tests: drop prereq `PREPARE_FOR_MAIN_BRANCH` where no longer needed
[git] / run-command.c
1 #include "cache.h"
2 #include "run-command.h"
3 #include "exec-cmd.h"
4 #include "sigchain.h"
5 #include "strvec.h"
6 #include "thread-utils.h"
7 #include "strbuf.h"
8 #include "string-list.h"
9 #include "quote.h"
10 #include "config.h"
11
12 void child_process_init(struct child_process *child)
13 {
14         memset(child, 0, sizeof(*child));
15         strvec_init(&child->args);
16         strvec_init(&child->env_array);
17 }
18
19 void child_process_clear(struct child_process *child)
20 {
21         strvec_clear(&child->args);
22         strvec_clear(&child->env_array);
23 }
24
25 struct child_to_clean {
26         pid_t pid;
27         struct child_process *process;
28         struct child_to_clean *next;
29 };
30 static struct child_to_clean *children_to_clean;
31 static int installed_child_cleanup_handler;
32
33 static void cleanup_children(int sig, int in_signal)
34 {
35         struct child_to_clean *children_to_wait_for = NULL;
36
37         while (children_to_clean) {
38                 struct child_to_clean *p = children_to_clean;
39                 children_to_clean = p->next;
40
41                 if (p->process && !in_signal) {
42                         struct child_process *process = p->process;
43                         if (process->clean_on_exit_handler) {
44                                 trace_printf(
45                                         "trace: run_command: running exit handler for pid %"
46                                         PRIuMAX, (uintmax_t)p->pid
47                                 );
48                                 process->clean_on_exit_handler(process);
49                         }
50                 }
51
52                 kill(p->pid, sig);
53
54                 if (p->process && p->process->wait_after_clean) {
55                         p->next = children_to_wait_for;
56                         children_to_wait_for = p;
57                 } else {
58                         if (!in_signal)
59                                 free(p);
60                 }
61         }
62
63         while (children_to_wait_for) {
64                 struct child_to_clean *p = children_to_wait_for;
65                 children_to_wait_for = p->next;
66
67                 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
68                         ; /* spin waiting for process exit or error */
69
70                 if (!in_signal)
71                         free(p);
72         }
73 }
74
75 static void cleanup_children_on_signal(int sig)
76 {
77         cleanup_children(sig, 1);
78         sigchain_pop(sig);
79         raise(sig);
80 }
81
82 static void cleanup_children_on_exit(void)
83 {
84         cleanup_children(SIGTERM, 0);
85 }
86
87 static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
88 {
89         struct child_to_clean *p = xmalloc(sizeof(*p));
90         p->pid = pid;
91         p->process = process;
92         p->next = children_to_clean;
93         children_to_clean = p;
94
95         if (!installed_child_cleanup_handler) {
96                 atexit(cleanup_children_on_exit);
97                 sigchain_push_common(cleanup_children_on_signal);
98                 installed_child_cleanup_handler = 1;
99         }
100 }
101
102 static void clear_child_for_cleanup(pid_t pid)
103 {
104         struct child_to_clean **pp;
105
106         for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
107                 struct child_to_clean *clean_me = *pp;
108
109                 if (clean_me->pid == pid) {
110                         *pp = clean_me->next;
111                         free(clean_me);
112                         return;
113                 }
114         }
115 }
116
117 static inline void close_pair(int fd[2])
118 {
119         close(fd[0]);
120         close(fd[1]);
121 }
122
123 int is_executable(const char *name)
124 {
125         struct stat st;
126
127         if (stat(name, &st) || /* stat, not lstat */
128             !S_ISREG(st.st_mode))
129                 return 0;
130
131 #if defined(GIT_WINDOWS_NATIVE)
132         /*
133          * On Windows there is no executable bit. The file extension
134          * indicates whether it can be run as an executable, and Git
135          * has special-handling to detect scripts and launch them
136          * through the indicated script interpreter. We test for the
137          * file extension first because virus scanners may make
138          * it quite expensive to open many files.
139          */
140         if (ends_with(name, ".exe"))
141                 return S_IXUSR;
142
143 {
144         /*
145          * Now that we know it does not have an executable extension,
146          * peek into the file instead.
147          */
148         char buf[3] = { 0 };
149         int n;
150         int fd = open(name, O_RDONLY);
151         st.st_mode &= ~S_IXUSR;
152         if (fd >= 0) {
153                 n = read(fd, buf, 2);
154                 if (n == 2)
155                         /* look for a she-bang */
156                         if (!strcmp(buf, "#!"))
157                                 st.st_mode |= S_IXUSR;
158                 close(fd);
159         }
160 }
161 #endif
162         return st.st_mode & S_IXUSR;
163 }
164
165 /*
166  * Search $PATH for a command.  This emulates the path search that
167  * execvp would perform, without actually executing the command so it
168  * can be used before fork() to prepare to run a command using
169  * execve() or after execvp() to diagnose why it failed.
170  *
171  * The caller should ensure that file contains no directory
172  * separators.
173  *
174  * Returns the path to the command, as found in $PATH or NULL if the
175  * command could not be found.  The caller inherits ownership of the memory
176  * used to store the resultant path.
177  *
178  * This should not be used on Windows, where the $PATH search rules
179  * are more complicated (e.g., a search for "foo" should find
180  * "foo.exe").
181  */
182 static char *locate_in_PATH(const char *file)
183 {
184         const char *p = getenv("PATH");
185         struct strbuf buf = STRBUF_INIT;
186
187         if (!p || !*p)
188                 return NULL;
189
190         while (1) {
191                 const char *end = strchrnul(p, ':');
192
193                 strbuf_reset(&buf);
194
195                 /* POSIX specifies an empty entry as the current directory. */
196                 if (end != p) {
197                         strbuf_add(&buf, p, end - p);
198                         strbuf_addch(&buf, '/');
199                 }
200                 strbuf_addstr(&buf, file);
201
202                 if (is_executable(buf.buf))
203                         return strbuf_detach(&buf, NULL);
204
205                 if (!*end)
206                         break;
207                 p = end + 1;
208         }
209
210         strbuf_release(&buf);
211         return NULL;
212 }
213
214 static int exists_in_PATH(const char *file)
215 {
216         char *r = locate_in_PATH(file);
217         int found = r != NULL;
218         free(r);
219         return found;
220 }
221
222 int sane_execvp(const char *file, char * const argv[])
223 {
224 #ifndef GIT_WINDOWS_NATIVE
225         /*
226          * execvp() doesn't return, so we all we can do is tell trace2
227          * what we are about to do and let it leave a hint in the log
228          * (unless of course the execvp() fails).
229          *
230          * we skip this for Windows because the compat layer already
231          * has to emulate the execvp() call anyway.
232          */
233         int exec_id = trace2_exec(file, (const char **)argv);
234 #endif
235
236         if (!execvp(file, argv))
237                 return 0; /* cannot happen ;-) */
238
239 #ifndef GIT_WINDOWS_NATIVE
240         {
241                 int ec = errno;
242                 trace2_exec_result(exec_id, ec);
243                 errno = ec;
244         }
245 #endif
246
247         /*
248          * When a command can't be found because one of the directories
249          * listed in $PATH is unsearchable, execvp reports EACCES, but
250          * careful usability testing (read: analysis of occasional bug
251          * reports) reveals that "No such file or directory" is more
252          * intuitive.
