->object.parsed)
199 buffer = read_sha1_file(item->object.sha1, &type, &size);
201 return error("Could not read %s",
202 sha1_to_hex(item->object.sha1));
203 if (type != OBJ_TREE) {
205 return error("Object %s not a tree",
206 sha1_to_hex(item->object.sha1));
208 return parse_tree_buffer(item, buffer, size);
211 struct tree *parse_tree_indirect(const unsigned char *sha1)
213 struct object *obj = parse_object(sha1);
217 if (obj->type == OBJ_TREE)
218 return (struct tree *) obj;
219 else if (obj->type == OBJ_COMMIT)
220 obj = &(((struct commit *) obj)->tree->object);
221 else if (obj->type == OBJ_TAG)
222 obj = ((struct tag *) obj)->tagged;
226 parse_object(obj->sha1);