1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
6 Copyright (C) 1993 Free Software Foundation, Inc.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
29 /* We need this for `regex.h', and perhaps for the Emacs include files. */
30 #include <sys/types.h>
32 /* We used to test for `BSTRING' here, but only GCC and Emacs define
33 `BSTRING', as far as I know, and neither of them use this code. */
36 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
39 #define bcopy(s, d, n) memcpy ((d), (s), (n))
42 #define bzero(s, n) memset ((s), 0, (n))
48 /* Define the syntax stuff for \<, \>, etc. */
50 /* This must be nonzero for the wordchar and notwordchar pattern
51 commands in re_match_2. */
58 extern char *re_syntax_table;
60 #else /* not SYNTAX_TABLE */
62 /* How many characters in the character set. */
63 #define CHAR_SET_SIZE 256
65 static char re_syntax_table[CHAR_SET_SIZE];
76 bzero (re_syntax_table, sizeof re_syntax_table);
78 for (c = 'a'; c <= 'z'; c++)
79 re_syntax_table[c] = Sword;
81 for (c = 'A'; c <= 'Z'; c++)
82 re_syntax_table[c] = Sword;
84 for (c = '0'; c <= '9'; c++)
85 re_syntax_table[c] = Sword;
87 re_syntax_table['_'] = Sword;
92 #endif /* not SYNTAX_TABLE */
94 #define SYNTAX(c) re_syntax_table[c]
97 /* Get the interface, including the syntax bits. */
100 /* isalpha etc. are used for the character classes. */
108 #define ISBLANK(c) (isascii (c) && isblank (c))
110 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
113 #define ISGRAPH(c) (isascii (c) && isgraph (c))
115 #define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
118 #define ISPRINT(c) (isascii (c) && isprint (c))
119 #define ISDIGIT(c) (isascii (c) && isdigit (c))
120 #define ISALNUM(c) (isascii (c) && isalnum (c))
121 #define ISALPHA(c) (isascii (c) && isalpha (c))
122 #define ISCNTRL(c) (isascii (c) && iscntrl (c))
123 #define ISLOWER(c) (isascii (c) && islower (c))
124 #define ISPUNCT(c) (isascii (c) && ispunct (c))
125 #define ISSPACE(c) (isascii (c) && isspace (c))
126 #define ISUPPER(c) (isascii (c) && isupper (c))
127 #define ISXDIGIT(c) (isascii (c) && isxdigit (c))
133 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
134 since ours (we hope) works properly with all combinations of
135 machines, compilers, `char' and `unsigned char' argument types.
136 (Per Bothner suggested the basic approach.) */
137 #undef SIGN_EXTEND_CHAR
139 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
140 #else /* not __STDC__ */
141 /* As in Harbison and Steele. */
142 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
145 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
146 use `alloca' instead of `malloc'. This is because using malloc in
147 re_search* or re_match* could cause memory leaks when C-g is used in
148 Emacs; also, malloc is slower and causes storage fragmentation. On
149 the other hand, malloc is more portable, and easier to debug.
151 Because we sometimes use alloca, some routines have to be macros,
152 not functions -- `alloca'-allocated space disappears at the end of the
153 function it is called in. */
157 #define REGEX_ALLOCATE malloc
158 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
160 #else /* not REGEX_MALLOC */
162 /* Emacs already defines alloca, sometimes. */
165 /* Make alloca work the best possible way. */
167 #define alloca __builtin_alloca
168 #else /* not __GNUC__ */
171 #else /* not __GNUC__ or HAVE_ALLOCA_H */
172 #ifndef _AIX /* Already did AIX, up at the top. */
174 #endif /* not _AIX */
175 #endif /* not HAVE_ALLOCA_H */
176 #endif /* not __GNUC__ */
178 #endif /* not alloca */
180 #define REGEX_ALLOCATE alloca
182 /* Assumes a `char *destination' variable. */
183 #define REGEX_REALLOCATE(source, osize, nsize) \
184 (destination = (char *) alloca (nsize), \
185 bcopy (source, destination, osize), \
188 #endif /* not REGEX_MALLOC */
191 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
192 `string1' or just past its end. This works if PTR is NULL, which is
194 #define FIRST_STRING_P(ptr) \
195 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
197 /* (Re)Allocate N items of type T using malloc, or fail. */
198 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
199 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
200 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
202 #define BYTEWIDTH 8 /* In bits. */
204 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
206 #define MAX(a, b) ((a) > (b) ? (a) : (b))
207 #define MIN(a, b) ((a) < (b) ? (a) : (b))
209 typedef char boolean;
213 /* These are the command codes that appear in compiled regular
214 expressions. Some opcodes are followed by argument bytes. A
215 command code can specify any interpretation whatsoever for its
216 arguments. Zero bytes may appear in the compiled regular expression.
218 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
219 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
220 `exactn' we use here must also be 1. */
226 /* Followed by one byte giving n, then by n literal bytes. */
229 /* Matches any (more or less) character. */
232 /* Matches any one char belonging to specified set. First
233 following byte is number of bitmap bytes. Then come bytes
234 for a bitmap saying which chars are in. Bits in each byte
235 are ordered low-bit-first. A character is in the set if its
236 bit is 1. A character too large to have a bit in the map is
237 automatically not in the set. */
240 /* Same parameters as charset, but match any character that is
241 not one of those specified. */
244 /* Start remembering the text that is matched, for storing in a
245 register. Followed by one byte with the register number, in
246 the range 0 to one less than the pattern buffer's re_nsub
247 field. Then followed by one byte with the number of groups
248 inner to this one. (This last has to be part of the
249 start_memory only because we need it in the on_failure_jump
253 /* Stop remembering the text that is matched and store it in a
254 memory register. Followed by one byte with the register
255 number, in the range 0 to one less than `re_nsub' in the
256 pattern buffer, and one byte with the number of inner groups,
257 just like `start_memory'. (We need the number of inner
258 groups here because we don't have any easy way of finding the
259 corresponding start_memory when we're at a stop_memory.) */
262 /* Match a duplicate of something remembered. Followed by one
263 byte containing the register number. */
266 /* Fail unless at beginning of line. */
269 /* Fail unless at end of line. */
272 /* Succeeds if at beginning of buffer (if emacs) or at beginning
273 of string to be matched (if not). */
276 /* Analogously, for end of buffer/string. */
279 /* Followed by two byte relative address to which to jump. */
282 /* Same as jump, but marks the end of an alternative. */
285 /* Followed by two-byte relative address of place to resume at
286 in case of failure. */
289 /* Like on_failure_jump, but pushes a placeholder instead of the
290 current string position when executed. */
291 on_failure_keep_string_jump,
293 /* Throw away latest failure point and then jump to following
294 two-byte relative address. */
297 /* Change to pop_failure_jump if know won't have to backtrack to
298 match; otherwise change to jump. This is used to jump
299 back to the beginning of a repeat. If what follows this jump
300 clearly won't match what the repeat does, such that we can be
301 sure that there is no use backtracking out of repetitions
302 already matched, then we change it to a pop_failure_jump.
303 Followed by two-byte address. */
306 /* Jump to following two-byte address, and push a dummy failure
307 point. This failure point will be thrown away if an attempt
308 is made to use it for a failure. A `+' construct makes this
309 before the first repeat. Also used as an intermediary kind
310 of jump when compiling an alternative. */
313 /* Push a dummy failure point and continue. Used at the end of
317 /* Followed by two-byte relative address and two-byte number n.
318 After matching N times, jump to the address upon failure. */
321 /* Followed by two-byte relative address, and two-byte number n.
322 Jump to the address N times, then fail. */
325 /* Set the following two-byte relative address to the
326 subsequent two-byte number. The address *includes* the two
330 wordchar, /* Matches any word-constituent character. */
331 notwordchar, /* Matches any char that is not a word-constituent. */
333 wordbeg, /* Succeeds if at word beginning. */
334 wordend, /* Succeeds if at word end. */
336 wordbound, /* Succeeds if at a word boundary. */
337 notwordbound /* Succeeds if not at a word boundary. */
340 ,before_dot, /* Succeeds if before point. */
341 at_dot, /* Succeeds if at point. */
342 after_dot, /* Succeeds if after point. */
344 /* Matches any character whose syntax is specified. Followed by
345 a byte which contains a syntax code, e.g., Sword. */
348 /* Matches any character whose syntax is not that specified. */
353 /* Common operations on the compiled pattern. */
355 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
357 #define STORE_NUMBER(destination, number) \
359 (destination)[0] = (number) & 0377; \
360 (destination)[1] = (number) >> 8; \
363 /* Same as STORE_NUMBER, except increment DESTINATION to
364 the byte after where the number is stored. Therefore, DESTINATION
365 must be an lvalue. */
367 #define STORE_NUMBER_AND_INCR(destination, number) \
369 STORE_NUMBER (destination, number); \
370 (destination) += 2; \
373 /* Put into DESTINATION a number stored in two contiguous bytes starting
376 #define EXTRACT_NUMBER(destination, source) \
378 (destination) = *(source) & 0377; \
379 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
384 extract_number (dest, source)
386 unsigned char *source;
388 int temp = SIGN_EXTEND_CHAR (*(source + 1));
389 *dest = *source & 0377;
393 #ifndef EXTRACT_MACROS /* To debug the macros. */
394 #undef EXTRACT_NUMBER
395 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
396 #endif /* not EXTRACT_MACROS */
400 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
401 SOURCE must be an lvalue. */
403 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
405 EXTRACT_NUMBER (destination, source); \
411 extract_number_and_incr (destination, source)
413 unsigned char **source;
415 extract_number (destination, *source);
419 #ifndef EXTRACT_MACROS
420 #undef EXTRACT_NUMBER_AND_INCR
421 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
422 extract_number_and_incr (&dest, &src)
423 #endif /* not EXTRACT_MACROS */
427 /* If DEBUG is defined, Regex prints many voluminous messages about what
428 it is doing (if the variable `debug' is nonzero). If linked with the
429 main program in `iregex.c', you can enter patterns and strings
430 interactively. And if linked with the main program in `main.c' and
431 the other test files, you can run the already-written tests. */
435 /* We use standard I/O for debugging. */
438 /* It is useful to test things that ``must'' be true when debugging. */
441 static int debug = 0;
443 #define DEBUG_STATEMENT(e) e
444 #define DEBUG_PRINT1(x) if (debug) printf (x)
445 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
446 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
447 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
448 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
449 if (debug) print_partial_compiled_pattern (s, e)
450 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
451 if (debug) print_double_string (w, s1, sz1, s2, sz2)
454 extern void printchar ();
456 /* Print the fastmap in human-readable form. */
459 print_fastmap (fastmap)
462 unsigned was_a_range = 0;
465 while (i < (1 << BYTEWIDTH))
471 while (i < (1 << BYTEWIDTH) && fastmap[i])
487 /* Print a compiled pattern string in human-readable form, starting at
488 the START pointer into it and ending just before the pointer END. */
491 print_partial_compiled_pattern (start, end)
492 unsigned char *start;
496 unsigned char *p = start;
497 unsigned char *pend = end;
505 /* Loop over pattern commands. */
508 switch ((re_opcode_t) *p++)
516 printf ("/exactn/%d", mcnt);
527 printf ("/start_memory/%d/%d", mcnt, *p++);
532 printf ("/stop_memory/%d/%d", mcnt, *p++);
536 printf ("/duplicate/%d", *p++);
548 printf ("/charset%s",
549 (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
551 assert (p + *p < pend);
553 for (c = 0; c < *p; c++)
556 unsigned char map_byte = p[1 + c];
560 for (bit = 0; bit < BYTEWIDTH; bit++)
561 if (map_byte & (1 << bit))
562 printchar (c * BYTEWIDTH + bit);
576 case on_failure_jump:
577 extract_number_and_incr (&mcnt, &p);
578 printf ("/on_failure_jump/0/%d", mcnt);
581 case on_failure_keep_string_jump:
582 extract_number_and_incr (&mcnt, &p);
583 printf ("/on_failure_keep_string_jump/0/%d", mcnt);
586 case dummy_failure_jump:
587 extract_number_and_incr (&mcnt, &p);
588 printf ("/dummy_failure_jump/0/%d", mcnt);
591 case push_dummy_failure:
592 printf ("/push_dummy_failure");
596 extract_number_and_incr (&mcnt, &p);
597 printf ("/maybe_pop_jump/0/%d", mcnt);
600 case pop_failure_jump:
601 extract_number_and_incr (&mcnt, &p);
602 printf ("/pop_failure_jump/0/%d", mcnt);
606 extract_number_and_incr (&mcnt, &p);
607 printf ("/jump_past_alt/0/%d", mcnt);
611 extract_number_and_incr (&mcnt, &p);
612 printf ("/jump/0/%d", mcnt);
616 extract_number_and_incr (&mcnt, &p);
617 extract_number_and_incr (&mcnt2, &p);
618 printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
622 extract_number_and_incr (&mcnt, &p);
623 extract_number_and_incr (&mcnt2, &p);
624 printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2);
628 extract_number_and_incr (&mcnt, &p);
629 extract_number_and_incr (&mcnt2, &p);
630 printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
634 printf ("/wordbound");
638 printf ("/notwordbound");
650 printf ("/before_dot");
658 printf ("/after_dot");
662 printf ("/syntaxspec");
664 printf ("/%d", mcnt);
668 printf ("/notsyntaxspec");
670 printf ("/%d", mcnt);
675 printf ("/wordchar");
679 printf ("/notwordchar");
691 printf ("?%d", *(p-1));
699 print_compiled_pattern (bufp)
700 struct re_pattern_buffer *bufp;
702 unsigned char *buffer = bufp->buffer;
704 print_partial_compiled_pattern (buffer, buffer + bufp->used);
705 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
707 if (bufp->fastmap_accurate && bufp->fastmap)
709 printf ("fastmap: ");
710 print_fastmap (bufp->fastmap);
713 printf ("re_nsub: %d\t", bufp->re_nsub);
714 printf ("regs_alloc: %d\t", bufp->regs_allocated);
715 printf ("can_be_null: %d\t", bufp->can_be_null);
716 printf ("newline_anchor: %d\n", bufp->newline_anchor);
717 printf ("no_sub: %d\t", bufp->no_sub);
718 printf ("not_bol: %d\t", bufp->not_bol);
719 printf ("not_eol: %d\t", bufp->not_eol);
720 printf ("syntax: %d\n", bufp->syntax);
721 /* Perhaps we should print the translate table? */
726 print_double_string (where, string1, size1, string2, size2)
739 if (FIRST_STRING_P (where))
741 for (this_char = where - string1; this_char < size1; this_char++)
742 printchar (string1[this_char]);
747 for (this_char = where - string2; this_char < size2; this_char++)
748 printchar (string2[this_char]);
752 #else /* not DEBUG */
757 #define DEBUG_STATEMENT(e)
758 #define DEBUG_PRINT1(x)
759 #define DEBUG_PRINT2(x1, x2)
760 #define DEBUG_PRINT3(x1, x2, x3)
761 #define DEBUG_PRINT4(x1, x2, x3, x4)
762 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
763 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
765 #endif /* not DEBUG */
767 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
768 also be assigned to arbitrarily: each pattern buffer stores its own
769 syntax, so it can be changed between regex compilations. */
770 reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
773 /* Specify the precise syntax of regexps for compilation. This provides
774 for compatibility for various utilities which historically have
775 different, incompatible syntaxes.