253          *
254          * We avoid commands with "/", because execvp will not do $PATH
255          * lookups in that case.
256          *
257          * The reassignment of EACCES to errno looks like a no-op below,
258          * but we need to protect against exists_in_PATH overwriting errno.
259          */
260         if (errno == EACCES && !strchr(file, '/'))
261                 errno = exists_in_PATH(file) ? EACCES : ENOENT;
262         else if (errno == ENOTDIR && !strchr(file, '/'))
263                 errno = ENOENT;
264         return -1;
265 }
266
267 static const char **prepare_shell_cmd(struct strvec *out, const char **argv)
268 {
269         if (!argv[0])
270                 BUG("shell command is empty");
271
272         if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
273 #ifndef GIT_WINDOWS_NATIVE
274                 strvec_push(out, SHELL_PATH);
275 #else
276                 strvec_push(out, "sh");
277 #endif
278                 strvec_push(out, "-c");
279
280                 /*
281                  * If we have no extra arguments, we do not even need to
282                  * bother with the "$@" magic.
283                  */
284                 if (!argv[1])
285                         strvec_push(out, argv[0]);
286                 else
287                         strvec_pushf(out, "%s \"$@\"", argv[0]);
288         }
289
290         strvec_pushv(out, argv);
291         return out->v;
292 }
293
294 #ifndef GIT_WINDOWS_NATIVE
295 static int child_notifier = -1;
296
297 enum child_errcode {
298         CHILD_ERR_CHDIR,
299         CHILD_ERR_DUP2,
300         CHILD_ERR_CLOSE,
301         CHILD_ERR_SIGPROCMASK,
302         CHILD_ERR_ENOENT,
303         CHILD_ERR_SILENT,
304         CHILD_ERR_ERRNO
305 };
306
307 struct child_err {
308         enum child_errcode err;
309         int syserr; /* errno */
310 };
311
312 static void child_die(enum child_errcode err)
313 {
314         struct child_err buf;
315
316         buf.err = err;
317         buf.syserr = errno;
318
319         /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
320         xwrite(child_notifier, &buf, sizeof(buf));
321         _exit(1);
322 }
323
324 static void child_dup2(int fd, int to)
325 {
326         if (dup2(fd, to) < 0)
327                 child_die(CHILD_ERR_DUP2);
328 }
329
330 static void child_close(int fd)
331 {
332         if (close(fd))
333                 child_die(CHILD_ERR_CLOSE);
334 }
335
336 static void child_close_pair(int fd[2])
337 {
338         child_close(fd[0]);
339         child_close(fd[1]);
340 }
341
342 /*
343  * parent will make it look like the child spewed a fatal error and died
344  * this is needed to prevent changes to t0061.
345  */
346 static void fake_fatal(const char *err, va_list params)
347 {
348         vreportf("fatal: ", err, params);
349 }
350
351 static void child_error_fn(const char *err, va_list params)
352 {
353         const char msg[] = "error() should not be called in child\n";
354         xwrite(2, msg, sizeof(msg) - 1);
355 }
356
357 static void child_warn_fn(const char *err, va_list params)
358 {
359         const char msg[] = "warn() should not be called in child\n";
360         xwrite(2, msg, sizeof(msg) - 1);
361 }
362
363 static void NORETURN child_die_fn(const char *err, va_list params)
364 {
365         const char msg[] = "die() should not be called in child\n";
366         xwrite(2, msg, sizeof(msg) - 1);
367         _exit(2);
368 }
369
370 /* this runs in the parent process */
371 static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
372 {
373         static void (*old_errfn)(const char *err, va_list params);
374
375         old_errfn = get_error_routine();
376         set_error_routine(fake_fatal);
377         errno = cerr->syserr;
378
379         switch (cerr->err) {
380         case CHILD_ERR_CHDIR:
381                 error_errno("exec '%s': cd to '%s' failed",
382                             cmd->argv[0], cmd->dir);
383                 break;
384         case CHILD_ERR_DUP2:
385                 error_errno("dup2() in child failed");
386                 break;
387         case CHILD_ERR_CLOSE:
388                 error_errno("close() in child failed");
389                 break;
390         case CHILD_ERR_SIGPROCMASK:
391                 error_errno("sigprocmask failed restoring signals");
392                 break;
393         case CHILD_ERR_ENOENT:
394                 error_errno("cannot run %s", cmd->argv[0]);
395                 break;
396         case CHILD_ERR_SILENT:
397                 break;
398         case CHILD_ERR_ERRNO:
399                 error_errno("cannot exec '%s'", cmd->argv[0]);
400                 break;
401         }
402         set_error_routine(old_errfn);
403 }
404
405 static int prepare_cmd(struct strvec *out, const struct child_process *cmd)
406 {
407         if (!cmd->argv[0])
408                 BUG("command is empty");
409
410         /*
411          * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
412          * attempt to interpret the command with 'sh'.
413          */
414         strvec_push(out, SHELL_PATH);
415
416         if (cmd->git_cmd) {
417                 prepare_git_cmd(out, cmd->argv);
418         } else if (cmd->use_shell) {
419                 prepare_shell_cmd(out, cmd->argv);
420         } else {
421                 strvec_pushv(out, cmd->argv);
422         }
423
424         /*
425          * If there are no dir separator characters in the command then perform
426          * a path lookup and use the resolved path as the command to exec. If
427          * there are dir separator characters, we have exec attempt to invoke
428          * the command directly.
429          */
430         if (!has_dir_sep(out->v[1])) {
431                 char *program = locate_in_PATH(out->v[1]);
432                 if (program) {
433                         free((char *)out->v[1]);
434                         out->v[1] = program;
435                 } else {
436                         strvec_clear(out);
437                         errno = ENOENT;
438                         return -1;
439                 }
440         }
441
442         return 0;
443 }
444
445 static char **prep_childenv(const char *const *deltaenv)
446 {
447         extern char **environ;
448         char **childenv;
449         struct string_list env = STRING_LIST_INIT_DUP;
450         struct strbuf key = STRBUF_INIT;
451         const char *const *p;
452         int i;
453
454         /* Construct a sorted string list consisting of the current environ */
455         for (p = (const char *const *) environ; p && *p; p++) {
456                 const char *equals = strchr(*p, '=');
457
458                 if (equals) {
459                         strbuf_reset(&key);
460                         strbuf_add(&key, *p, equals - *p);
461                         string_list_append(&env, key.buf)->util = (void *) *p;
462                 } else {
463                         string_list_append(&env, *p)->util = (void *) *p;
464                 }
465         }
466         string_list_sort(&env);
467
468         /* Merge in 'deltaenv' with the current environ */
469         for (p = deltaenv; p && *p; p++) {
470                 const char *equals = strchr(*p, '=');
471
472                 if (equals) {
473                         /* ('key=value'), insert or replace entry */
474                         strbuf_reset(&key);
475                         strbuf_add(&key, *p, equals - *p);
476                         string_list_insert(&env, key.buf)->util = (void *) *p;
477                 } else {
478                         /* otherwise ('key') remove existing entry */
479                         string_list_remove(&env, *p, 0);
480                 }
481         }
482
483         /* Create an array of 'char *' to be used as the childenv */
484         ALLOC_ARRAY(childenv, env.nr + 1);
485         for (i = 0; i < env.nr; i++)
486                 childenv[i] = env.items[i].util;
487         childenv[env.nr] = NULL;
488
489         string_list_clear(&env, 0);
490         strbuf_release(&key);
491         return childenv;
492 }
493
494 struct atfork_state {
495 #ifndef NO_PTHREADS
496         int cs;
497 #endif
498         sigset_t old;
499 };
500
501 #define CHECK_BUG(err, msg) \
502         do { \
503                 int e = (err); \
504                 if (e) \
505                         BUG("%s: %s", msg, strerror(e)); \
506         } while(0)
507
508 static void atfork_prepare(struct atfork_state *as)
509 {
510         sigset_t all;
511
512         if (sigfillset(&all))
513                 die_errno("sigfillset");
514 #ifdef NO_PTHREADS
515         if (sigprocmask(SIG_SETMASK, &all, &as->old))
516                 die_errno("sigprocmask");
517 #else
518         CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old),
519                 "blocking all signals");
520         CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
521                 "disabling cancellation");
522 #endif
523 }
524
525 static void atfork_parent(struct atfork_state *as)
526 {
527 #ifdef NO_PTHREADS
528         if (sigprocmask(SIG_SETMASK, &as->old, NULL))
529                 die_errno("sigprocmask");
530 #else
531         CHECK_BUG(pthread_setcancelstate(as->cs, NULL),
532                 "re-enabling cancellation");
533         CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
534                 "restoring signal mask");
535 #endif
536 }
537 #endif /* GIT_WINDOWS_NATIVE */
538
539 static inline void set_cloexec(int fd)
540 {
541         int flags = fcntl(fd, F_GETFD);
542         if (flags >= 0)
543                 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
544 }
545
546 static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
547 {
548         int status, code = -1;
549         pid_t waiting;
550         int failed_errno = 0;
551
552         while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
553                 ;       /* nothing */
554         if (in_signal)
555                 return 0;
556
557         if (waiting < 0) {
558                 failed_errno = errno;
559                 error_errno("waitpid for %s failed", argv0);
560         } else if (waiting != pid) {
561                 error("waitpid is confused (%s)", argv0);
562         } else if (WIFSIGNALED(status)) {
563                 code = WTERMSIG(status);
564                 if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
565                         error("%s died of signal %d", argv0, code);
566                 /*
567                  * This return value is chosen so that code & 0xff
568                  * mimics the exit code that a POSIX shell would report for
569                  * a program that died from this signal.
570                  */
571                 code += 128;
572         } else if (WIFEXITED(status)) {
573                 code = WEXITSTATUS(status);
574         } else {
575                 error("waitpid is confused (%s)", argv0);
576         }
577
578         clear_child_for_cleanup(pid);
579
580         errno = failed_errno;
581         return code;
582 }
583
584 static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
585 {
586         struct string_list envs = STRING_LIST_INIT_DUP;
587         const char *const *e;
588         int i;
589         int printed_unset = 0;
590
591         /* Last one wins, see run-command.c:prep_childenv() for context */
592         for (e = deltaenv; e && *e; e++) {
593                 struct strbuf key = STRBUF_INIT;
594                 char *equals = strchr(*e, '=');
595
596                 if (equals) {
597                         strbuf_add(&key, *e, equals - *e);
598                         string_list_insert(&envs, key.buf)->util = equals + 1;
599                 } else {
600                         string_list_insert(&envs, *e)->util = NULL;
601                 }
602                 strbuf_release(&key);
603         }
604
605         /* "unset X Y...;" */
606         for (i = 0; i < envs.nr; i++) {
607                 const char *var = envs.items[i].string;
608                 const char *val = envs.items[i].util;
609
610                 if (val || !getenv(var))
611                         continue;
612
613                 if (!printed_unset) {
614                         strbuf_addstr(dst, " unset");
615                         printed_unset = 1;
616                 }
617                 strbuf_addf(dst, " %s", var);
618         }
619         if (printed_unset)
620                 strbuf_addch(dst, ';');
621
622         /* ... followed by "A=B C=D ..." */
623         for (i = 0; i < envs.nr; i++) {
624                 const char *var = envs.items[i].string;
625                 const char *val = envs.items[i].util;
626                 const char *oldval;
627
628                 if (!val)
629                         continue;
630
631                 oldval = getenv(var);
632                 if (oldval && !strcmp(val, oldval))
633                         continue;
634
635                 strbuf_addf(dst, " %s=", var);
636                 sq_quote_buf_pretty(dst, val);
637         }
638         string_list_clear(&envs, 0);
639 }
640
641 static void trace_run_command(const struct child_process *cp)
642 {
643         struct strbuf buf = STRBUF_INIT;
644
645         if (!trace_want(&trace_default_key))
646                 return;
647
648         strbuf_addstr(&buf, "trace: run_command:");
649         if (cp->dir) {
650                 strbuf_addstr(&buf, " cd ");
651                 sq_quote_buf_pretty(&buf, cp->dir);
652                 strbuf_addch(&buf, ';');
653         }
654         /*
655          * The caller is responsible for initializing cp->env from
656          * cp->env_array if needed. We only check one place.
657          */
658         if (cp->env)
659                 trace_add_env(&buf, cp->env);
660         if (cp->git_cmd)
661                 strbuf_addstr(&buf, " git");
662         sq_quote_argv_pretty(&buf, cp->argv);
663
664         trace_printf("%s", buf.buf);
665         strbuf_release(&buf);
666 }
667
668 int start_command(struct child_process *cmd)
669 {
670         int need_in, need_out, need_err;
671         int fdin[2], fdout[2], fderr[2];
672         int failed_errno;
673         char *str;
674
675         if (!cmd->argv)
676                 cmd->argv = cmd->args.v;
677         if (!cmd->env)
678                 cmd->env = cmd->env_array.v;
679
680         /*
681          * In case of errors we must keep the promise to close FDs
682          * that have been passed in via ->in and ->out.