777 The argument SYNTAX is a bit mask comprised of the various bits
778 defined in regex.h. We return the old syntax. */
781 re_set_syntax (syntax)
784 reg_syntax_t ret = re_syntax_options;
786 re_syntax_options = syntax;
790 /* This table gives an error message for each of the error codes listed
791 in regex.h. Obviously the order here has to be same as there. */
793 static const char *re_error_msg[] =
794 { NULL, /* REG_NOERROR */
795 "No match", /* REG_NOMATCH */
796 "Invalid regular expression", /* REG_BADPAT */
797 "Invalid collation character", /* REG_ECOLLATE */
798 "Invalid character class name", /* REG_ECTYPE */
799 "Trailing backslash", /* REG_EESCAPE */
800 "Invalid back reference", /* REG_ESUBREG */
801 "Unmatched [ or [^", /* REG_EBRACK */
802 "Unmatched ( or \\(", /* REG_EPAREN */
803 "Unmatched \\{", /* REG_EBRACE */
804 "Invalid content of \\{\\}", /* REG_BADBR */
805 "Invalid range end", /* REG_ERANGE */
806 "Memory exhausted", /* REG_ESPACE */
807 "Invalid preceding regular expression", /* REG_BADRPT */
808 "Premature end of regular expression", /* REG_EEND */
809 "Regular expression too big", /* REG_ESIZE */
810 "Unmatched ) or \\)", /* REG_ERPAREN */
813 /* Subroutine declarations and macros for regex_compile. */
815 static void store_op1 (), store_op2 ();
816 static void insert_op1 (), insert_op2 ();
817 static boolean at_begline_loc_p (), at_endline_loc_p ();
818 static boolean group_in_compile_stack ();
819 static reg_errcode_t compile_range ();
821 /* Fetch the next character in the uncompiled pattern---translating it
822 if necessary. Also cast from a signed character in the constant
823 string passed to us by the user to an unsigned char that we can use
824 as an array index (in, e.g., `translate'). */
825 #define PATFETCH(c) \
826 do {if (p == pend) return REG_EEND; \
827 c = (unsigned char) *p++; \
828 if (translate) c = translate[c]; \
831 /* Fetch the next character in the uncompiled pattern, with no
833 #define PATFETCH_RAW(c) \
834 do {if (p == pend) return REG_EEND; \
835 c = (unsigned char) *p++; \
838 /* Go backwards one character in the pattern. */
839 #define PATUNFETCH p--
842 /* If `translate' is non-null, return translate[D], else just D. We
843 cast the subscript to translate because some data is declared as
844 `char *', to avoid warnings when a string constant is passed. But
845 when we use a character as a subscript we must make it unsigned. */
846 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
849 /* Macros for outputting the compiled pattern into `buffer'. */
851 /* If the buffer isn't allocated when it comes in, use this. */
852 #define INIT_BUF_SIZE 32
854 /* Make sure we have at least N more bytes of space in buffer. */
855 #define GET_BUFFER_SPACE(n) \
856 while (b - bufp->buffer + (n) > bufp->allocated) \
859 /* Make sure we have one more byte of buffer space and then add C to it. */
860 #define BUF_PUSH(c) \
862 GET_BUFFER_SPACE (1); \
863 *b++ = (unsigned char) (c); \
867 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
868 #define BUF_PUSH_2(c1, c2) \
870 GET_BUFFER_SPACE (2); \
871 *b++ = (unsigned char) (c1); \
872 *b++ = (unsigned char) (c2); \
876 /* As with BUF_PUSH_2, except for three bytes. */
877 #define BUF_PUSH_3(c1, c2, c3) \
879 GET_BUFFER_SPACE (3); \
880 *b++ = (unsigned char) (c1); \
881 *b++ = (unsigned char) (c2); \
882 *b++ = (unsigned char) (c3); \
886 /* Store a jump with opcode OP at LOC to location TO. We store a
887 relative address offset by the three bytes the jump itself occupies. */
888 #define STORE_JUMP(op, loc, to) \
889 store_op1 (op, loc, (to) - (loc) - 3)
891 /* Likewise, for a two-argument jump. */
892 #define STORE_JUMP2(op, loc, to, arg) \
893 store_op2 (op, loc, (to) - (loc) - 3, arg)
895 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
896 #define INSERT_JUMP(op, loc, to) \
897 insert_op1 (op, loc, (to) - (loc) - 3, b)
899 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
900 #define INSERT_JUMP2(op, loc, to, arg) \
901 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
904 /* This is not an arbitrary limit: the arguments which represent offsets
905 into the pattern are two bytes long. So if 2^16 bytes turns out to
906 be too small, many things would have to change. */
907 #define MAX_BUF_SIZE (1L << 16)
910 /* Extend the buffer by twice its current size via realloc and
911 reset the pointers that pointed into the old block to point to the
912 correct places in the new one. If extending the buffer results in it
913 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
914 #define EXTEND_BUFFER() \
916 unsigned char *old_buffer = bufp->buffer; \
917 if (bufp->allocated == MAX_BUF_SIZE) \
919 bufp->allocated <<= 1; \
920 if (bufp->allocated > MAX_BUF_SIZE) \
921 bufp->allocated = MAX_BUF_SIZE; \
922 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
923 if (bufp->buffer == NULL) \
925 /* If the buffer moved, move all the pointers into it. */ \
926 if (old_buffer != bufp->buffer) \
928 b = (b - old_buffer) + bufp->buffer; \
929 begalt = (begalt - old_buffer) + bufp->buffer; \
930 if (fixup_alt_jump) \
931 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
933 laststart = (laststart - old_buffer) + bufp->buffer; \
935 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
940 /* Since we have one byte reserved for the register number argument to
941 {start,stop}_memory, the maximum number of groups we can report
942 things about is what fits in that byte. */
943 #define MAX_REGNUM 255
945 /* But patterns can have more than `MAX_REGNUM' registers. We just
946 ignore the excess. */
947 typedef unsigned regnum_t;
950 /* Macros for the compile stack. */
952 /* Since offsets can go either forwards or backwards, this type needs to
953 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
954 typedef int pattern_offset_t;
958 pattern_offset_t begalt_offset;
959 pattern_offset_t fixup_alt_jump;
960 pattern_offset_t inner_group_offset;
961 pattern_offset_t laststart_offset;
963 } compile_stack_elt_t;
968 compile_stack_elt_t *stack;
970 unsigned avail; /* Offset of next open position. */
971 } compile_stack_type;
974 #define INIT_COMPILE_STACK_SIZE 32
976 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
977 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
979 /* The next available element. */
980 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
983 /* Set the bit for character C in a list. */
984 #define SET_LIST_BIT(c) \
985 (b[((unsigned char) (c)) / BYTEWIDTH] \
986 |= 1 << (((unsigned char) c) % BYTEWIDTH))
989 /* Get the next unsigned number in the uncompiled pattern. */
990 #define GET_UNSIGNED_NUMBER(num) \
994 while (ISDIGIT (c)) \
998 num = num * 10 + c - '0'; \
1006 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1008 #define IS_CHAR_CLASS(string) \
1009 (STREQ (string, "alpha") || STREQ (string, "upper") \
1010 || STREQ (string, "lower") || STREQ (string, "digit") \
1011 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1012 || STREQ (string, "space") || STREQ (string, "print") \
1013 || STREQ (string, "punct") || STREQ (string, "graph") \
1014 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1016 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1017 Returns one of error codes defined in `regex.h', or zero for success.
1019 Assumes the `allocated' (and perhaps `buffer') and `translate'
1020 fields are set in BUFP on entry.
1022 If it succeeds, results are put in BUFP (if it returns an error, the
1023 contents of BUFP are undefined):
1024 `buffer' is the compiled pattern;
1025 `syntax' is set to SYNTAX;
1026 `used' is set to the length of the compiled pattern;
1027 `fastmap_accurate' is zero;
1028 `re_nsub' is the number of subexpressions in PATTERN;
1029 `not_bol' and `not_eol' are zero;
1031 The `fastmap' and `newline_anchor' fields are neither
1032 examined nor set. */
1034 static reg_errcode_t
1035 regex_compile (pattern, size, syntax, bufp)
1036 const char *pattern;
1038 reg_syntax_t syntax;
1039 struct re_pattern_buffer *bufp;
1041 /* We fetch characters from PATTERN here. Even though PATTERN is
1042 `char *' (i.e., signed), we declare these variables as unsigned, so
1043 they can be reliably used as array indices. */
1044 register unsigned char c, c1;
1046 /* A random temporary spot in PATTERN. */
1049 /* Points to the end of the buffer, where we should append. */
1050 register unsigned char *b;
1052 /* Keeps track of unclosed groups. */
1053 compile_stack_type compile_stack;
1055 /* Points to the current (ending) position in the pattern. */
1056 const char *p = pattern;
1057 const char *pend = pattern + size;
1059 /* How to translate the characters in the pattern. */
1060 char *translate = bufp->translate;
1062 /* Address of the count-byte of the most recently inserted `exactn'
1063 command. This makes it possible to tell if a new exact-match
1064 character can be added to that command or if the character requires
1065 a new `exactn' command. */
1066 unsigned char *pending_exact = 0;
1068 /* Address of start of the most recently finished expression.
1069 This tells, e.g., postfix * where to find the start of its
1070 operand. Reset at the beginning of groups and alternatives. */
1071 unsigned char *laststart = 0;
1073 /* Address of beginning of regexp, or inside of last group. */
1074 unsigned char *begalt;
1076 /* Place in the uncompiled pattern (i.e., the {) to
1077 which to go back if the interval is invalid. */
1078 const char *beg_interval;
1080 /* Address of the place where a forward jump should go to the end of
1081 the containing expression. Each alternative of an `or' -- except the
1082 last -- ends with a forward jump of this sort. */
1083 unsigned char *fixup_alt_jump = 0;
1085 /* Counts open-groups as they are encountered. Remembered for the
1086 matching close-group on the compile stack, so the same register
1087 number is put in the stop_memory as the start_memory. */
1088 regnum_t regnum = 0;
1091 DEBUG_PRINT1 ("\nCompiling pattern: ");
1094 unsigned debug_count;
1096 for (debug_count = 0; debug_count < size; debug_count++)
1097 printchar (pattern[debug_count]);
1102 /* Initialize the compile stack. */
1103 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1104 if (compile_stack.stack == NULL)
1107 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1108 compile_stack.avail = 0;
1110 /* Initialize the pattern buffer. */
1111 bufp->syntax = syntax;
1112 bufp->fastmap_accurate = 0;
1113 bufp->not_bol = bufp->not_eol = 0;
1115 /* Set `used' to zero, so that if we return an error, the pattern
1116 printer (for debugging) will think there's no pattern. We reset it
1120 /* Always count groups, whether or not bufp->no_sub is set. */
1123 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1124 /* Initialize the syntax table. */
1125 init_syntax_once ();
1128 if (bufp->allocated == 0)
1131 { /* If zero allocated, but buffer is non-null, try to realloc
1132 enough space. This loses if buffer's address is bogus, but
1133 that is the user's responsibility. */
1134 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1137 { /* Caller did not allocate a buffer. Do it for them. */
1138 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1140 if (!bufp->buffer) return REG_ESPACE;
1142 bufp->allocated = INIT_BUF_SIZE;
1145 begalt = b = bufp->buffer;
1147 /* Loop through the uncompiled pattern until we're at the end. */
1156 if ( /* If at start of pattern, it's an operator. */
1158 /* If context independent, it's an operator. */
1159 || syntax & RE_CONTEXT_INDEP_ANCHORS
1160 /* Otherwise, depends on what's come before. */
1161 || at_begline_loc_p (pattern, p, syntax))
1171 if ( /* If at end of pattern, it's an operator. */
1173 /* If context independent, it's an operator. */
1174 || syntax & RE_CONTEXT_INDEP_ANCHORS
1175 /* Otherwise, depends on what's next. */
1176 || at_endline_loc_p (p, pend, syntax))
1186 if ((syntax & RE_BK_PLUS_QM)
1187 || (syntax & RE_LIMITED_OPS))
1191 /* If there is no previous pattern... */
1194 if (syntax & RE_CONTEXT_INVALID_OPS)
1196 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1201 /* Are we optimizing this jump? */
1202 boolean keep_string_p = false;
1204 /* 1 means zero (many) matches is allowed. */
1205 char zero_times_ok = 0, many_times_ok = 0;
1207 /* If there is a sequence of repetition chars, collapse it
1208 down to just one (the right one). We can't combine
1209 interval operators with these because of, e.g., `a{2}*',
1210 which should only match an even number of `a's. */
1214 zero_times_ok |= c != '+';
1215 many_times_ok |= c != '?';
1223 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1226 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1228 if (p == pend) return REG_EESCAPE;
1231 if (!(c1 == '+' || c1 == '?'))