683          */
684
685         need_in = !cmd->no_stdin && cmd->in < 0;
686         if (need_in) {
687                 if (pipe(fdin) < 0) {
688                         failed_errno = errno;
689                         if (cmd->out > 0)
690                                 close(cmd->out);
691                         str = "standard input";
692                         goto fail_pipe;
693                 }
694                 cmd->in = fdin[1];
695         }
696
697         need_out = !cmd->no_stdout
698                 && !cmd->stdout_to_stderr
699                 && cmd->out < 0;
700         if (need_out) {
701                 if (pipe(fdout) < 0) {
702                         failed_errno = errno;
703                         if (need_in)
704                                 close_pair(fdin);
705                         else if (cmd->in)
706                                 close(cmd->in);
707                         str = "standard output";
708                         goto fail_pipe;
709                 }
710                 cmd->out = fdout[0];
711         }
712
713         need_err = !cmd->no_stderr && cmd->err < 0;
714         if (need_err) {
715                 if (pipe(fderr) < 0) {
716                         failed_errno = errno;
717                         if (need_in)
718                                 close_pair(fdin);
719                         else if (cmd->in)
720                                 close(cmd->in);
721                         if (need_out)
722                                 close_pair(fdout);
723                         else if (cmd->out)
724                                 close(cmd->out);
725                         str = "standard error";
726 fail_pipe:
727                         error("cannot create %s pipe for %s: %s",
728                                 str, cmd->argv[0], strerror(failed_errno));
729                         child_process_clear(cmd);
730                         errno = failed_errno;
731                         return -1;
732                 }
733                 cmd->err = fderr[0];
734         }
735
736         trace2_child_start(cmd);
737         trace_run_command(cmd);
738
739         fflush(NULL);
740
741 #ifndef GIT_WINDOWS_NATIVE
742 {
743         int notify_pipe[2];
744         int null_fd = -1;
745         char **childenv;
746         struct strvec argv = STRVEC_INIT;
747         struct child_err cerr;
748         struct atfork_state as;
749
750         if (prepare_cmd(&argv, cmd) < 0) {
751                 failed_errno = errno;
752                 cmd->pid = -1;
753                 if (!cmd->silent_exec_failure)
754                         error_errno("cannot run %s", cmd->argv[0]);
755                 goto end_of_spawn;
756         }
757
758         if (pipe(notify_pipe))
759                 notify_pipe[0] = notify_pipe[1] = -1;
760
761         if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
762                 null_fd = open("/dev/null", O_RDWR | O_CLOEXEC);
763                 if (null_fd < 0)
764                         die_errno(_("open /dev/null failed"));
765                 set_cloexec(null_fd);
766         }
767
768         childenv = prep_childenv(cmd->env);
769         atfork_prepare(&as);
770
771         /*
772          * NOTE: In order to prevent deadlocking when using threads special
773          * care should be taken with the function calls made in between the
774          * fork() and exec() calls.  No calls should be made to functions which
775          * require acquiring a lock (e.g. malloc) as the lock could have been
776          * held by another thread at the time of forking, causing the lock to
777          * never be released in the child process.  This means only
778          * Async-Signal-Safe functions are permitted in the child.
779          */
780         cmd->pid = fork();
781         failed_errno = errno;
782         if (!cmd->pid) {
783                 int sig;
784                 /*
785                  * Ensure the default die/error/warn routines do not get
786                  * called, they can take stdio locks and malloc.
787                  */
788                 set_die_routine(child_die_fn);
789                 set_error_routine(child_error_fn);
790                 set_warn_routine(child_warn_fn);
791
792                 close(notify_pipe[0]);
793                 set_cloexec(notify_pipe[1]);
794                 child_notifier = notify_pipe[1];
795
796                 if (cmd->no_stdin)
797                         child_dup2(null_fd, 0);
798                 else if (need_in) {
799                         child_dup2(fdin[0], 0);
800                         child_close_pair(fdin);
801                 } else if (cmd->in) {
802                         child_dup2(cmd->in, 0);
803                         child_close(cmd->in);
804                 }
805
806                 if (cmd->no_stderr)
807                         child_dup2(null_fd, 2);
808                 else if (need_err) {
809                         child_dup2(fderr[1], 2);
810                         child_close_pair(fderr);
811                 } else if (cmd->err > 1) {
812                         child_dup2(cmd->err, 2);
813                         child_close(cmd->err);
814                 }
815
816                 if (cmd->no_stdout)
817                         child_dup2(null_fd, 1);
818                 else if (cmd->stdout_to_stderr)
819                         child_dup2(2, 1);
820                 else if (need_out) {
821                         child_dup2(fdout[1], 1);
822                         child_close_pair(fdout);
823                 } else if (cmd->out > 1) {
824                         child_dup2(cmd->out, 1);
825                         child_close(cmd->out);
826                 }
827
828                 if (cmd->dir && chdir(cmd->dir))
829                         child_die(CHILD_ERR_CHDIR);
830
831                 /*
832                  * restore default signal handlers here, in case
833                  * we catch a signal right before execve below
834                  */
835                 for (sig = 1; sig < NSIG; sig++) {
836                         /* ignored signals get reset to SIG_DFL on execve */
837                         if (signal(sig, SIG_DFL) == SIG_IGN)
838                                 signal(sig, SIG_IGN);
839                 }
840
841                 if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
842                         child_die(CHILD_ERR_SIGPROCMASK);
843
844                 /*
845                  * Attempt to exec using the command and arguments starting at
846                  * argv.argv[1].  argv.argv[0] contains SHELL_PATH which will
847                  * be used in the event exec failed with ENOEXEC at which point
848                  * we will try to interpret the command using 'sh'.
849                  */
850                 execve(argv.v[1], (char *const *) argv.v + 1,
851                        (char *const *) childenv);
852                 if (errno == ENOEXEC)
853                         execve(argv.v[0], (char *const *) argv.v,
854                                (char *const *) childenv);
855
856                 if (errno == ENOENT) {
857                         if (cmd->silent_exec_failure)
858                                 child_die(CHILD_ERR_SILENT);
859                         child_die(CHILD_ERR_ENOENT);
860                 } else {
861                         child_die(CHILD_ERR_ERRNO);
862                 }
863         }
864         atfork_parent(&as);
865         if (cmd->pid < 0)
866                 error_errno("cannot fork() for %s", cmd->argv[0]);
867         else if (cmd->clean_on_exit)
868                 mark_child_for_cleanup(cmd->pid, cmd);
869
870         /*
871          * Wait for child's exec. If the exec succeeds (or if fork()
872          * failed), EOF is seen immediately by the parent. Otherwise, the
873          * child process sends a child_err struct.
874          * Note that use of this infrastructure is completely advisory,
875          * therefore, we keep error checks minimal.
876          */
877         close(notify_pipe[1]);
878         if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
879                 /*
880                  * At this point we know that fork() succeeded, but exec()
881                  * failed. Errors have been reported to our stderr.
882                  */
883                 wait_or_whine(cmd->pid, cmd->argv[0], 0);
884                 child_err_spew(cmd, &cerr);
885                 failed_errno = errno;
886                 cmd->pid = -1;
887         }
888         close(notify_pipe[0]);
889
890         if (null_fd >= 0)
891                 close(null_fd);
892         strvec_clear(&argv);
893         free(childenv);
894 }
895 end_of_spawn:
896
897 #else
898 {
899         int fhin = 0, fhout = 1, fherr = 2;
900         const char **sargv = cmd->argv;
901         struct strvec nargv = STRVEC_INIT;
902
903         if (cmd->no_stdin)
904                 fhin = open("/dev/null", O_RDWR);
905         else if (need_in)
906                 fhin = dup(fdin[0]);
907         else if (cmd->in)
908                 fhin = dup(cmd->in);
909
910         if (cmd->no_stderr)
911                 fherr = open("/dev/null", O_RDWR);
912         else if (need_err)
913                 fherr = dup(fderr[1]);
914         else if (cmd->err > 2)
915                 fherr = dup(cmd->err);
916
917         if (cmd->no_stdout)
918                 fhout = open("/dev/null", O_RDWR);
919         else if (cmd->stdout_to_stderr)
920                 fhout = dup(fherr);
921         else if (need_out)
922                 fhout = dup(fdout[1]);
923         else if (cmd->out > 1)
924                 fhout = dup(cmd->out);
925
926         if (cmd->git_cmd)
927                 cmd->argv = prepare_git_cmd(&nargv, cmd->argv);
928         else if (cmd->use_shell)
929                 cmd->argv = prepare_shell_cmd(&nargv, cmd->argv);
930
931         cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env,
932                         cmd->dir, fhin, fhout, fherr);
933         failed_errno = errno;
934         if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
935                 error_errno("cannot spawn %s", cmd->argv[0]);
936         if (cmd->clean_on_exit && cmd->pid >= 0)
937                 mark_child_for_cleanup(cmd->pid, cmd);
938
939         strvec_clear(&nargv);
940         cmd->argv = sargv;
941         if (fhin != 0)
942                 close(fhin);
943         if (fhout != 1)
944                 close(fhout);
945         if (fherr != 2)
946                 close(fherr);
947 }
948 #endif
949
950         if (cmd->pid < 0) {
951                 trace2_child_exit(cmd, -1);
952
953                 if (need_in)
954                         close_pair(fdin);
955                 else if (cmd->in)
956                         close(cmd->in);
957                 if (need_out)
958                         close_pair(fdout);
959                 else if (cmd->out)
960                         close(cmd->out);
961                 if (need_err)
962                         close_pair(fderr);
963                 else if (cmd->err)
964                         close(cmd->err);
965                 child_process_clear(cmd);
966                 errno = failed_errno;
967                 return -1;
968         }
969
970         if (need_in)
971                 close(fdin[0]);
972         else if (cmd->in)
973                 close(cmd->in);
974
975         if (need_out)
976                 close(fdout[1]);
977         else if (cmd->out)
978                 close(cmd->out);
979
980         if (need_err)
981                 close(fderr[1]);
982         else if (cmd->err)
983                 close(cmd->err);
984
985         return 0;
986 }
987
988 int finish_command(struct child_process *cmd)
989 {
990         int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0);
991         trace2_child_exit(cmd, ret);
992         child_process_clear(cmd);
993         return ret;
994 }
995
996 int finish_command_in_signal(struct child_process *cmd)
997 {
998         int ret = wait_or_whine(cmd->pid, cmd->argv[0], 1);
999         trace2_child_exit(cmd, ret);
1000         return ret;
1001 }
1002
1003
1004 int run_command(struct child_process *cmd)
1005 {
1006         int code;
1007
1008         if (cmd->out < 0 || cmd->err < 0)
1009                 BUG("run_command with a pipe can cause deadlock");
1010
1011         code = start_command(cmd);
1012         if (code)
1013                 return code;
1014         return finish_command(cmd);
1015 }
1016
1017 int run_command_v_opt(const char **argv, int opt)
1018 {
1019         return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
1020 }
1021
1022 int run_command_v_opt_tr2(const char **argv, int opt, const char *tr2_class)
1023 {
1024         return run_command_v_opt_cd_env_tr2(argv, opt, NULL, NULL, tr2_class);
1025 }
1026
1027 int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
1028 {
1029         return run_command_v_opt_cd_env_tr2(argv, opt, dir, env, NULL);
1030 }
1031
1032 int run_command_v_opt_cd_env_tr2(const char **argv, int opt, const char *dir,
1033                                  const char *const *env, const char *tr2_class)
1034 {
1035         struct child_process cmd = CHILD_PROCESS_INIT;
1036         cmd.argv = argv;
1037         cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
1038         cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
1039         cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
1040         cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
1041         cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
1042         cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
1043         cmd.wait_after_clean = opt & RUN_WAIT_AFTER_CLEAN ? 1 : 0;
1044         cmd.dir = dir;
1045         cmd.env = env;
1046         cmd.trace2_child_class = tr2_class;
1047         return run_command(&cmd);
1048 }
1049
1050 #ifndef NO_PTHREADS
1051 static pthread_t main_thread;
1052 static int main_thread_set;
1053 static pthread_key_t async_key;
1054 static pthread_key_t async_die_counter;
1055
1056 static void *run_thread(void *data)
1057 {
1058         struct async *async = data;
1059         intptr_t ret;
1060
1061         if (async->isolate_sigpipe) {
1062                 sigset_t mask;
1063                 sigemptyset(&mask);
1064                 sigaddset(&mask, SIGPIPE);
1065                 if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
1066                         ret = error("unable to block SIGPIPE in async thread");
1067                         return (void *)ret;
1068                 }
1069         }
1070
1071         pthread_setspecific(async_key, async);
1072         ret = async->proc(async->proc_in, async->proc_out, async->data);
1073         return (void *)ret;
1074 }
1075
1076 static NORETURN void die_async(const char *err, va_list params)
1077 {
1078         vreportf("fatal: ", err, params);
1079
1080         if (in_async()) {
1081                 struct async *async = pthread_getspecific(async_key);
1082                 if (async->proc_in >= 0)
1083                         close(async->proc_in);
1084                 if (async->proc_out >= 0)
1085                         close(async->proc_out);
1086                 pthread_exit((void *)128);
1087         }
1088
1089         exit(128);
1090 }
1091
1092 static int async_die_is_recursing(void)
1093 {
1094         void *ret = pthread_getspecific(async_die_counter);
1095         pthread_setspecific(async_die_counter, (void *)1);
1096         return ret != NULL;
1097 }
1098
1099 int in_async(void)
1100 {
1101         if (!main_thread_set)
1102                 return 0; /* no asyncs started yet */
1103         return !pthread_equal(main_thread, pthread_self());
1104 }
1105
1106 static void NORETURN async_exit(int code)
1107 {
1108         pthread_exit((void *)(intptr_t)code);
1109 }
1110
1111 #else
1112
1113 static struct {
1114         void (**handlers)(void);
1115         size_t nr;
1116         size_t alloc;
1117 } git_atexit_hdlrs;
1118
1119 static int git_atexit_installed;
1120
1121 static void git_atexit_dispatch(void)
1122 {
1123         size_t i;
1124
1125         for (i=git_atexit_hdlrs.nr ; i ; i--)
1126                 git_atexit_hdlrs.handlers[i-1]();
1127 }
1128
1129 static void git_atexit_clear(void)
1130 {
1131         free(git_atexit_hdlrs.handlers);
1132         memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1133         git_atexit_installed = 0;
1134 }
1135
1136 #undef atexit
1137 int git_atexit(void (*handler)(void))
1138 {
1139         ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1140         git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1141         if (!git_atexit_installed) {
1142                 if (atexit(&git_atexit_dispatch))
1143                         return -1;
1144                 git_atexit_installed = 1;
1145         }
1146         return 0;
1147 }
1148 #define atexit git_atexit
1149
1150 static int process_is_async;
1151 int in_async(void)
1152 {
1153         return process_is_async;
1154 }
1155
1156 static void NORETURN async_exit(int code)
1157 {
1158         exit(code);
1159 }
1160
1161 #endif
1162
1163 void check_pipe(int err)
1164 {
1165         if (err == EPIPE) {
1166                 if (in_async())
1167                         async_exit(141);
1168
1169                 signal(SIGPIPE, SIG_DFL);
1170                 raise(SIGPIPE);
1171                 /* Should never happen, but just in case... */
1172                 exit(141);
1173         }
1174 }
1175
1176 int start_async(struct async *async)
1177 {
1178         int need_in, need_out;
1179         int fdin[2], fdout[2];
1180         int proc_in, proc_out;
1181
1182         need_in = async->in < 0;
1183         if (need_in) {
1184                 if (pipe(fdin) < 0) {
1185                         if (async->out > 0)
1186                                 close(async->out);
1187                         return error_errno("cannot create pipe");
1188                 }
1189                 async->in = fdin[1];
1190         }
1191
1192         need_out = async->out < 0;
1193         if (need_out) {
1194                 if (pipe(fdout) < 0) {
1195                         if (need_in)
1196                                 close_pair(fdin);
1197                         else if (async->in)
1198                                 close(async->in);
1199                         return error_errno("cannot create pipe");
1200                 }
1201                 async->out = fdout[0];
1202         }
1203
1204         if (need_in)
1205                 proc_in = fdin[0];
1206         else if (async->in)
1207                 proc_in = async->in;
1208         else
1209                 proc_in = -1;
1210
1211         if (need_out)
1212                 proc_out = fdout[1];
1213         else if (async->out)
1214                 proc_out = async->out;
1215         else
1216                 proc_out = -1;
1217
1218 #ifdef NO_PTHREADS
1219         /* Flush stdio before fork() to avoid cloning buffers */
1220         fflush(NULL);
1221
1222         async->pid = fork();
1223         if (async->pid < 0) {
1224                 error_errno("fork (async) failed");
1225                 goto error;
1226         }
1227         if (!async->pid) {
1228                 if (need_in)
1229                         close(fdin[1]);
1230                 if (need_out)
1231                         close(fdout[0]);
1232                 git_atexit_clear();
1233                 process_is_async = 1;
1234                 exit(!!async->proc(proc_in, proc_out, async->data));
1235         }
1236
1237         mark_child_for_cleanup(async->pid, NULL);
1238
1239         if (need_in)
1240                 close(fdin[0]);
1241         else if (async->in)
1242                 close(async->in);
1243
1244         if (need_out)
1245                 close(fdout[1]);
1246         else if (async->out)
1247                 close(async->out);
1248 #else
1249         if (!main_thread_set) {
1250                 /*
1251                  * We assume that the first time that start_async is called
1252                  * it is from the main thread.