1246 /* If we get here, we found another repeat character. */
1249 /* Star, etc. applied to an empty pattern is equivalent
1250 to an empty pattern. */
1254 /* Now we know whether or not zero matches is allowed
1255 and also whether or not two or more matches is allowed. */
1257 { /* More than one repetition is allowed, so put in at the
1258 end a backward relative jump from `b' to before the next
1259 jump we're going to put in below (which jumps from
1260 laststart to after this jump).
1262 But if we are at the `*' in the exact sequence `.*\n',
1263 insert an unconditional jump backwards to the .,
1264 instead of the beginning of the loop. This way we only
1265 push a failure point once, instead of every time
1266 through the loop. */
1267 assert (p - 1 > pattern);
1269 /* Allocate the space for the jump. */
1270 GET_BUFFER_SPACE (3);
1272 /* We know we are not at the first character of the pattern,
1273 because laststart was nonzero. And we've already
1274 incremented `p', by the way, to be the character after
1275 the `*'. Do we have to do something analogous here
1276 for null bytes, because of RE_DOT_NOT_NULL? */
1277 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1279 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1280 && !(syntax & RE_DOT_NEWLINE))
1281 { /* We have .*\n. */
1282 STORE_JUMP (jump, b, laststart);
1283 keep_string_p = true;
1286 /* Anything else. */
1287 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1289 /* We've added more stuff to the buffer. */
1293 /* On failure, jump from laststart to b + 3, which will be the
1294 end of the buffer after this jump is inserted. */
1295 GET_BUFFER_SPACE (3);
1296 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1304 /* At least one repetition is required, so insert a
1305 `dummy_failure_jump' before the initial
1306 `on_failure_jump' instruction of the loop. This
1307 effects a skip over that instruction the first time
1308 we hit that loop. */
1309 GET_BUFFER_SPACE (3);
1310 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1325 boolean had_char_class = false;
1327 if (p == pend) return REG_EBRACK;
1329 /* Ensure that we have enough space to push a charset: the
1330 opcode, the length count, and the bitset; 34 bytes in all. */
1331 GET_BUFFER_SPACE (34);
1335 /* We test `*p == '^' twice, instead of using an if
1336 statement, so we only need one BUF_PUSH. */
1337 BUF_PUSH (*p == '^' ? charset_not : charset);
1341 /* Remember the first position in the bracket expression. */
1344 /* Push the number of bytes in the bitmap. */
1345 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1347 /* Clear the whole map. */
1348 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1350 /* charset_not matches newline according to a syntax bit. */
1351 if ((re_opcode_t) b[-2] == charset_not
1352 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1353 SET_LIST_BIT ('\n');
1355 /* Read in characters and ranges, setting map bits. */
1358 if (p == pend) return REG_EBRACK;
1362 /* \ might escape characters inside [...] and [^...]. */
1363 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1365 if (p == pend) return REG_EESCAPE;
1372 /* Could be the end of the bracket expression. If it's
1373 not (i.e., when the bracket expression is `[]' so
1374 far), the ']' character bit gets set way below. */
1375 if (c == ']' && p != p1 + 1)
1378 /* Look ahead to see if it's a range when the last thing
1379 was a character class. */
1380 if (had_char_class && c == '-' && *p != ']')
1383 /* Look ahead to see if it's a range when the last thing
1384 was a character: if this is a hyphen not at the
1385 beginning or the end of a list, then it's the range
1388 && !(p - 2 >= pattern && p[-2] == '[')
1389 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1393 = compile_range (&p, pend, translate, syntax, b);
1394 if (ret != REG_NOERROR) return ret;
1397 else if (p[0] == '-' && p[1] != ']')
1398 { /* This handles ranges made up of characters only. */
1401 /* Move past the `-'. */
1404 ret = compile_range (&p, pend, translate, syntax, b);
1405 if (ret != REG_NOERROR) return ret;
1408 /* See if we're at the beginning of a possible character
1411 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1412 { /* Leave room for the null. */
1413 char str[CHAR_CLASS_MAX_LENGTH + 1];
1418 /* If pattern is `[[:'. */
1419 if (p == pend) return REG_EBRACK;
1424 if (c == ':' || c == ']' || p == pend
1425 || c1 == CHAR_CLASS_MAX_LENGTH)
1431 /* If isn't a word bracketed by `[:' and:`]':
1432 undo the ending character, the letters, and leave
1433 the leading `:' and `[' (but set bits for them). */
1434 if (c == ':' && *p == ']')
1437 boolean is_alnum = STREQ (str, "alnum");
1438 boolean is_alpha = STREQ (str, "alpha");
1439 boolean is_blank = STREQ (str, "blank");
1440 boolean is_cntrl = STREQ (str, "cntrl");
1441 boolean is_digit = STREQ (str, "digit");
1442 boolean is_graph = STREQ (str, "graph");
1443 boolean is_lower = STREQ (str, "lower");
1444 boolean is_print = STREQ (str, "print");
1445 boolean is_punct = STREQ (str, "punct");
1446 boolean is_space = STREQ (str, "space");
1447 boolean is_upper = STREQ (str, "upper");
1448 boolean is_xdigit = STREQ (str, "xdigit");
1450 if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
1452 /* Throw away the ] at the end of the character
1456 if (p == pend) return REG_EBRACK;
1458 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1460 if ( (is_alnum && ISALNUM (ch))
1461 || (is_alpha && ISALPHA (ch))
1462 || (is_blank && ISBLANK (ch))
1463 || (is_cntrl && ISCNTRL (ch))
1464 || (is_digit && ISDIGIT (ch))
1465 || (is_graph && ISGRAPH (ch))
1466 || (is_lower && ISLOWER (ch))
1467 || (is_print && ISPRINT (ch))
1468 || (is_punct && ISPUNCT (ch))
1469 || (is_space && ISSPACE (ch))
1470 || (is_upper && ISUPPER (ch))
1471 || (is_xdigit && ISXDIGIT (ch)))
1474 had_char_class = true;
1483 had_char_class = false;
1488 had_char_class = false;
1493 /* Discard any (non)matching list bytes that are all 0 at the
1494 end of the map. Decrease the map-length byte too. */
1495 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1503 if (syntax & RE_NO_BK_PARENS)
1510 if (syntax & RE_NO_BK_PARENS)
1517 if (syntax & RE_NEWLINE_ALT)
1524 if (syntax & RE_NO_BK_VBAR)
1531 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1532 goto handle_interval;
1538 if (p == pend) return REG_EESCAPE;
1540 /* Do not translate the character after the \, so that we can
1541 distinguish, e.g., \B from \b, even if we normally would
1542 translate, e.g., B to b. */
1548 if (syntax & RE_NO_BK_PARENS)
1549 goto normal_backslash;
1555 if (COMPILE_STACK_FULL)
1557 RETALLOC (compile_stack.stack, compile_stack.size << 1,
1558 compile_stack_elt_t);
1559 if (compile_stack.stack == NULL) return REG_ESPACE;
1561 compile_stack.size <<= 1;
1564 /* These are the values to restore when we hit end of this
1565 group. They are all relative offsets, so that if the
1566 whole pattern moves because of realloc, they will still
1568 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
1569 COMPILE_STACK_TOP.fixup_alt_jump
1570 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
1571 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
1572 COMPILE_STACK_TOP.regnum = regnum;
1574 /* We will eventually replace the 0 with the number of
1575 groups inner to this one. But do not push a
1576 start_memory for groups beyond the last one we can
1577 represent in the compiled pattern. */
1578 if (regnum <= MAX_REGNUM)
1580 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
1581 BUF_PUSH_3 (start_memory, regnum, 0);
1584 compile_stack.avail++;
1589 /* If we've reached MAX_REGNUM groups, then this open
1590 won't actually generate any code, so we'll have to
1591 clear pending_exact explicitly. */
1597 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
1599 if (COMPILE_STACK_EMPTY)
1601 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1602 goto normal_backslash;
1609 { /* Push a dummy failure point at the end of the
1610 alternative for a possible future
1611 `pop_failure_jump' to pop. See comments at
1612 `push_dummy_failure' in `re_match_2'. */
1613 BUF_PUSH (push_dummy_failure);
1615 /* We allocated space for this jump when we assigned
1616 to `fixup_alt_jump', in the `handle_alt' case below. */
1617 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
1620 /* See similar code for backslashed left paren above. */
1621 if (COMPILE_STACK_EMPTY)
1623 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1629 /* Since we just checked for an empty stack above, this
1630 ``can't happen''. */
1631 assert (compile_stack.avail != 0);
1633 /* We don't just want to restore into `regnum', because
1634 later groups should continue to be numbered higher,
1635 as in `(ab)c(de)' -- the second group is #2. */
1636 regnum_t this_group_regnum;
1638 compile_stack.avail--;
1639 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
1641 = COMPILE_STACK_TOP.fixup_alt_jump
1642 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
1644 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
1645 this_group_regnum = COMPILE_STACK_TOP.regnum;
1646 /* If we've reached MAX_REGNUM groups, then this open
1647 won't actually generate any code, so we'll have to
1648 clear pending_exact explicitly. */
1651 /* We're at the end of the group, so now we know how many
1652 groups were inside this one. */
1653 if (this_group_regnum <= MAX_REGNUM)
1655 unsigned char *inner_group_loc
1656 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
1658 *inner_group_loc = regnum - this_group_regnum;
1659 BUF_PUSH_3 (stop_memory, this_group_regnum,
1660 regnum - this_group_regnum);
1666 case '|': /* `\|'. */
1667 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
1668 goto normal_backslash;
1670 if (syntax & RE_LIMITED_OPS)
1673 /* Insert before the previous alternative a jump which
1674 jumps to this alternative if the former fails. */
1675 GET_BUFFER_SPACE (3);
1676 INSERT_JUMP (on_failure_jump, begalt, b + 6);
1680 /* The alternative before this one has a jump after it
1681 which gets executed if it gets matched. Adjust that
1682 jump so it will jump to this alternative's analogous
1683 jump (put in below, which in turn will jump to the next
1684 (if any) alternative's such jump, etc.). The last such
1685 jump jumps to the correct final destination. A picture:
1691 If we are at `b', then fixup_alt_jump right now points to a
1692 three-byte space after `a'. We'll put in the jump, set
1693 fixup_alt_jump to right after `b', and leave behind three
1694 bytes which we'll fill in when we get to after `c'. */
1697 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
1699 /* Mark and leave space for a jump after this alternative,
1700 to be filled in later either by next alternative or
1701 when know we're at the end of a series of alternatives. */
1703 GET_BUFFER_SPACE (3);
1712 /* If \{ is a literal. */
1713 if (!(syntax & RE_INTERVALS)
1714 /* If we're at `\{' and it's not the open-interval
1716 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
1717 || (p - 2 == pattern && p == pend))
1718 goto normal_backslash;
1722 /* If got here, then the syntax allows intervals. */
1724 /* At least (most) this many matches must be made. */
1725 int lower_bound = -1, upper_bound = -1;
1727 beg_interval = p - 1;
1731 if (syntax & RE_NO_BK_BRACES)
1732 goto unfetch_interval;
1737 GET_UNSIGNED_NUMBER (lower_bound);
1741 GET_UNSIGNED_NUMBER (upper_bound);
1742 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
1745 /* Interval such as `{1}' => match exactly once. */
1746 upper_bound = lower_bound;
1748 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
1749 || lower_bound > upper_bound)
1751 if (syntax & RE_NO_BK_BRACES)
1752 goto unfetch_interval;
1757 if (!(syntax & RE_NO_BK_BRACES))
1759 if (c != '\\') return REG_EBRACE;
1766 if (syntax & RE_NO_BK_BRACES)
1767 goto unfetch_interval;
1772 /* We just parsed a valid interval. */
1774 /* If it's invalid to have no preceding re. */
1777 if (syntax & RE_CONTEXT_INVALID_OPS)
1779 else if (syntax & RE_CONTEXT_INDEP_OPS)
1782 goto unfetch_interval;
1785 /* If the upper bound is zero, don't want to succeed at
1786 all; jump from `laststart' to `b + 3', which will be
1787 the end of the buffer after we insert the jump. */
1788 if (upper_bound == 0)
1790 GET_BUFFER_SPACE (3);
1791 INSERT_JUMP (jump, laststart, b + 3);
1795 /* Otherwise, we have a nontrivial interval. When
1796 we're all done, the pattern will look like:
1797 set_number_at <jump count> <upper bound>
1798 set_number_at <succeed_n count> <lower bound>
1799 succeed_n <after jump addr> <succeed_n count>
1801 jump_n <succeed_n addr> <jump count>
1802 (The upper bound and `jump_n' are omitted if
1803 `upper_bound' is 1, though.) */
1805 { /* If the upper bound is > 1, we need to insert
1806 more at the end of the loop. */
1807 unsigned nbytes = 10 + (upper_bound > 1) * 10;
1809 GET_BUFFER_SPACE (nbytes);
1811 /* Initialize lower bound of the `succeed_n', even
1812 though it will be set during matching by its
1813 attendant `set_number_at' (inserted next),
1814 because `re_compile_fastmap' needs to know.
1815 Jump to the `jump_n' we might insert below. */
1816 INSERT_JUMP2 (succeed_n, laststart,
1817 b + 5 + (upper_bound > 1) * 5,
1821 /* Code to initialize the lower bound. Insert
1822 before the `succeed_n'. The `5' is the last two
1823 bytes of this `set_number_at', plus 3 bytes of
1824 the following `succeed_n'. */
1825 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
1828 if (upper_bound > 1)
1829 { /* More than one repetition is allowed, so
1830 append a backward jump to the `succeed_n'
1831 that starts this interval.