1253                  */
1254                 main_thread_set = 1;
1255                 main_thread = pthread_self();
1256                 pthread_key_create(&async_key, NULL);
1257                 pthread_key_create(&async_die_counter, NULL);
1258                 set_die_routine(die_async);
1259                 set_die_is_recursing_routine(async_die_is_recursing);
1260         }
1261
1262         if (proc_in >= 0)
1263                 set_cloexec(proc_in);
1264         if (proc_out >= 0)
1265                 set_cloexec(proc_out);
1266         async->proc_in = proc_in;
1267         async->proc_out = proc_out;
1268         {
1269                 int err = pthread_create(&async->tid, NULL, run_thread, async);
1270                 if (err) {
1271                         error(_("cannot create async thread: %s"), strerror(err));
1272                         goto error;
1273                 }
1274         }
1275 #endif
1276         return 0;
1277
1278 error:
1279         if (need_in)
1280                 close_pair(fdin);
1281         else if (async->in)
1282                 close(async->in);
1283
1284         if (need_out)
1285                 close_pair(fdout);
1286         else if (async->out)
1287                 close(async->out);
1288         return -1;
1289 }
1290
1291 int finish_async(struct async *async)
1292 {
1293 #ifdef NO_PTHREADS
1294         return wait_or_whine(async->pid, "child process", 0);
1295 #else
1296         void *ret = (void *)(intptr_t)(-1);
1297
1298         if (pthread_join(async->tid, &ret))
1299                 error("pthread_join failed");
1300         return (int)(intptr_t)ret;
1301 #endif
1302 }
1303
1304 int async_with_fork(void)
1305 {
1306 #ifdef NO_PTHREADS
1307         return 1;
1308 #else
1309         return 0;
1310 #endif
1311 }
1312
1313 const char *find_hook(const char *name)
1314 {
1315         static struct strbuf path = STRBUF_INIT;
1316
1317         strbuf_reset(&path);
1318         strbuf_git_path(&path, "hooks/%s", name);
1319         if (access(path.buf, X_OK) < 0) {
1320                 int err = errno;
1321
1322 #ifdef STRIP_EXTENSION
1323                 strbuf_addstr(&path, STRIP_EXTENSION);
1324                 if (access(path.buf, X_OK) >= 0)
1325                         return path.buf;
1326                 if (errno == EACCES)
1327                         err = errno;
1328 #endif
1329
1330                 if (err == EACCES && advice_ignored_hook) {
1331                         static struct string_list advise_given = STRING_LIST_INIT_DUP;
1332
1333                         if (!string_list_lookup(&advise_given, name)) {
1334                                 string_list_insert(&advise_given, name);
1335                                 advise(_("The '%s' hook was ignored because "
1336                                          "it's not set as executable.\n"
1337                                          "You can disable this warning with "
1338                                          "`git config advice.ignoredHook false`."),
1339                                        path.buf);
1340                         }
1341                 }
1342                 return NULL;
1343         }
1344         return path.buf;
1345 }
1346
1347 int run_hook_ve(const char *const *env, const char *name, va_list args)
1348 {
1349         struct child_process hook = CHILD_PROCESS_INIT;
1350         const char *p;
1351
1352         p = find_hook(name);
1353         if (!p)
1354                 return 0;
1355
1356         strvec_push(&hook.args, p);
1357         while ((p = va_arg(args, const char *)))
1358                 strvec_push(&hook.args, p);
1359         hook.env = env;
1360         hook.no_stdin = 1;
1361         hook.stdout_to_stderr = 1;
1362         hook.trace2_hook_name = name;
1363
1364         return run_command(&hook);
1365 }
1366
1367 int run_hook_le(const char *const *env, const char *name, ...)