1833 When we've reached this during matching,
1834 we'll have matched the interval once, so
1835 jump back only `upper_bound - 1' times. */
1836 STORE_JUMP2 (jump_n, b, laststart + 5,
1840 /* The location we want to set is the second
1841 parameter of the `jump_n'; that is `b-2' as
1842 an absolute address. `laststart' will be
1843 the `set_number_at' we're about to insert;
1844 `laststart+3' the number to set, the source
1845 for the relative address. But we are
1846 inserting into the middle of the pattern --
1847 so everything is getting moved up by 5.
1848 Conclusion: (b - 2) - (laststart + 3) + 5,
1849 i.e., b - laststart.
1851 We insert this at the beginning of the loop
1852 so that if we fail during matching, we'll
1853 reinitialize the bounds. */
1854 insert_op2 (set_number_at, laststart, b - laststart,
1855 upper_bound - 1, b);
1860 beg_interval = NULL;
1865 /* If an invalid interval, match the characters as literals. */
1866 assert (beg_interval);
1868 beg_interval = NULL;
1870 /* normal_char and normal_backslash need `c'. */
1873 if (!(syntax & RE_NO_BK_BRACES))
1875 if (p > pattern && p[-1] == '\\')
1876 goto normal_backslash;
1881 /* There is no way to specify the before_dot and after_dot
1882 operators. rms says this is ok. --karl */
1890 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
1896 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
1903 BUF_PUSH (wordchar);
1909 BUF_PUSH (notwordchar);
1922 BUF_PUSH (wordbound);
1926 BUF_PUSH (notwordbound);
1937 case '1': case '2': case '3': case '4': case '5':
1938 case '6': case '7': case '8': case '9':
1939 if (syntax & RE_NO_BK_REFS)
1947 /* Can't back reference to a subexpression if inside of it. */
1948 if (group_in_compile_stack (compile_stack, c1))
1952 BUF_PUSH_2 (duplicate, c1);
1958 if (syntax & RE_BK_PLUS_QM)
1961 goto normal_backslash;
1965 /* You might think it would be useful for \ to mean
1966 not to translate; but if we don't translate it
1967 it will never match anything. */
1975 /* Expects the character in `c'. */
1977 /* If no exactn currently being built. */
1980 /* If last exactn not at current position. */
1981 || pending_exact + *pending_exact + 1 != b
1983 /* We have only one byte following the exactn for the count. */
1984 || *pending_exact == (1 << BYTEWIDTH) - 1
1986 /* If followed by a repetition operator. */
1987 || *p == '*' || *p == '^'
1988 || ((syntax & RE_BK_PLUS_QM)
1989 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
1990 : (*p == '+' || *p == '?'))
1991 || ((syntax & RE_INTERVALS)
1992 && ((syntax & RE_NO_BK_BRACES)
1994 : (p[0] == '\\' && p[1] == '{'))))
1996 /* Start building a new exactn. */
2000 BUF_PUSH_2 (exactn, 0);
2001 pending_exact = b - 1;
2008 } /* while p != pend */
2011 /* Through the pattern now. */
2014 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2016 if (!COMPILE_STACK_EMPTY)
2019 free (compile_stack.stack);
2021 /* We have succeeded; set the length of the buffer. */
2022 bufp->used = b - bufp->buffer;
2027 DEBUG_PRINT1 ("\nCompiled pattern: ");
2028 print_compiled_pattern (bufp);
2033 } /* regex_compile */
2035 /* Subroutines for `regex_compile'. */
2037 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2040 store_op1 (op, loc, arg)
2045 *loc = (unsigned char) op;
2046 STORE_NUMBER (loc + 1, arg);
2050 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2053 store_op2 (op, loc, arg1, arg2)
2058 *loc = (unsigned char) op;
2059 STORE_NUMBER (loc + 1, arg1);
2060 STORE_NUMBER (loc + 3, arg2);
2064 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2065 for OP followed by two-byte integer parameter ARG. */
2068 insert_op1 (op, loc, arg, end)
2074 register unsigned char *pfrom = end;
2075 register unsigned char *pto = end + 3;
2077 while (pfrom != loc)
2080 store_op1 (op, loc, arg);
2084 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2087 insert_op2 (op, loc, arg1, arg2, end)
2093 register unsigned char *pfrom = end;
2094 register unsigned char *pto = end + 5;
2096 while (pfrom != loc)
2099 store_op2 (op, loc, arg1, arg2);
2103 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2104 after an alternative or a begin-subexpression. We assume there is at
2105 least one character before the ^. */
2108 at_begline_loc_p (pattern, p, syntax)
2109 const char *pattern, *p;
2110 reg_syntax_t syntax;
2112 const char *prev = p - 2;
2113 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2116 /* After a subexpression? */
2117 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2118 /* After an alternative? */
2119 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2123 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2124 at least one character after the $, i.e., `P < PEND'. */
2127 at_endline_loc_p (p, pend, syntax)
2128 const char *p, *pend;
2131 const char *next = p;
2132 boolean next_backslash = *next == '\\';
2133 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2136 /* Before a subexpression? */
2137 (syntax & RE_NO_BK_PARENS ? *next == ')'
2138 : next_backslash && next_next && *next_next == ')')
2139 /* Before an alternative? */
2140 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2141 : next_backslash && next_next && *next_next == '|');
2145 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2146 false if it's not. */
2149 group_in_compile_stack (compile_stack, regnum)
2150 compile_stack_type compile_stack;
2155 for (this_element = compile_stack.avail - 1;
2158 if (compile_stack.stack[this_element].regnum == regnum)
2165 /* Read the ending character of a range (in a bracket expression) from the
2166 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2167 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2168 Then we set the translation of all bits between the starting and
2169 ending characters (inclusive) in the compiled pattern B.
2171 Return an error code.
2173 We use these short variable names so we can use the same macros as
2174 `regex_compile' itself. */
2176 static reg_errcode_t
2177 compile_range (p_ptr, pend, translate, syntax, b)
2178 const char **p_ptr, *pend;
2180 reg_syntax_t syntax;
2185 const char *p = *p_ptr;
2186 int range_start, range_end;
2191 /* Even though the pattern is a signed `char *', we need to fetch
2192 with unsigned char *'s; if the high bit of the pattern character
2193 is set, the range endpoints will be negative if we fetch using a
2196 We also want to fetch the endpoints without translating them; the
2197 appropriate translation is done in the bit-setting loop below. */
2198 range_start = ((unsigned char *) p)[-2];
2199 range_end = ((unsigned char *) p)[0];
2201 /* Have to increment the pointer into the pattern string, so the
2202 caller isn't still at the ending character. */
2205 /* If the start is after the end, the range is empty. */
2206 if (range_start > range_end)
2207 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2209 /* Here we see why `this_char' has to be larger than an `unsigned
2210 char' -- the range is inclusive, so if `range_end' == 0xff
2211 (assuming 8-bit characters), we would otherwise go into an infinite
2212 loop, since all characters <= 0xff. */
2213 for (this_char = range_start; this_char <= range_end; this_char++)
2215 SET_LIST_BIT (TRANSLATE (this_char));
2221 /* Failure stack declarations and macros; both re_compile_fastmap and
2222 re_match_2 use a failure stack. These have to be macros because of
2226 /* Number of failure points for which to initially allocate space
2227 when matching. If this number is exceeded, we allocate more
2228 space, so it is not a hard limit. */
2229 #ifndef INIT_FAILURE_ALLOC
2230 #define INIT_FAILURE_ALLOC 5
2233 /* Roughly the maximum number of failure points on the stack. Would be
2234 exactly that if always used MAX_FAILURE_SPACE each time we failed.
2235 This is a variable only so users of regex can assign to it; we never
2236 change it ourselves. */
2237 int re_max_failures = 2000;
2239 typedef const unsigned char *fail_stack_elt_t;
2243 fail_stack_elt_t *stack;
2245 unsigned avail; /* Offset of next open position. */
2248 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
2249 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
2250 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
2251 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
2254 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
2256 #define INIT_FAIL_STACK() \
2258 fail_stack.stack = (fail_stack_elt_t *) \
2259 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
2261 if (fail_stack.stack == NULL) \
2264 fail_stack.size = INIT_FAILURE_ALLOC; \
2265 fail_stack.avail = 0; \
2269 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
2271 Return 1 if succeeds, and 0 if either ran out of memory
2272 allocating space for it or it was already too large.
2274 REGEX_REALLOCATE requires `destination' be declared. */
2276 #define DOUBLE_FAIL_STACK(fail_stack) \
2277 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
2279 : ((fail_stack).stack = (fail_stack_elt_t *) \
2280 REGEX_REALLOCATE ((fail_stack).stack, \
2281 (fail_stack).size * sizeof (fail_stack_elt_t), \
2282 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
2284 (fail_stack).stack == NULL \
2286 : ((fail_stack).size <<= 1, \
2290 /* Push PATTERN_OP on FAIL_STACK.
2292 Return 1 if was able to do so and 0 if ran out of memory allocating
2294 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
2295 ((FAIL_STACK_FULL () \
2296 && !DOUBLE_FAIL_STACK (fail_stack)) \
2298 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
2301 /* This pushes an item onto the failure stack. Must be a four-byte
2302 value. Assumes the variable `fail_stack'. Probably should only
2303 be called from within `PUSH_FAILURE_POINT'. */
2304 #define PUSH_FAILURE_ITEM(item) \
2305 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
2307 /* The complement operation. Assumes `fail_stack' is nonempty. */
2308 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
2310 /* Used to omit pushing failure point id's when we're not debugging. */
2312 #define DEBUG_PUSH PUSH_FAILURE_ITEM
2313 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
2315 #define DEBUG_PUSH(item)
2316 #define DEBUG_POP(item_addr)
2320 /* Push the information about the state we will need
2321 if we ever fail back to it.
2323 Requires variables fail_stack, regstart, regend, reg_info, and
2324 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
2327 Does `return FAILURE_CODE' if runs out of memory. */
2329 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
2331 char *destination; \
2332 /* Must be int, so when we don't save any registers, the arithmetic \
2333 of 0 + -1 isn't done as unsigned. */ \
2336 DEBUG_STATEMENT (failure_id++); \
2337 DEBUG_STATEMENT (nfailure_points_pushed++); \
2338 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
2339 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
2340 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
2342 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
2343 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
2345 /* Ensure we have enough space allocated for what we will push. */ \
2346 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
2348 if (!DOUBLE_FAIL_STACK (fail_stack)) \
2349 return failure_code; \
2351 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
2352 (fail_stack).size); \
2353 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
2356 /* Push the info, starting with the registers. */ \
2357 DEBUG_PRINT1 ("\n"); \
2359 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
2362 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
2363 DEBUG_STATEMENT (num_regs_pushed++); \
2365 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2366 PUSH_FAILURE_ITEM (regstart[this_reg]); \
2368 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2369 PUSH_FAILURE_ITEM (regend[this_reg]); \
2371 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
2372 DEBUG_PRINT2 (" match_null=%d", \
2373 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
2374 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
2375 DEBUG_PRINT2 (" matched_something=%d", \
2376 MATCHED_SOMETHING (reg_info[this_reg])); \
2377 DEBUG_PRINT2 (" ever_matched=%d", \
2378 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
2379 DEBUG_PRINT1 ("\n"); \
2380 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
2383 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
2384 PUSH_FAILURE_ITEM (lowest_active_reg); \
2386 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
2387 PUSH_FAILURE_ITEM (highest_active_reg); \
2389 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
2390 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
2391 PUSH_FAILURE_ITEM (pattern_place); \
2393 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
2394 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
2396 DEBUG_PRINT1 ("'\n"); \
2397 PUSH_FAILURE_ITEM (string_place); \
2399 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
2400 DEBUG_PUSH (failure_id); \
2403 /* This is the number of items that are pushed and popped on the stack
2404 for each register. */
2405 #define NUM_REG_ITEMS 3
2407 /* Individual items aside from the registers. */
2409 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
2411 #define NUM_NONREG_ITEMS 4
2414 /* We push at most this many items on the stack. */
2415 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
2417 /* We actually push this many items. */
2418 #define NUM_FAILURE_ITEMS \
2419 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
2422 /* How many items can still be added to the stack without overflowing it. */
2423 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
2426 /* Pops what PUSH_FAIL_STACK pushes.
2428 We restore into the parameters, all of which should be lvalues:
2429 STR -- the saved data position.
2430 PAT -- the saved pattern position.
2431 LOW_REG, HIGH_REG -- the highest and lowest active registers.
2432 REGSTART, REGEND -- arrays of string positions.
2433 REG_INFO -- array of information about each subexpression.
2435 Also assumes the variables `fail_stack' and (if debugging), `bufp',
2436 `pend', `string1', `size1', `string2', and `size2'. */
2438 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
2440 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
2442 const unsigned char *string_temp; \
2444 assert (!FAIL_STACK_EMPTY ()); \
2446 /* Remove failure points and point to how many regs pushed. */ \
2447 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
2448 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
2449 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
2451 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
2453 DEBUG_POP (&failure_id); \
2454 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
2456 /* If the saved string location is NULL, it came from an \
2457 on_failure_keep_string_jump opcode, and we want to throw away the \
2458 saved NULL, thus retaining our current position in the string. */ \
2459 string_temp = POP_FAILURE_ITEM (); \
2460 if (string_temp != NULL) \
2461 str = (const char *) string_temp; \
2463 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
2464 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
2465 DEBUG_PRINT1 ("'\n"); \
2467 pat = (unsigned char *) POP_FAILURE_ITEM (); \
2468 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
2469 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
2471 /* Restore register info. */ \
2472 high_reg = (unsigned) POP_FAILURE_ITEM (); \
2473 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
2475 low_reg = (unsigned) POP_FAILURE_ITEM (); \
2476 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
2478 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
2480 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
2482 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
2483 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
2485 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2486 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2488 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2489 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2492 DEBUG_STATEMENT (nfailure_points_popped++); \
2493 } /* POP_FAILURE_POINT */
2495 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2496 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2497 characters can start a string that matches the pattern. This fastmap
2498 is used by re_search to skip quickly over impossible starting points.
2500 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2501 area as BUFP->fastmap.
2503 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2506 Returns 0 if we succeed, -2 if an internal error. */
2509 re_compile_fastmap (bufp)
2510 struct re_pattern_buffer *bufp;
2513 fail_stack_type fail_stack;
2514 #ifndef REGEX_MALLOC
2517 /* We don't push any register information onto the failure stack. */
2518 unsigned num_regs = 0;
2520 register char *fastmap = bufp->fastmap;
2521 unsigned char *pattern = bufp->buffer;
2522 unsigned long size = bufp->used;
2523 const unsigned char *p = pattern;
2524 register unsigned char *pend = pattern + size;
2526 /* Assume that each path through the pattern can be null until
2527 proven otherwise. We set this false at the bottom of switch
2528 statement, to which we get only if a particular path doesn't
2529 match the empty string. */
2530 boolean path_can_be_null = true;
2532 /* We aren't doing a `succeed_n' to begin with. */
2533 boolean succeed_n_p = false;
2535 assert (fastmap != NULL && p != NULL);
2538 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2539 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2540 bufp->can_be_null = 0;
2542 while (p != pend || !FAIL_STACK_EMPTY ())
2546 bufp->can_be_null |= path_can_be_null;
2548 /* Reset for next path. */
2549 path_can_be_null = true;
2551 p = fail_stack.stack[--fail_stack.avail];
2554 /* We should never be about to go beyond the end of the pattern. */
2557 #ifdef SWITCH_ENUM_BUG
2558 switch ((int) ((re_opcode_t) *p++))
2560 switch ((re_opcode_t) *p++)
2564 /* I guess the idea here is to simply not bother with a fastmap
2565 if a backreference is used, since it's too hard to figure out
2566 the fastmap for the corresponding group. Setting
2567 `can_be_null' stops `re_search_2' from using the fastmap, so
2568 that is all we do. */
2570 bufp->can_be_null = 1;
2574 /* Following are the cases which match a character. These end
2583 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2584 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2590 /* Chars beyond end of map must be allowed. */
2591 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2594 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2595 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2601 for (j = 0; j < (1 << BYTEWIDTH); j++)
2602 if (SYNTAX (j) == Sword)
2608 for (j = 0; j < (1 << BYTEWIDTH); j++)
2609 if (SYNTAX (j) != Sword)
2615 /* `.' matches anything ... */
2616 for (j = 0; j < (1 << BYTEWIDTH); j++)
2619 /* ... except perhaps newline. */
2620 if (!(bufp->syntax & RE_DOT_NEWLINE))
2623 /* Return if we have already set `can_be_null'; if we have,
2624 then the fastmap is irrelevant. Something's wrong here. */
2625 else if (bufp->can_be_null)
2628 /* Otherwise, have to check alternative paths. */
2635 for (j = 0; j < (1 << BYTEWIDTH); j++)
2636 if (SYNTAX (j) == (enum syntaxcode) k)
2643 for (j = 0; j < (1 << BYTEWIDTH); j++)
2644 if (SYNTAX (j) != (enum syntaxcode) k)
2649 /* All cases after this match the empty string. These end with
2657 #endif /* not emacs */
2669 case push_dummy_failure:
2674 case pop_failure_jump:
2675 case maybe_pop_jump:
2678 case dummy_failure_jump:
2679 EXTRACT_NUMBER_AND_INCR (j, p);
2684 /* Jump backward implies we just went through the body of a
2685 loop and matched nothing. Opcode jumped to should be
2686 `on_failure_jump' or `succeed_n'. Just treat it like an
2687 ordinary jump. For a * loop, it has pushed its failure
2688 point already; if so, discard that as redundant. */
2689 if ((re_opcode_t) *p != on_failure_jump
2690 && (re_opcode_t) *p != succeed_n)
2694 EXTRACT_NUMBER_AND_INCR (j, p);
2697 /* If what's on the stack is where we are now, pop it. */
2698 if (!FAIL_STACK_EMPTY ()
2699 && fail_stack.stack[fail_stack.avail - 1] == p)
2705 case on_failure_jump:
2706 case on_failure_keep_string_jump:
2707 handle_on_failure_jump:
2708 EXTRACT_NUMBER_AND_INCR (j, p);
2710 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2711 end of the pattern. We don't want to push such a point,
2712 since when we restore it above, entering the switch will
2713 increment `p' past the end of the pattern. We don't need
2714 to push such a point since we obviously won't find any more
2715 fastmap entries beyond `pend'. Such a pattern can match
2716 the null string, though. */
2719 if (!PUSH_PATTERN_OP (p + j, fail_stack))
2723 bufp->can_be_null = 1;
2727 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
2728 succeed_n_p = false;
2735 /* Get to the number of times to succeed. */
2738 /* Increment p past the n for when k != 0. */
2739 EXTRACT_NUMBER_AND_INCR (k, p);
2743 succeed_n_p = true; /* Spaghetti code alert. */
2744 goto handle_on_failure_jump;
2761 abort (); /* We have listed all the cases. */
2764 /* Getting here means we have found the possible starting
2765 characters for one path of the pattern -- and that the empty
2766 string does not match. We need not follow this path further.
2767 Instead, look at the next alternative (remembered on the
2768 stack), or quit if no more. The test at the top of the loop
2769 does these things. */
2770 path_can_be_null = false;
2774 /* Set `can_be_null' for the last path (also the first path, if the
2775 pattern is empty). */
2776 bufp->can_be_null |= path_can_be_null;
2778 } /* re_compile_fastmap */
2780 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2781 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2782 this memory for recording register information. STARTS and ENDS
2783 must be allocated using the malloc library routine, and must each
2784 be at least NUM_REGS * sizeof (regoff_t) bytes long.
2786 If NUM_REGS == 0, then subsequent matches should allocate their own
2789 Unless this function is called, the first search or match using
2790 PATTERN_BUFFER will allocate its own register data, without
2791 freeing the old data. */
2794 re_set_registers (bufp, regs, num_regs, starts, ends)
2795 struct re_pattern_buffer *bufp;
2796 struct re_registers *regs;
2798 regoff_t *starts, *ends;
2802 bufp->regs_allocated = REGS_REALLOCATE;
2803 regs->num_regs = num_regs;
2804 regs->start = starts;
2809 bufp->regs_allocated = REGS_UNALLOCATED;
2811 regs->start = regs->end = (regoff_t) 0;
2815 /* Searching routines. */
2817 /* Like re_search_2, below, but only one string is specified, and
2818 doesn't let you say where to stop matching. */
2821 re_search (bufp, string, size, startpos, range, regs)
2822 struct re_pattern_buffer *bufp;
2824 int size, startpos, range;
2825 struct re_registers *regs;
2827 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
2832 /* Using the compiled pattern in BUFP->buffer, first tries to match the
2833 virtual concatenation of STRING1 and STRING2, starting first at index
2834 STARTPOS, then at STARTPOS + 1, and so on.
2836 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
2838 RANGE is how far to scan while trying to match. RANGE = 0 means try
2839 only at STARTPOS; in general, the last start tried is STARTPOS +
2842 In REGS, return the indices of the virtual concatenation of STRING1
2843 and STRING2 that matched the entire BUFP->buffer and its contained
2846 Do not consider matching one past the index STOP in the virtual
2847 concatenation of STRING1 and STRING2.
2849 We return either the position in the strings at which the match was
2850 found, -1 if no match, or -2 if error (such as failure
2854 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
2855 struct re_pattern_buffer *bufp;
2856 const char *string1, *string2;
2860 struct re_registers *regs;
2864 register char *fastmap = bufp->fastmap;
2865 register char *translate = bufp->translate;
2866 int total_size = size1 + size2;
2867 int endpos = startpos + range;
2869 /* Check for out-of-range STARTPOS. */
2870 if (startpos < 0 || startpos > total_size)
2873 /* Fix up RANGE if it might eventually take us outside
2874 the virtual concatenation of STRING1 and STRING2. */
2876 range = -1 - startpos;
2877 else if (endpos > total_size)
2878 range = total_size - startpos;
2880 /* If the search isn't to be a backwards one, don't waste time in a
2881 search for a pattern that must be anchored. */
2882 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
2890 /* Update the fastmap now if not correct already. */
2891 if (fastmap && !bufp->fastmap_accurate)
2892 if (re_compile_fastmap (bufp) == -2)
2895 /* Loop through the string, looking for a place to start matching. */
2898 /* If a fastmap is supplied, skip quickly over characters that
2899 cannot be the start of a match. If the pattern can match the
2900 null string, however, we don't need to skip characters; we want
2901 the first null string. */
2902 if (fastmap && startpos < total_size && !bufp->can_be_null)
2904 if (range > 0) /* Searching forwards. */
2906 register const char *d;
2907 register int lim = 0;
2910 if (startpos < size1 && startpos + range >= size1)
2911 lim = range - (size1 - startpos);
2913 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
2915 /* Written out as an if-else to avoid testing `translate'
2919 && !fastmap[(unsigned char)
2920 translate[(unsigned char) *d++]])
2923 while (range > lim && !fastmap[(unsigned char) *d++])
2926 startpos += irange - range;
2928 else /* Searching backwards. */
2930 register char c = (size1 == 0 || startpos >= size1
2931 ? string2[startpos - size1]
2932 : string1[startpos]);
2934 if (!fastmap[(unsigned char) TRANSLATE (c)])
2939 /* If can't match the null string, and that's all we have left, fail. */
2940 if (range >= 0 && startpos == total_size && fastmap
2941 && !bufp->can_be_null)
2944 val = re_match_2 (bufp, string1, size1, string2, size2,
2945 startpos, regs, stop);
2969 /* Declarations and macros for re_match_2. */
2971 static int bcmp_translate ();
2972 static boolean alt_match_null_string_p (),
2973 common_op_match_null_string_p (),
2974 group_match_null_string_p ();
2976 /* Structure for per-register (a.k.a. per-group) information.
2977 This must not be longer than one word, because we push this value
2978 onto the failure stack. Other register information, such as the
2979 starting and ending positions (which are addresses), and the list of
2980 inner groups (which is a bits list) are maintained in separate
2983 We are making a (strictly speaking) nonportable assumption here: that
2984 the compiler will pack our bit fields into something that fits into
2985 the type of `word', i.e., is something that fits into one item on the
2989 fail_stack_elt_t word;
2992 /* This field is one if this group can match the empty string,
2993 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
2994 #define MATCH_NULL_UNSET_VALUE 3
2995 unsigned match_null_string_p : 2;
2996 unsigned is_active : 1;
2997 unsigned matched_something : 1;
2998 unsigned ever_matched_something : 1;
3000 } register_info_type;
3002 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
3003 #define IS_ACTIVE(R) ((R).bits.is_active)
3004 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
3005 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
3008 /* Call this when have matched a real character; it sets `matched' flags
3009 for the subexpressions which we are currently inside. Also records
3010 that those subexprs have matched. */
3011 #define SET_REGS_MATCHED() \
3015 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
3017 MATCHED_SOMETHING (reg_info[r]) \
3018 = EVER_MATCHED_SOMETHING (reg_info[r]) \
3025 /* This converts PTR, a pointer into one of the search strings `string1'
3026 and `string2' into an offset from the beginning of that string. */
3027 #define POINTER_TO_OFFSET(ptr) \
3028 (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
3030 /* Registers are set to a sentinel when they haven't yet matched. */
3031 #define REG_UNSET_VALUE ((char *) -1)
3032 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
3035 /* Macros for dealing with the split strings in re_match_2. */
3037 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3039 /* Call before fetching a character with *d. This switches over to
3040 string2 if necessary. */
3041 #define PREFETCH() \
3044 /* End of string2 => fail. */ \
3045 if (dend == end_match_2) \
3047 /* End of string1 => advance to string2. */ \
3049 dend = end_match_2; \
3053 /* Test if at very beginning or at very end of the virtual concatenation
3054 of `string1' and `string2'. If only one string, it's `string2'. */
3055 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3056 #define AT_STRINGS_END(d) ((d) == end2)
3059 /* Test if D points to a character which is word-constituent. We have
3060 two special cases to check for: if past the end of string1, look at
3061 the first character in string2; and if before the beginning of
3062 string2, look at the last character in string1. */
3063 #define WORDCHAR_P(d) \
3064 (SYNTAX ((d) == end1 ? *string2 \
3065 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3068 /* Test if the character before D and the one at D differ with respect
3069 to being word-constituent. */
3070 #define AT_WORD_BOUNDARY(d) \
3071 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3072 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3075 /* Free everything we malloc. */
3077 #define FREE_VAR(var) if (var) free (var); var = NULL
3078 #define FREE_VARIABLES() \
3080 FREE_VAR (fail_stack.stack); \
3081 FREE_VAR (regstart); \
3082 FREE_VAR (regend); \
3083 FREE_VAR (old_regstart); \
3084 FREE_VAR (old_regend); \
3085 FREE_VAR (best_regstart); \
3086 FREE_VAR (best_regend); \
3087 FREE_VAR (reg_info); \
3088 FREE_VAR (reg_dummy); \
3089 FREE_VAR (reg_info_dummy); \
3091 #else /* not REGEX_MALLOC */
3092 /* Some MIPS systems (at least) want this to free alloca'd storage. */
3093 #define FREE_VARIABLES() alloca (0)
3094 #endif /* not REGEX_MALLOC */
3097 /* These values must meet several constraints. They must not be valid
3098 register values; since we have a limit of 255 registers (because
3099 we use only one byte in the pattern for the register number), we can
3100 use numbers larger than 255. They must differ by 1, because of
3101 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3102 be larger than the value for the highest register, so we do not try
3103 to actually save any registers when none are active. */
3104 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3105 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3107 /* Matching routines. */
3109 #ifndef emacs /* Emacs never uses this. */
3110 /* re_match is like re_match_2 except it takes only a single string. */
3113 re_match (bufp, string, size, pos, regs)
3114 struct re_pattern_buffer *bufp;
3117 struct re_registers *regs;
3119 return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
3121 #endif /* not emacs */
3124 /* re_match_2 matches the compiled pattern in BUFP against the
3125 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3126 and SIZE2, respectively). We start matching at POS, and stop
3129 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3130 store offsets for the substring each group matched in REGS. See the
3131 documentation for exactly how many groups we fill.