1368 {
1369         va_list args;
1370         int ret;
1371
1372         va_start(args, name);
1373         ret = run_hook_ve(env, name, args);
1374         va_end(args);
1375
1376         return ret;
1377 }
1378
1379 struct io_pump {
1380         /* initialized by caller */
1381         int fd;
1382         int type; /* POLLOUT or POLLIN */
1383         union {
1384                 struct {
1385                         const char *buf;
1386                         size_t len;
1387                 } out;
1388                 struct {
1389                         struct strbuf *buf;
1390                         size_t hint;
1391                 } in;
1392         } u;
1393
1394         /* returned by pump_io */
1395         int error; /* 0 for success, otherwise errno */
1396
1397         /* internal use */
1398         struct pollfd *pfd;
1399 };
1400
1401 static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1402 {
1403         int pollsize = 0;
1404         int i;
1405
1406         for (i = 0; i < nr; i++) {
1407                 struct io_pump *io = &slots[i];
1408                 if (io->fd < 0)
1409                         continue;
1410                 pfd[pollsize].fd = io->fd;
1411                 pfd[pollsize].events = io->type;
1412                 io->pfd = &pfd[pollsize++];
1413         }
1414
1415         if (!pollsize)
1416                 return 0;
1417
1418         if (poll(pfd, pollsize, -1) < 0) {
1419                 if (errno == EINTR)
1420                         return 1;
1421                 die_errno("poll failed");
1422         }
1423
1424         for (i = 0; i < nr; i++) {
1425                 struct io_pump *io = &slots[i];
1426
1427                 if (io->fd < 0)
1428                         continue;
1429
1430                 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1431                         continue;
1432
1433                 if (io->type == POLLOUT) {
1434                         ssize_t len = xwrite(io->fd,
1435                                              io->u.out.buf, io->u.out.len);
1436                         if (len < 0) {
1437                                 io->error = errno;
1438                                 close(io->fd);
1439                                 io->fd = -1;
1440                         } else {
1441                                 io->u.out.buf += len;
1442                                 io->u.out.len -= len;
1443                                 if (!io->u.out.len) {
1444                                         close(io->fd);
1445                                         io->fd = -1;
1446                                 }
1447                         }
1448                 }
1449
1450                 if (io->type == POLLIN) {
1451                         ssize_t len = strbuf_read_once(io->u.in.buf,
1452                                                        io->fd, io->u.in.hint);
1453                         if (len < 0)
1454                                 io->error = errno;
1455                         if (len <= 0) {
1456                                 close(io->fd);
1457                                 io->fd = -1;
1458                         }
1459                 }
1460         }
1461
1462         return 1;
1463 }
1464
1465 static int pump_io(struct io_pump *slots, int nr)
1466 {
1467         struct pollfd *pfd;
1468         int i;
1469
1470         for (i = 0; i < nr; i++)
1471                 slots[i].error = 0;
1472
1473         ALLOC_ARRAY(pfd, nr);
1474         while (pump_io_round(slots, nr, pfd))
1475                 ; /* nothing */
1476         free(pfd);
1477
1478         /* There may be multiple errno values, so just pick the first. */
1479         for (i = 0; i < nr; i++) {
1480                 if (slots[i].error) {
1481                         errno = slots[i].error;
1482                         return -1;
1483                 }
1484         }
1485         return 0;
1486 }
1487
1488
1489 int pipe_command(struct child_process *cmd,
1490                  const char *in, size_t in_len,
1491                  struct strbuf *out, size_t out_hint,
1492                  struct strbuf *err, size_t err_hint)
1493 {
1494         struct io_pump io[3];
1495         int nr = 0;
1496
1497         if (in)
1498                 cmd->in = -1;
1499         if (out)
1500                 cmd->out = -1;
1501         if (err)
1502                 cmd->err = -1;
1503
1504         if (start_command(cmd) < 0)
1505                 return -1;
1506
1507         if (in) {
1508                 io[nr].fd = cmd->in;
1509                 io[nr].type = POLLOUT;
1510                 io[nr].u.out.buf = in;
1511                 io[nr].u.out.len = in_len;
1512                 nr++;
1513         }
1514         if (out) {
1515                 io[nr].fd = cmd->out;
1516                 io[nr].type = POLLIN;
1517                 io[nr].u.in.buf = out;
1518                 io[nr].u.in.hint = out_hint;
1519                 nr++;
1520         }
1521         if (err) {
1522                 io[nr].fd = cmd->err;
1523                 io[nr].type = POLLIN;
1524                 io[nr].u.in.buf = err;
1525                 io[nr].u.in.hint = err_hint;
1526                 nr++;
1527         }
1528
1529         if (pump_io(io, nr) < 0) {
1530                 finish_command(cmd); /* throw away exit code */
1531                 return -1;
1532         }
1533
1534         return finish_command(cmd);
1535 }
1536
1537 enum child_state {
1538         GIT_CP_FREE,
1539         GIT_CP_WORKING,
1540         GIT_CP_WAIT_CLEANUP,
1541 };
1542
1543 struct parallel_processes {
1544         void *data;
1545
1546         int max_processes;
1547         int nr_processes;
1548
1549         get_next_task_fn get_next_task;
1550         start_failure_fn start_failure;
1551         task_finished_fn task_finished;
1552
1553         struct {
1554                 enum child_state state;
1555                 struct child_process process;
1556                 struct strbuf err;
1557                 void *data;
1558         } *children;
1559         /*
1560          * The struct pollfd is logically part of *children,
1561          * but the system call expects it as its own array.
1562          */
1563         struct pollfd *pfd;
1564
1565         unsigned shutdown : 1;
1566
1567         int output_owner;
1568         struct strbuf buffered_output; /* of finished children */
1569 };
1570
1571 static int default_start_failure(struct strbuf *out,
1572                                  void *pp_cb,
1573                                  void *pp_task_cb)
1574 {
1575         return 0;
1576 }
1577
1578 static int default_task_finished(int result,
1579                                  struct strbuf *out,
1580                                  void *pp_cb,
1581                                  void *pp_task_cb)
1582 {
1583         return 0;
1584 }
1585
1586 static void kill_children(struct parallel_processes *pp, int signo)
1587 {
1588         int i, n = pp->max_processes;
1589
1590         for (i = 0; i < n; i++)
1591                 if (pp->children[i].state == GIT_CP_WORKING)
1592                         kill(pp->children[i].process.pid, signo);
1593 }
1594
1595 static struct parallel_processes *pp_for_signal;
1596
1597 static void handle_children_on_signal(int signo)
1598 {
1599         kill_children(pp_for_signal, signo);
1600         sigchain_pop(signo);
1601         raise(signo);
1602 }
1603
1604 static void pp_init(struct parallel_processes *pp,
1605                     int n,
1606                     get_next_task_fn get_next_task,
1607                     start_failure_fn start_failure,
1608                     task_finished_fn task_finished,
1609                     void *data)
1610 {
1611         int i;
1612
1613         if (n < 1)
1614                 n = online_cpus();
1615
1616         pp->max_processes = n;
1617
1618         trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1619
1620         pp->data = data;
1621         if (!get_next_task)
1622                 BUG("you need to specify a get_next_task function");
1623         pp->get_next_task = get_next_task;
1624
1625         pp->start_failure = start_failure ? start_failure : default_start_failure;
1626         pp->task_finished = task_finished ? task_finished : default_task_finished;
1627
1628         pp->nr_processes = 0;
1629         pp->output_owner = 0;
1630         pp->shutdown = 0;
1631         pp->children = xcalloc(n, sizeof(*pp->children));
1632         pp->pfd = xcalloc(n, sizeof(*pp->pfd));
1633         strbuf_init(&pp->buffered_output, 0);
1634
1635         for (i = 0; i < n; i++) {
1636                 strbuf_init(&pp->children[i].err, 0);
1637                 child_process_init(&pp->children[i].process);
1638                 pp->pfd[i].events = POLLIN | POLLHUP;
1639                 pp->pfd[i].fd = -1;
1640         }
1641
1642         pp_for_signal = pp;
1643         sigchain_push_common(handle_children_on_signal);
1644 }
1645
1646 static void pp_cleanup(struct parallel_processes *pp)
1647 {
1648         int i;
1649
1650         trace_printf("run_processes_parallel: done");
1651         for (i = 0; i < pp->max_processes; i++) {
1652                 strbuf_release(&pp->children[i].err);
1653                 child_process_clear(&pp->children[i].process);
1654         }
1655
1656         free(pp->children);
1657         free(pp->pfd);
1658
1659         /*
1660          * When get_next_task added messages to the buffer in its last
1661          * iteration, the buffered output is non empty.