3133 We return -1 if no match, -2 if an internal error (such as the
3134 failure stack overflowing). Otherwise, we return the length of the
3135 matched substring. */
3138 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3139 struct re_pattern_buffer *bufp;
3140 const char *string1, *string2;
3143 struct re_registers *regs;
3146 /* General temporaries. */
3150 /* Just past the end of the corresponding string. */
3151 const char *end1, *end2;
3153 /* Pointers into string1 and string2, just past the last characters in
3154 each to consider matching. */
3155 const char *end_match_1, *end_match_2;
3157 /* Where we are in the data, and the end of the current string. */
3158 const char *d, *dend;
3160 /* Where we are in the pattern, and the end of the pattern. */
3161 unsigned char *p = bufp->buffer;
3162 register unsigned char *pend = p + bufp->used;
3164 /* We use this to map every character in the string. */
3165 char *translate = bufp->translate;
3167 /* Failure point stack. Each place that can handle a failure further
3168 down the line pushes a failure point on this stack. It consists of
3169 restart, regend, and reg_info for all registers corresponding to
3170 the subexpressions we're currently inside, plus the number of such
3171 registers, and, finally, two char *'s. The first char * is where
3172 to resume scanning the pattern; the second one is where to resume
3173 scanning the strings. If the latter is zero, the failure point is
3174 a ``dummy''; if a failure happens and the failure point is a dummy,
3175 it gets discarded and the next next one is tried. */
3176 fail_stack_type fail_stack;
3178 static unsigned failure_id = 0;
3179 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3182 /* We fill all the registers internally, independent of what we
3183 return, for use in backreferences. The number here includes
3184 an element for register zero. */
3185 unsigned num_regs = bufp->re_nsub + 1;
3187 /* The currently active registers. */
3188 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3189 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3191 /* Information on the contents of registers. These are pointers into
3192 the input strings; they record just what was matched (on this
3193 attempt) by a subexpression part of the pattern, that is, the
3194 regnum-th regstart pointer points to where in the pattern we began
3195 matching and the regnum-th regend points to right after where we
3196 stopped matching the regnum-th subexpression. (The zeroth register
3197 keeps track of what the whole pattern matches.) */
3198 const char **regstart = NULL, **regend = NULL;
3200 /* If a group that's operated upon by a repetition operator fails to
3201 match anything, then the register for its start will need to be
3202 restored because it will have been set to wherever in the string we
3203 are when we last see its open-group operator. Similarly for a
3205 const char **old_regstart = NULL, **old_regend = NULL;
3207 /* The is_active field of reg_info helps us keep track of which (possibly
3208 nested) subexpressions we are currently in. The matched_something
3209 field of reg_info[reg_num] helps us tell whether or not we have
3210 matched any of the pattern so far this time through the reg_num-th
3211 subexpression. These two fields get reset each time through any
3212 loop their register is in. */
3213 register_info_type *reg_info = NULL;
3215 /* The following record the register info as found in the above
3216 variables when we find a match better than any we've seen before.
3217 This happens as we backtrack through the failure points, which in
3218 turn happens only if we have not yet matched the entire string. */
3219 unsigned best_regs_set = false;
3220 const char **best_regstart = NULL, **best_regend = NULL;
3222 /* Logically, this is `best_regend[0]'. But we don't want to have to
3223 allocate space for that if we're not allocating space for anything
3224 else (see below). Also, we never need info about register 0 for
3225 any of the other register vectors, and it seems rather a kludge to
3226 treat `best_regend' differently than the rest. So we keep track of
3227 the end of the best match so far in a separate variable. We
3228 initialize this to NULL so that when we backtrack the first time
3229 and need to test it, it's not garbage. */
3230 const char *match_end = NULL;
3232 /* Used when we pop values we don't care about. */
3233 const char **reg_dummy = NULL;
3234 register_info_type *reg_info_dummy = NULL;
3237 /* Counts the total number of registers pushed. */
3238 unsigned num_regs_pushed = 0;
3241 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3245 /* Do not bother to initialize all the register variables if there are
3246 no groups in the pattern, as it takes a fair amount of time. If
3247 there are groups, we include space for register 0 (the whole
3248 pattern), even though we never use it, since it simplifies the
3249 array indexing. We should fix this. */
3252 regstart = REGEX_TALLOC (num_regs, const char *);
3253 regend = REGEX_TALLOC (num_regs, const char *);
3254 old_regstart = REGEX_TALLOC (num_regs, const char *);
3255 old_regend = REGEX_TALLOC (num_regs, const char *);
3256 best_regstart = REGEX_TALLOC (num_regs, const char *);
3257 best_regend = REGEX_TALLOC (num_regs, const char *);
3258 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3259 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3260 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3262 if (!(regstart && regend && old_regstart && old_regend && reg_info
3263 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3272 /* We must initialize all our variables to NULL, so that
3273 `FREE_VARIABLES' doesn't try to free them. */
3274 regstart = regend = old_regstart = old_regend = best_regstart
3275 = best_regend = reg_dummy = NULL;
3276 reg_info = reg_info_dummy = (register_info_type *) NULL;
3278 #endif /* REGEX_MALLOC */
3280 /* The starting position is bogus. */
3281 if (pos < 0 || pos > size1 + size2)
3287 /* Initialize subexpression text positions to -1 to mark ones that no
3288 start_memory/stop_memory has been seen for. Also initialize the
3289 register information struct. */
3290 for (mcnt = 1; mcnt < num_regs; mcnt++)
3292 regstart[mcnt] = regend[mcnt]
3293 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3295 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3296 IS_ACTIVE (reg_info[mcnt]) = 0;
3297 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3298 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3301 /* We move `string1' into `string2' if the latter's empty -- but not if
3302 `string1' is null. */
3303 if (size2 == 0 && string1 != NULL)
3310 end1 = string1 + size1;
3311 end2 = string2 + size2;
3313 /* Compute where to stop matching, within the two strings. */
3316 end_match_1 = string1 + stop;
3317 end_match_2 = string2;
3322 end_match_2 = string2 + stop - size1;
3325 /* `p' scans through the pattern as `d' scans through the data.
3326 `dend' is the end of the input string that `d' points within. `d'
3327 is advanced into the following input string whenever necessary, but
3328 this happens before fetching; therefore, at the beginning of the
3329 loop, `d' can be pointing at the end of a string, but it cannot
3331 if (size1 > 0 && pos <= size1)
3338 d = string2 + pos - size1;
3342 DEBUG_PRINT1 ("The compiled pattern is: ");
3343 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3344 DEBUG_PRINT1 ("The string to match is: `");
3345 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3346 DEBUG_PRINT1 ("'\n");
3348 /* This loops over pattern commands. It exits by returning from the
3349 function if the match is complete, or it drops through if the match
3350 fails at this starting point in the input data. */
3353 DEBUG_PRINT2 ("\n0x%x: ", p);
3356 { /* End of pattern means we might have succeeded. */
3357 DEBUG_PRINT1 ("end of pattern ... ");
3359 /* If we haven't matched the entire string, and we want the
3360 longest match, try backtracking. */
3361 if (d != end_match_2)
3363 DEBUG_PRINT1 ("backtracking.\n");
3365 if (!FAIL_STACK_EMPTY ())
3366 { /* More failure points to try. */
3367 boolean same_str_p = (FIRST_STRING_P (match_end)
3368 == MATCHING_IN_FIRST_STRING);
3370 /* If exceeds best match so far, save it. */
3372 || (same_str_p && d > match_end)
3373 || (!same_str_p && !MATCHING_IN_FIRST_STRING))
3375 best_regs_set = true;
3378 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3380 for (mcnt = 1; mcnt < num_regs; mcnt++)
3382 best_regstart[mcnt] = regstart[mcnt];
3383 best_regend[mcnt] = regend[mcnt];
3389 /* If no failure points, don't restore garbage. */
3390 else if (best_regs_set)
3393 /* Restore best match. It may happen that `dend ==
3394 end_match_1' while the restored d is in string2.
3395 For example, the pattern `x.*y.*z' against the
3396 strings `x-' and `y-z-', if the two strings are
3397 not consecutive in memory. */
3398 DEBUG_PRINT1 ("Restoring best registers.\n");
3401 dend = ((d >= string1 && d <= end1)
3402 ? end_match_1 : end_match_2);
3404 for (mcnt = 1; mcnt < num_regs; mcnt++)
3406 regstart[mcnt] = best_regstart[mcnt];
3407 regend[mcnt] = best_regend[mcnt];
3410 } /* d != end_match_2 */
3412 DEBUG_PRINT1 ("Accepting match.\n");
3414 /* If caller wants register contents data back, do it. */
3415 if (regs && !bufp->no_sub)
3417 /* Have the register data arrays been allocated? */
3418 if (bufp->regs_allocated == REGS_UNALLOCATED)
3419 { /* No. So allocate them with malloc. We need one
3420 extra element beyond `num_regs' for the `-1' marker
3422 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3423 regs->start = TALLOC (regs->num_regs, regoff_t);
3424 regs->end = TALLOC (regs->num_regs, regoff_t);
3425 if (regs->start == NULL || regs->end == NULL)
3427 bufp->regs_allocated = REGS_REALLOCATE;
3429 else if (bufp->regs_allocated == REGS_REALLOCATE)
3430 { /* Yes. If we need more elements than were already
3431 allocated, reallocate them. If we need fewer, just
3433 if (regs->num_regs < num_regs + 1)
3435 regs->num_regs = num_regs + 1;
3436 RETALLOC (regs->start, regs->num_regs, regoff_t);
3437 RETALLOC (regs->end, regs->num_regs, regoff_t);
3438 if (regs->start == NULL || regs->end == NULL)
3443 assert (bufp->regs_allocated == REGS_FIXED);
3445 /* Convert the pointer data in `regstart' and `regend' to
3446 indices. Register zero has to be set differently,
3447 since we haven't kept track of any info for it. */
3448 if (regs->num_regs > 0)
3450 regs->start[0] = pos;
3451 regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
3452 : d - string2 + size1);
3455 /* Go through the first `min (num_regs, regs->num_regs)'
3456 registers, since that is all we initialized. */
3457 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3459 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3460 regs->start[mcnt] = regs->end[mcnt] = -1;
3463 regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
3464 regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
3468 /* If the regs structure we return has more elements than
3469 were in the pattern, set the extra elements to -1. If
3470 we (re)allocated the registers, this is the case,
3471 because we always allocate enough to have at least one
3473 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3474 regs->start[mcnt] = regs->end[mcnt] = -1;
3475 } /* regs && !bufp->no_sub */
3478 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3479 nfailure_points_pushed, nfailure_points_popped,
3480 nfailure_points_pushed - nfailure_points_popped);
3481 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3483 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3487 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3492 /* Otherwise match next pattern command. */
3493 #ifdef SWITCH_ENUM_BUG
3494 switch ((int) ((re_opcode_t) *p++))
3496 switch ((re_opcode_t) *p++)
3499 /* Ignore these. Used to ignore the n of succeed_n's which
3500 currently have n == 0. */
3502 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3506 /* Match the next n pattern characters exactly. The following
3507 byte in the pattern defines n, and the n bytes after that
3508 are the characters to match. */
3511 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3513 /* This is written out as an if-else so we don't waste time
3514 testing `translate' inside the loop. */
3520 if (translate[(unsigned char) *d++] != (char) *p++)
3530 if (*d++ != (char) *p++) goto fail;
3534 SET_REGS_MATCHED ();
3538 /* Match any character except possibly a newline or a null. */
3540 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3544 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3545 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3548 SET_REGS_MATCHED ();
3549 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3557 register unsigned char c;
3558 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3560 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3563 c = TRANSLATE (*d); /* The character to match. */
3565 /* Cast to `unsigned' instead of `unsigned char' in case the
3566 bit list is a full 32 bytes long. */
3567 if (c < (unsigned) (*p * BYTEWIDTH)
3568 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3573 if (!not) goto fail;
3575 SET_REGS_MATCHED ();
3581 /* The beginning of a group is represented by start_memory.
3582 The arguments are the register number in the next byte, and the
3583 number of groups inner to this one in the next. The text
3584 matched within the group is recorded (in the internal
3585 registers data structure) under the register number. */
3587 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3589 /* Find out if this group can match the empty string. */
3590 p1 = p; /* To send to group_match_null_string_p. */
3592 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3593 REG_MATCH_NULL_STRING_P (reg_info[*p])
3594 = group_match_null_string_p (&p1, pend, reg_info);
3596 /* Save the position in the string where we were the last time
3597 we were at this open-group operator in case the group is
3598 operated upon by a repetition operator, e.g., with `(a*)*b'
3599 against `ab'; then we want to ignore where we are now in
3600 the string in case this attempt to match fails. */
3601 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3602 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3604 DEBUG_PRINT2 (" old_regstart: %d\n",
3605 POINTER_TO_OFFSET (old_regstart[*p]));
3608 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3610 IS_ACTIVE (reg_info[*p]) = 1;
3611 MATCHED_SOMETHING (reg_info[*p]) = 0;
3613 /* This is the new highest active register. */
3614 highest_active_reg = *p;
3616 /* If nothing was active before, this is the new lowest active
3618 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3619 lowest_active_reg = *p;
3621 /* Move past the register number and inner group count. */
3626 /* The stop_memory opcode represents the end of a group. Its
3627 arguments are the same as start_memory's: the register
3628 number, and the number of inner groups. */
3630 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3632 /* We need to save the string position the last time we were at
3633 this close-group operator in case the group is operated
3634 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3635 against `aba'; then we want to ignore where we are now in
3636 the string in case this attempt to match fails. */
3637 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3638 ? REG_UNSET (regend[*p]) ? d : regend[*p]
3640 DEBUG_PRINT2 (" old_regend: %d\n",
3641 POINTER_TO_OFFSET (old_regend[*p]));
3644 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3646 /* This register isn't active anymore. */
3647 IS_ACTIVE (reg_info[*p]) = 0;
3649 /* If this was the only register active, nothing is active
3651 if (lowest_active_reg == highest_active_reg)
3653 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3654 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3657 { /* We must scan for the new highest active register, since
3658 it isn't necessarily one less than now: consider
3659 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3660 new highest active register is 1. */
3661 unsigned char r = *p - 1;
3662 while (r > 0 && !IS_ACTIVE (reg_info[r]))
3665 /* If we end up at register zero, that means that we saved
3666 the registers as the result of an `on_failure_jump', not
3667 a `start_memory', and we jumped to past the innermost
3668 `stop_memory'. For example, in ((.)*) we save
3669 registers 1 and 2 as a result of the *, but when we pop
3670 back to the second ), we are at the stop_memory 1.
3671 Thus, nothing is active. */
3674 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3675 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3678 highest_active_reg = r;
3681 /* If just failed to match something this time around with a
3682 group that's operated on by a repetition operator, try to
3683 force exit from the ``loop'', and restore the register
3684 information for this group that we had before trying this
3686 if ((!MATCHED_SOMETHING (reg_info[*p])
3687 || (re_opcode_t) p[-3] == start_memory)
3690 boolean is_a_jump_n = false;
3694 switch ((re_opcode_t) *p1++)
3698 case pop_failure_jump:
3699 case maybe_pop_jump:
3701 case dummy_failure_jump:
3702 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3712 /* If the next operation is a jump backwards in the pattern
3713 to an on_failure_jump right before the start_memory
3714 corresponding to this stop_memory, exit from the loop
3715 by forcing a failure after pushing on the stack the
3716 on_failure_jump's jump in the pattern, and d. */
3717 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3718 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3720 /* If this group ever matched anything, then restore
3721 what its registers were before trying this last
3722 failed match, e.g., with `(a*)*b' against `ab' for
3723 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3724 against `aba' for regend[3].
3726 Also restore the registers for inner groups for,
3727 e.g., `((a*)(b*))*' against `aba' (register 3 would
3728 otherwise get trashed). */
3730 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3734 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3736 /* Restore this and inner groups' (if any) registers. */
3737 for (r = *p; r < *p + *(p + 1); r++)
3739 regstart[r] = old_regstart[r];
3741 /* xx why this test? */
3742 if ((int) old_regend[r] >= (int) regstart[r])
3743 regend[r] = old_regend[r];
3747 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3748 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
3754 /* Move past the register number and the inner group count. */
3759 /* \<digit> has been turned into a `duplicate' command which is
3760 followed by the numeric value of <digit> as the register number. */
3763 register const char *d2, *dend2;
3764 int regno = *p++; /* Get which register to match against. */
3765 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
3767 /* Can't back reference a group which we've never matched. */
3768 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
3771 /* Where in input to try to start matching. */
3772 d2 = regstart[regno];
3774 /* Where to stop matching; if both the place to start and
3775 the place to stop matching are in the same string, then
3776 set to the place to stop, otherwise, for now have to use
3777 the end of the first string. */
3779 dend2 = ((FIRST_STRING_P (regstart[regno])
3780 == FIRST_STRING_P (regend[regno]))
3781 ? regend[regno] : end_match_1);
3784 /* If necessary, advance to next segment in register
3788 if (dend2 == end_match_2) break;
3789 if (dend2 == regend[regno]) break;
3791 /* End of string1 => advance to string2. */
3793 dend2 = regend[regno];
3795 /* At end of register contents => success */
3796 if (d2 == dend2) break;
3798 /* If necessary, advance to next segment in data. */
3801 /* How many characters left in this segment to match. */
3804 /* Want how many consecutive characters we can match in
3805 one shot, so, if necessary, adjust the count. */
3806 if (mcnt > dend2 - d2)
3809 /* Compare that many; failure if mismatch, else move
3812 ? bcmp_translate (d, d2, mcnt, translate)
3813 : bcmp (d, d2, mcnt))
3815 d += mcnt, d2 += mcnt;
3821 /* begline matches the empty string at the beginning of the string
3822 (unless `not_bol' is set in `bufp'), and, if
3823 `newline_anchor' is set, after newlines. */
3825 DEBUG_PRINT1 ("EXECUTING begline.\n");
3827 if (AT_STRINGS_BEG (d))
3829 if (!bufp->not_bol) break;
3831 else if (d[-1] == '\n' && bufp->newline_anchor)
3835 /* In all other cases, we fail. */
3839 /* endline is the dual of begline. */
3841 DEBUG_PRINT1 ("EXECUTING endline.\n");
3843 if (AT_STRINGS_END (d))
3845 if (!bufp->not_eol) break;
3848 /* We have to ``prefetch'' the next character. */
3849 else if ((d == end1 ? *string2 : *d) == '\n'
3850 && bufp->newline_anchor)
3857 /* Match at the very beginning of the data. */
3859 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
3860 if (AT_STRINGS_BEG (d))
3865 /* Match at the very end of the data. */
3867 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
3868 if (AT_STRINGS_END (d))
3873 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
3874 pushes NULL as the value for the string on the stack. Then
3875 `pop_failure_point' will keep the current value for the
3876 string, instead of restoring it. To see why, consider
3877 matching `foo\nbar' against `.*\n'. The .* matches the foo;
3878 then the . fails against the \n. But the next thing we want
3879 to do is match the \n against the \n; if we restored the
3880 string value, we would be back at the foo.
3882 Because this is used only in specific cases, we don't need to
3883 check all the things that `on_failure_jump' does, to make
3884 sure the right things get saved on the stack. Hence we don't
3885 share its code. The only reason to push anything on the
3886 stack at all is that otherwise we would have to change
3887 `anychar's code to do something besides goto fail in this
3888 case; that seems worse than this. */
3889 case on_failure_keep_string_jump:
3890 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
3892 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3893 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
3895 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
3899 /* Uses of on_failure_jump:
3901 Each alternative starts with an on_failure_jump that points
3902 to the beginning of the next alternative. Each alternative
3903 except the last ends with a jump that in effect jumps past
3904 the rest of the alternatives. (They really jump to the
3905 ending jump of the following alternative, because tensioning
3906 these jumps is a hassle.)
3908 Repeats start with an on_failure_jump that points past both
3909 the repetition text and either the following jump or
3910 pop_failure_jump back to this on_failure_jump. */
3911 case on_failure_jump:
3913 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
3915 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3916 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
3918 /* If this on_failure_jump comes right before a group (i.e.,
3919 the original * applied to a group), save the information
3920 for that group and all inner ones, so that if we fail back
3921 to this point, the group's information will be correct.
3922 For example, in \(a*\)*\1, we need the preceding group,
3923 and in \(\(a*\)b*\)\2, we need the inner group. */
3925 /* We can't use `p' to check ahead because we push
3926 a failure point to `p + mcnt' after we do this. */
3929 /* We need to skip no_op's before we look for the
3930 start_memory in case this on_failure_jump is happening as
3931 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
3933 while (p1 < pend && (re_opcode_t) *p1 == no_op)
3936 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
3938 /* We have a new highest active register now. This will
3939 get reset at the start_memory we are about to get to,
3940 but we will have saved all the registers relevant to
3941 this repetition op, as described above. */
3942 highest_active_reg = *(p1 + 1) + *(p1 + 2);
3943 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3944 lowest_active_reg = *(p1 + 1);
3947 DEBUG_PRINT1 (":\n");
3948 PUSH_FAILURE_POINT (p + mcnt, d, -2);
3952 /* A smart repeat ends with `maybe_pop_jump'.
3953 We change it to either `pop_failure_jump' or `jump'. */
3954 case maybe_pop_jump:
3955 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3956 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
3958 register unsigned char *p2 = p;
3960 /* Compare the beginning of the repeat with what in the
3961 pattern follows its end. If we can establish that there
3962 is nothing that they would both match, i.e., that we
3963 would have to backtrack because of (as in, e.g., `a*a')
3964 then we can change to pop_failure_jump, because we'll
3965 never have to backtrack.
3967 This is not true in the case of alternatives: in
3968 `(a|ab)*' we do need to backtrack to the `ab' alternative
3969 (e.g., if the string was `ab'). But instead of trying to
3970 detect that here, the alternative has put on a dummy
3971 failure point which is what we will end up popping. */
3973 /* Skip over open/close-group commands. */
3974 while (p2 + 2 < pend
3975 && ((re_opcode_t) *p2 == stop_memory
3976 || (re_opcode_t) *p2 == start_memory))
3977 p2 += 3; /* Skip over args, too. */
3979 /* If we're at the end of the pattern, we can change. */
3982 /* Consider what happens when matching ":\(.*\)"
3983 against ":/". I don't really understand this code
3985 p[-3] = (unsigned char) pop_failure_jump;
3987 (" End of pattern: change to `pop_failure_jump'.\n");
3990 else if ((re_opcode_t) *p2 == exactn
3991 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
3993 register unsigned char c
3994 = *p2 == (unsigned char) endline ? '\n' : p2[2];
3997 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
3998 to the `maybe_finalize_jump' of this case. Examine what
4000 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4002 p[-3] = (unsigned char) pop_failure_jump;
4003 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4007 else if ((re_opcode_t) p1[3] == charset
4008 || (re_opcode_t) p1[3] == charset_not)
4010 int not = (re_opcode_t) p1[3] == charset_not;
4012 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4013 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4016 /* `not' is equal to 1 if c would match, which means
4017 that we can't change to pop_failure_jump. */
4020 p[-3] = (unsigned char) pop_failure_jump;
4021 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4026 p -= 2; /* Point at relative address again. */
4027 if ((re_opcode_t) p[-1] != pop_failure_jump)
4029 p[-1] = (unsigned char) jump;
4030 DEBUG_PRINT1 (" Match => jump.\n");
4031 goto unconditional_jump;
4033 /* Note fall through. */
4036 /* The end of a simple repeat has a pop_failure_jump back to
4037 its matching on_failure_jump, where the latter will push a
4038 failure point. The pop_failure_jump takes off failure
4039 points put on by this pop_failure_jump's matching
4040 on_failure_jump; we got through the pattern to here from the
4041 matching on_failure_jump, so didn't fail. */
4042 case pop_failure_jump:
4044 /* We need to pass separate storage for the lowest and
4045 highest registers, even though we don't care about the
4046 actual values. Otherwise, we will restore only one
4047 register from the stack, since lowest will == highest in
4048 `pop_failure_point'. */
4049 unsigned dummy_low_reg, dummy_high_reg;
4050 unsigned char *pdummy;
4053 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4054 POP_FAILURE_POINT (sdummy, pdummy,
4055 dummy_low_reg, dummy_high_reg,
4056 reg_dummy, reg_dummy, reg_info_dummy);
4058 /* Note fall through. */
4061 /* Unconditionally jump (without popping any failure points). */
4064 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4065 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4066 p += mcnt; /* Do the jump. */
4067 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4071 /* We need this opcode so we can detect where alternatives end
4072 in `group_match_null_string_p' et al. */
4074 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4075 goto unconditional_jump;
4078 /* Normally, the on_failure_jump pushes a failure point, which
4079 then gets popped at pop_failure_jump. We will end up at
4080 pop_failure_jump, also, and with a pattern of, say, `a+', we
4081 are skipping over the on_failure_jump, so we have to push
4082 something meaningless for pop_failure_jump to pop. */
4083 case dummy_failure_jump:
4084 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4085 /* It doesn't matter what we push for the string here. What
4086 the code at `fail' tests is the value for the pattern. */
4087 PUSH_FAILURE_POINT (0, 0, -2);
4088 goto unconditional_jump;
4091 /* At the end of an alternative, we need to push a dummy failure
4092 point in case we are followed by a `pop_failure_jump', because
4093 we don't want the failure point for the alternative to be
4094 popped. For example, matching `(a|ab)*' against `aab'
4095 requires that we match the `ab' alternative. */
4096 case push_dummy_failure:
4097 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4098 /* See comments just above at `dummy_failure_jump' about the
4100 PUSH_FAILURE_POINT (0, 0, -2);
4103 /* Have to succeed matching what follows at least n times.