1662          */
1663         strbuf_write(&pp->buffered_output, stderr);
1664         strbuf_release(&pp->buffered_output);
1665
1666         sigchain_pop_common();
1667 }
1668
1669 /* returns
1670  *  0 if a new task was started.
1671  *  1 if no new jobs was started (get_next_task ran out of work, non critical
1672  *    problem with starting a new command)
1673  * <0 no new job was started, user wishes to shutdown early. Use negative code
1674  *    to signal the children.
1675  */
1676 static int pp_start_one(struct parallel_processes *pp)
1677 {
1678         int i, code;
1679
1680         for (i = 0; i < pp->max_processes; i++)
1681                 if (pp->children[i].state == GIT_CP_FREE)
1682                         break;
1683         if (i == pp->max_processes)
1684                 BUG("bookkeeping is hard");
1685
1686         code = pp->get_next_task(&pp->children[i].process,
1687                                  &pp->children[i].err,
1688                                  pp->data,
1689                                  &pp->children[i].data);
1690         if (!code) {
1691                 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1692                 strbuf_reset(&pp->children[i].err);
1693                 return 1;
1694         }
1695         pp->children[i].process.err = -1;
1696         pp->children[i].process.stdout_to_stderr = 1;
1697         pp->children[i].process.no_stdin = 1;
1698
1699         if (start_command(&pp->children[i].process)) {
1700                 code = pp->start_failure(&pp->children[i].err,
1701                                          pp->data,
1702                                          pp->children[i].data);
1703                 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1704                 strbuf_reset(&pp->children[i].err);
1705                 if (code)
1706                         pp->shutdown = 1;
1707                 return code;
1708         }
1709
1710         pp->nr_processes++;
1711         pp->children[i].state = GIT_CP_WORKING;
1712         pp->pfd[i].fd = pp->children[i].process.err;
1713         return 0;
1714 }
1715
1716 static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1717 {
1718         int i;
1719
1720         while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1721                 if (errno == EINTR)
1722                         continue;
1723                 pp_cleanup(pp);
1724                 die_errno("poll");
1725         }
1726
1727         /* Buffer output from all pipes. */
1728         for (i = 0; i < pp->max_processes; i++) {
1729                 if (pp->children[i].state == GIT_CP_WORKING &&
1730                     pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1731                         int n = strbuf_read_once(&pp->children[i].err,
1732                                                  pp->children[i].process.err, 0);
1733                         if (n == 0) {
1734                                 close(pp->children[i].process.err);
1735                                 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1736                         } else if (n < 0)
1737                                 if (errno != EAGAIN)
1738                                         die_errno("read");
1739                 }
1740         }
1741 }
1742
1743 static void pp_output(struct parallel_processes *pp)
1744 {
1745         int i = pp->output_owner;
1746         if (pp->children[i].state == GIT_CP_WORKING &&
1747             pp->children[i].err.len) {
1748                 strbuf_write(&pp->children[i].err, stderr);
1749                 strbuf_reset(&pp->children[i].err);
1750         }
1751 }
1752
1753 static int pp_collect_finished(struct parallel_processes *pp)
1754 {
1755         int i, code;
1756         int n = pp->max_processes;
1757         int result = 0;
1758
1759         while (pp->nr_processes > 0) {
1760                 for (i = 0; i < pp->max_processes; i++)
1761                         if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1762                                 break;
1763                 if (i == pp->max_processes)
1764                         break;
1765
1766                 code = finish_command(&pp->children[i].process);
1767
1768                 code = pp->task_finished(code,
1769                                          &pp->children[i].err, pp->data,
1770                                          pp->children[i].data);
1771
1772                 if (code)
1773                         result = code;
1774                 if (code < 0)
1775                         break;
1776
1777                 pp->nr_processes--;
1778                 pp->children[i].state = GIT_CP_FREE;
1779                 pp->pfd[i].fd = -1;
1780                 child_process_init(&pp->children[i].process);
1781
1782                 if (i != pp->output_owner) {
1783                         strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1784                         strbuf_reset(&pp->children[i].err);
1785                 } else {
1786                         strbuf_write(&pp->children[i].err, stderr);
1787                         strbuf_reset(&pp->children[i].err);
1788
1789                         /* Output all other finished child processes */
1790                         strbuf_write(&pp->buffered_output, stderr);
1791                         strbuf_reset(&pp->buffered_output);
1792
1793                         /*
1794                          * Pick next process to output live.
1795                          * NEEDSWORK:
1796                          * For now we pick it randomly by doing a round
1797                          * robin. Later we may want to pick the one with
1798                          * the most output or the longest or shortest
1799                          * running process time.
1800                          */
1801                         for (i = 0; i < n; i++)
1802                                 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1803                                         break;
1804                         pp->output_owner = (pp->output_owner + i) % n;
1805                 }
1806         }
1807         return result;
1808 }
1809
1810 int run_processes_parallel(int n,
1811                            get_next_task_fn get_next_task,
1812                            start_failure_fn start_failure,
1813                            task_finished_fn task_finished,
1814                            void *pp_cb)
1815 {
1816         int i, code;
1817         int output_timeout = 100;
1818         int spawn_cap = 4;
1819         struct parallel_processes pp;
1820
1821         pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1822         while (1) {
1823                 for (i = 0;
1824                     i < spawn_cap && !pp.shutdown &&
1825                     pp.nr_processes < pp.max_processes;
1826                     i++) {
1827                         code = pp_start_one(&pp);
1828                         if (!code)
1829                                 continue;
1830                         if (code < 0) {
1831                                 pp.shutdown = 1;
1832                                 kill_children(&pp, -code);
1833                         }
1834                         break;
1835                 }
1836                 if (!pp.nr_processes)
1837                         break;
1838                 pp_buffer_stderr(&pp, output_timeout);
1839                 pp_output(&pp);
1840                 code = pp_collect_finished(&pp);
1841                 if (code) {
1842                         pp.shutdown = 1;
1843                         if (code < 0)
1844                                 kill_children(&pp, -code);
1845                 }
1846         }
1847
1848         pp_cleanup(&pp);
1849         return 0;
1850 }
1851
1852 int run_processes_parallel_tr2(int n, get_next_task_fn get_next_task,
1853                                start_failure_fn start_failure,
1854                                task_finished_fn task_finished, void *pp_cb,
1855                                const char *tr2_category, const char *tr2_label)
1856 {
1857         int result;
1858
1859         trace2_region_enter_printf(tr2_category, tr2_label, NULL, "max:%d",
1860                                    ((n < 1) ? online_cpus() : n));
1861
1862         result = run_processes_parallel(n, get_next_task, start_failure,
1863                                         task_finished, pp_cb);
1864
1865         trace2_region_leave(tr2_category, tr2_label, NULL);
1866
1867         return result;
1868 }
1869
1870 int run_auto_maintenance(int quiet)
1871 {
1872         int enabled;
1873         struct child_process maint = CHILD_PROCESS_INIT;
1874
1875         if (!git_config_get_bool("maintenance.auto", &enabled) &&
1876             !enabled)
1877                 return 0;
1878
1879         maint.git_cmd = 1;
1880         strvec_pushl(&maint.args, "maintenance", "run", "--auto", NULL);
1881         strvec_push(&maint.args, quiet ? "--quiet" : "--no-quiet");
1882
1883         return run_command(&maint);
1884 }