4104 After that, handle like `on_failure_jump'. */
4106 EXTRACT_NUMBER (mcnt, p + 2);
4107 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4110 /* Originally, this is how many times we HAVE to succeed. */
4115 STORE_NUMBER_AND_INCR (p, mcnt);
4116 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4120 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4121 p[2] = (unsigned char) no_op;
4122 p[3] = (unsigned char) no_op;
4128 EXTRACT_NUMBER (mcnt, p + 2);
4129 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4131 /* Originally, this is how many times we CAN jump. */
4135 STORE_NUMBER (p + 2, mcnt);
4136 goto unconditional_jump;
4138 /* If don't have to jump any more, skip over the rest of command. */
4145 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4147 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4149 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4150 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4151 STORE_NUMBER (p1, mcnt);
4156 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4157 if (AT_WORD_BOUNDARY (d))
4162 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4163 if (AT_WORD_BOUNDARY (d))
4168 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4169 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4174 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4175 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4176 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4183 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4184 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4189 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4190 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4195 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4196 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4199 #else /* not emacs19 */
4201 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4202 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4205 #endif /* not emacs19 */
4208 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4213 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4217 if (SYNTAX (*d++) != (enum syntaxcode) mcnt)
4219 SET_REGS_MATCHED ();
4223 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4225 goto matchnotsyntax;
4228 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4232 if (SYNTAX (*d++) == (enum syntaxcode) mcnt)
4234 SET_REGS_MATCHED ();
4237 #else /* not emacs */
4239 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4241 if (!WORDCHAR_P (d))
4243 SET_REGS_MATCHED ();
4248 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4252 SET_REGS_MATCHED ();
4255 #endif /* not emacs */
4260 continue; /* Successfully executed one pattern command; keep going. */
4263 /* We goto here if a matching operation fails. */
4265 if (!FAIL_STACK_EMPTY ())
4266 { /* A restart point is known. Restore to that state. */
4267 DEBUG_PRINT1 ("\nFAIL:\n");
4268 POP_FAILURE_POINT (d, p,
4269 lowest_active_reg, highest_active_reg,
4270 regstart, regend, reg_info);
4272 /* If this failure point is a dummy, try the next one. */
4276 /* If we failed to the end of the pattern, don't examine *p. */
4280 boolean is_a_jump_n = false;
4282 /* If failed to a backwards jump that's part of a repetition
4283 loop, need to pop this failure point and use the next one. */
4284 switch ((re_opcode_t) *p)
4288 case maybe_pop_jump:
4289 case pop_failure_jump:
4292 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4295 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4297 && (re_opcode_t) *p1 == on_failure_jump))
4305 if (d >= string1 && d <= end1)
4309 break; /* Matching at this starting point really fails. */
4313 goto restore_best_regs;
4317 return -1; /* Failure to match. */
4320 /* Subroutine definitions for re_match_2. */
4323 /* We are passed P pointing to a register number after a start_memory.
4325 Return true if the pattern up to the corresponding stop_memory can
4326 match the empty string, and false otherwise.
4328 If we find the matching stop_memory, sets P to point to one past its number.
4329 Otherwise, sets P to an undefined byte less than or equal to END.
4331 We don't handle duplicates properly (yet). */
4334 group_match_null_string_p (p, end, reg_info)
4335 unsigned char **p, *end;
4336 register_info_type *reg_info;
4339 /* Point to after the args to the start_memory. */
4340 unsigned char *p1 = *p + 2;
4344 /* Skip over opcodes that can match nothing, and return true or
4345 false, as appropriate, when we get to one that can't, or to the
4346 matching stop_memory. */
4348 switch ((re_opcode_t) *p1)
4350 /* Could be either a loop or a series of alternatives. */
4351 case on_failure_jump:
4353 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4355 /* If the next operation is not a jump backwards in the
4360 /* Go through the on_failure_jumps of the alternatives,
4361 seeing if any of the alternatives cannot match nothing.
4362 The last alternative starts with only a jump,
4363 whereas the rest start with on_failure_jump and end
4364 with a jump, e.g., here is the pattern for `a|b|c':
4366 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4367 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4370 So, we have to first go through the first (n-1)
4371 alternatives and then deal with the last one separately. */
4374 /* Deal with the first (n-1) alternatives, which start
4375 with an on_failure_jump (see above) that jumps to right
4376 past a jump_past_alt. */
4378 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4380 /* `mcnt' holds how many bytes long the alternative
4381 is, including the ending `jump_past_alt' and
4384 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4388 /* Move to right after this alternative, including the
4392 /* Break if it's the beginning of an n-th alternative
4393 that doesn't begin with an on_failure_jump. */
4394 if ((re_opcode_t) *p1 != on_failure_jump)
4397 /* Still have to check that it's not an n-th
4398 alternative that starts with an on_failure_jump. */
4400 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4401 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4403 /* Get to the beginning of the n-th alternative. */
4409 /* Deal with the last alternative: go back and get number
4410 of the `jump_past_alt' just before it. `mcnt' contains
4411 the length of the alternative. */
4412 EXTRACT_NUMBER (mcnt, p1 - 2);
4414 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4417 p1 += mcnt; /* Get past the n-th alternative. */
4423 assert (p1[1] == **p);
4429 if (!common_op_match_null_string_p (&p1, end, reg_info))
4432 } /* while p1 < end */
4435 } /* group_match_null_string_p */
4438 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4439 It expects P to be the first byte of a single alternative and END one
4440 byte past the last. The alternative can contain groups. */
4443 alt_match_null_string_p (p, end, reg_info)
4444 unsigned char *p, *end;
4445 register_info_type *reg_info;
4448 unsigned char *p1 = p;
4452 /* Skip over opcodes that can match nothing, and break when we get
4453 to one that can't. */
4455 switch ((re_opcode_t) *p1)
4458 case on_failure_jump:
4460 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4465 if (!common_op_match_null_string_p (&p1, end, reg_info))
4468 } /* while p1 < end */
4471 } /* alt_match_null_string_p */
4474 /* Deals with the ops common to group_match_null_string_p and
4475 alt_match_null_string_p.
4477 Sets P to one after the op and its arguments, if any. */
4480 common_op_match_null_string_p (p, end, reg_info)
4481 unsigned char **p, *end;
4482 register_info_type *reg_info;
4487 unsigned char *p1 = *p;
4489 switch ((re_opcode_t) *p1++)
4509 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4510 ret = group_match_null_string_p (&p1, end, reg_info);
4512 /* Have to set this here in case we're checking a group which
4513 contains a group and a back reference to it. */
4515 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4516 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4522 /* If this is an optimized succeed_n for zero times, make the jump. */
4524 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4532 /* Get to the number of times to succeed. */
4534 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4539 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4547 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4555 /* All other opcodes mean we cannot match the empty string. */
4561 } /* common_op_match_null_string_p */
4564 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4565 bytes; nonzero otherwise. */
4575 register unsigned char *p1 = s1, *p2 = s2;
4578 if (translate[*p1++] != translate[*p2++]) return 1;
4584 /* Entry points for GNU code. */
4586 /* re_compile_pattern is the GNU regular expression compiler: it
4587 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4588 Returns 0 if the pattern was valid, otherwise an error string.
4590 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4591 are set in BUFP on entry.
4593 We call regex_compile to do the actual compilation. */
4596 re_compile_pattern (pattern, length, bufp)
4597 const char *pattern;
4599 struct re_pattern_buffer *bufp;
4603 /* GNU code is written to assume at least RE_NREGS registers will be set
4604 (and at least one extra will be -1). */
4605 bufp->regs_allocated = REGS_UNALLOCATED;
4607 /* And GNU code determines whether or not to get register information
4608 by passing null for the REGS argument to re_match, etc., not by
4612 /* Match anchors at newline. */
4613 bufp->newline_anchor = 1;
4615 ret = regex_compile (pattern, length, re_syntax_options, bufp);
4617 return re_error_msg[(int) ret];
4620 /* Entry points compatible with 4.2 BSD regex library. We don't define
4621 them if this is an Emacs or POSIX compilation. */
4623 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4625 /* BSD has one and only one pattern buffer. */
4626 static struct re_pattern_buffer re_comp_buf;
4636 if (!re_comp_buf.buffer)
4637 return "No previous regular expression";
4641 if (!re_comp_buf.buffer)
4643 re_comp_buf.buffer = (unsigned char *) malloc (200);
4644 if (re_comp_buf.buffer == NULL)
4645 return "Memory exhausted";
4646 re_comp_buf.allocated = 200;
4648 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4649 if (re_comp_buf.fastmap == NULL)
4650 return "Memory exhausted";
4653 /* Since `re_exec' always passes NULL for the `regs' argument, we
4654 don't need to initialize the pattern buffer fields which affect it. */
4656 /* Match anchors at newlines. */
4657 re_comp_buf.newline_anchor = 1;
4659 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4661 /* Yes, we're discarding `const' here. */
4662 return (char *) re_error_msg[(int) ret];
4670 const int len = strlen (s);
4672 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4674 #endif /* not emacs and not _POSIX_SOURCE */
4676 /* POSIX.2 functions. Don't define these for Emacs. */
4680 /* regcomp takes a regular expression as a string and compiles it.
4682 PREG is a regex_t *. We do not expect any fields to be initialized,
4683 since POSIX says we shouldn't. Thus, we set
4685 `buffer' to the compiled pattern;
4686 `used' to the length of the compiled pattern;
4687 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4688 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4689 RE_SYNTAX_POSIX_BASIC;
4690 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4691 `fastmap' and `fastmap_accurate' to zero;
4692 `re_nsub' to the number of subexpressions in PATTERN.
4694 PATTERN is the address of the pattern string.
4696 CFLAGS is a series of bits which affect compilation.
4698 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4699 use POSIX basic syntax.
4701 If REG_NEWLINE is set, then . and [^...] don't match newline.
4702 Also, regexec will try a match beginning after every newline.
4704 If REG_ICASE is set, then we considers upper- and lowercase
4705 versions of letters to be equivalent when matching.
4707 If REG_NOSUB is set, then when PREG is passed to regexec, that
4708 routine will report only success or failure, and nothing about the
4711 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4712 the return codes and their meanings.) */
4715 regcomp (preg, pattern, cflags)
4717 const char *pattern;
4722 = (cflags & REG_EXTENDED) ?
4723 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
4725 /* regex_compile will allocate the space for the compiled pattern. */
4727 preg->allocated = 0;
4729 /* Don't bother to use a fastmap when searching. This simplifies the
4730 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4731 characters after newlines into the fastmap. This way, we just try
4735 if (cflags & REG_ICASE)
4739 preg->translate = (char *) malloc (CHAR_SET_SIZE);
4740 if (preg->translate == NULL)
4741 return (int) REG_ESPACE;
4743 /* Map uppercase characters to corresponding lowercase ones. */
4744 for (i = 0; i < CHAR_SET_SIZE; i++)
4745 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
4748 preg->translate = NULL;
4750 /* If REG_NEWLINE is set, newlines are treated differently. */
4751 if (cflags & REG_NEWLINE)
4752 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
4753 syntax &= ~RE_DOT_NEWLINE;
4754 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
4755 /* It also changes the matching behavior. */
4756 preg->newline_anchor = 1;
4759 preg->newline_anchor = 0;
4761 preg->no_sub = !!(cflags & REG_NOSUB);
4763 /* POSIX says a null character in the pattern terminates it, so we
4764 can use strlen here in compiling the pattern. */
4765 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
4767 /* POSIX doesn't distinguish between an unmatched open-group and an
4768 unmatched close-group: both are REG_EPAREN. */
4769 if (ret == REG_ERPAREN) ret = REG_EPAREN;
4775 /* regexec searches for a given pattern, specified by PREG, in the
4778 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
4779 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
4780 least NMATCH elements, and we set them to the offsets of the
4781 corresponding matched substrings.
4783 EFLAGS specifies `execution flags' which affect matching: if
4784 REG_NOTBOL is set, then ^ does not match at the beginning of the
4785 string; if REG_NOTEOL is set, then $ does not match at the end.
4787 We return 0 if we find a match and REG_NOMATCH if not. */
4790 regexec (preg, string, nmatch, pmatch, eflags)
4791 const regex_t *preg;
4794 regmatch_t pmatch[];
4798 struct re_registers regs;
4799 regex_t private_preg;
4800 int len = strlen (string);
4801 boolean want_reg_info = !preg->no_sub && nmatch > 0;
4803 private_preg = *preg;
4805 private_preg.not_bol = !!(eflags & REG_NOTBOL);
4806 private_preg.not_eol = !!(eflags & REG_NOTEOL);
4808 /* The user has told us exactly how many registers to return
4809 information about, via `nmatch'. We have to pass that on to the
4810 matching routines. */
4811 private_preg.regs_allocated = REGS_FIXED;
4815 regs.num_regs = nmatch;
4816 regs.start = TALLOC (nmatch, regoff_t);
4817 regs.end = TALLOC (nmatch, regoff_t);
4818 if (regs.start == NULL || regs.end == NULL)
4819 return (int) REG_NOMATCH;
4822 /* Perform the searching operation. */
4823 ret = re_search (&private_preg, string, len,
4824 /* start: */ 0, /* range: */ len,
4825 want_reg_info ? ®s : (struct re_registers *) 0);
4827 /* Copy the register information to the POSIX structure. */
4834 for (r = 0; r < nmatch; r++)
4836 pmatch[r].rm_so = regs.start[r];
4837 pmatch[r].rm_eo = regs.end[r];
4841 /* If we needed the temporary register info, free the space now. */
4846 /* We want zero return to mean success, unlike `re_search'. */
4847 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
4851 /* Returns a message corresponding to an error code, ERRCODE, returned
4852 from either regcomp or regexec. We don't use PREG here. */
4855 regerror(int errcode, const regex_t *preg,
4856 char *errbuf, size_t errbuf_size)
4862 || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
4863 /* Only error codes returned by the rest of the code should be passed
4864 to this routine. If we are given anything else, or if other regex
4865 code generates an invalid error code, then the program has a bug.
4866 Dump core so we can fix it. */
4869 msg = re_error_msg[errcode];
4871 /* POSIX doesn't require that we do anything in this case, but why
4876 msg_size = strlen (msg) + 1; /* Includes the null. */
4878 if (errbuf_size != 0)
4880 if (msg_size > errbuf_size)
4882 strncpy (errbuf, msg, errbuf_size - 1);
4883 errbuf[errbuf_size - 1] = 0;
4886 strcpy (errbuf, msg);
4893 /* Free dynamically allocated space used by PREG. */
4899 if (preg->buffer != NULL)
4900 free (preg->buffer);
4901 preg->buffer = NULL;
4903 preg->allocated = 0;
4906 if (preg->fastmap != NULL)
4907 free (preg->fastmap);
4908 preg->fastmap = NULL;
4909 preg->fastmap_accurate = 0;
4911 if (preg->translate != NULL)
4912 free (preg->translate);
4913 preg->translate = NULL;
4916 #endif /* not emacs */
4920 make-backup-files: t
4922 trim-versions-without-asking: nil