run-command: prepare child environment before forking
[git] / run-command.c
1 #include "cache.h"
2 #include "run-command.h"
3 #include "exec_cmd.h"
4 #include "sigchain.h"
5 #include "argv-array.h"
6 #include "thread-utils.h"
7 #include "strbuf.h"
8
9 void child_process_init(struct child_process *child)
10 {
11         memset(child, 0, sizeof(*child));
12         argv_array_init(&child->args);
13         argv_array_init(&child->env_array);
14 }
15
16 void child_process_clear(struct child_process *child)
17 {
18         argv_array_clear(&child->args);
19         argv_array_clear(&child->env_array);
20 }
21
22 struct child_to_clean {
23         pid_t pid;
24         struct child_process *process;
25         struct child_to_clean *next;
26 };
27 static struct child_to_clean *children_to_clean;
28 static int installed_child_cleanup_handler;
29
30 static void cleanup_children(int sig, int in_signal)
31 {
32         struct child_to_clean *children_to_wait_for = NULL;
33
34         while (children_to_clean) {
35                 struct child_to_clean *p = children_to_clean;
36                 children_to_clean = p->next;
37
38                 if (p->process && !in_signal) {
39                         struct child_process *process = p->process;
40                         if (process->clean_on_exit_handler) {
41                                 trace_printf(
42                                         "trace: run_command: running exit handler for pid %"
43                                         PRIuMAX, (uintmax_t)p->pid
44                                 );
45                                 process->clean_on_exit_handler(process);
46                         }
47                 }
48
49                 kill(p->pid, sig);
50
51                 if (p->process && p->process->wait_after_clean) {
52                         p->next = children_to_wait_for;
53                         children_to_wait_for = p;
54                 } else {
55                         if (!in_signal)
56                                 free(p);
57                 }
58         }
59
60         while (children_to_wait_for) {
61                 struct child_to_clean *p = children_to_wait_for;
62                 children_to_wait_for = p->next;
63
64                 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
65                         ; /* spin waiting for process exit or error */
66
67                 if (!in_signal)
68                         free(p);
69         }
70 }
71
72 static void cleanup_children_on_signal(int sig)
73 {
74         cleanup_children(sig, 1);
75         sigchain_pop(sig);
76         raise(sig);
77 }
78
79 static void cleanup_children_on_exit(void)
80 {
81         cleanup_children(SIGTERM, 0);
82 }
83
84 static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
85 {
86         struct child_to_clean *p = xmalloc(sizeof(*p));
87         p->pid = pid;
88         p->process = process;
89         p->next = children_to_clean;
90         children_to_clean = p;
91
92         if (!installed_child_cleanup_handler) {
93                 atexit(cleanup_children_on_exit);
94                 sigchain_push_common(cleanup_children_on_signal);
95                 installed_child_cleanup_handler = 1;
96         }
97 }
98
99 static void clear_child_for_cleanup(pid_t pid)
100 {
101         struct child_to_clean **pp;
102
103         for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
104                 struct child_to_clean *clean_me = *pp;
105
106                 if (clean_me->pid == pid) {
107                         *pp = clean_me->next;
108                         free(clean_me);
109                         return;
110                 }
111         }
112 }
113
114 static inline void close_pair(int fd[2])
115 {
116         close(fd[0]);
117         close(fd[1]);
118 }
119
120 #ifndef GIT_WINDOWS_NATIVE
121 static inline void dup_devnull(int to)
122 {
123         int fd = open("/dev/null", O_RDWR);
124         if (fd < 0)
125                 die_errno(_("open /dev/null failed"));
126         if (dup2(fd, to) < 0)
127                 die_errno(_("dup2(%d,%d) failed"), fd, to);
128         close(fd);
129 }
130 #endif
131
132 static char *locate_in_PATH(const char *file)
133 {
134         const char *p = getenv("PATH");
135         struct strbuf buf = STRBUF_INIT;
136
137         if (!p || !*p)
138                 return NULL;
139
140         while (1) {
141                 const char *end = strchrnul(p, ':');
142
143                 strbuf_reset(&buf);
144
145                 /* POSIX specifies an empty entry as the current directory. */
146                 if (end != p) {
147                         strbuf_add(&buf, p, end - p);
148                         strbuf_addch(&buf, '/');
149                 }
150                 strbuf_addstr(&buf, file);
151
152                 if (!access(buf.buf, F_OK))
153                         return strbuf_detach(&buf, NULL);
154
155                 if (!*end)
156                         break;
157                 p = end + 1;
158         }
159
160         strbuf_release(&buf);
161         return NULL;
162 }
163
164 static int exists_in_PATH(const char *file)
165 {
166         char *r = locate_in_PATH(file);
167         free(r);
168         return r != NULL;
169 }
170
171 int sane_execvp(const char *file, char * const argv[])
172 {
173         if (!execvp(file, argv))
174                 return 0; /* cannot happen ;-) */
175
176         /*
177          * When a command can't be found because one of the directories
178          * listed in $PATH is unsearchable, execvp reports EACCES, but
179          * careful usability testing (read: analysis of occasional bug
180          * reports) reveals that "No such file or directory" is more
181          * intuitive.
182          *
183          * We avoid commands with "/", because execvp will not do $PATH
184          * lookups in that case.
185          *
186          * The reassignment of EACCES to errno looks like a no-op below,
187          * but we need to protect against exists_in_PATH overwriting errno.
188          */
189         if (errno == EACCES && !strchr(file, '/'))
190                 errno = exists_in_PATH(file) ? EACCES : ENOENT;
191         else if (errno == ENOTDIR && !strchr(file, '/'))
192                 errno = ENOENT;
193         return -1;
194 }
195
196 static const char **prepare_shell_cmd(struct argv_array *out, const char **argv)
197 {
198         if (!argv[0])
199                 die("BUG: shell command is empty");
200
201         if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
202 #ifndef GIT_WINDOWS_NATIVE
203                 argv_array_push(out, SHELL_PATH);
204 #else
205                 argv_array_push(out, "sh");
206 #endif
207                 argv_array_push(out, "-c");
208
209                 /*
210                  * If we have no extra arguments, we do not even need to
211                  * bother with the "$@" magic.
212                  */
213                 if (!argv[1])
214                         argv_array_push(out, argv[0]);
215                 else
216                         argv_array_pushf(out, "%s \"$@\"", argv[0]);
217         }
218
219         argv_array_pushv(out, argv);
220         return out->argv;
221 }
222
223 #ifndef GIT_WINDOWS_NATIVE
224 static int child_notifier = -1;
225
226 static void notify_parent(void)
227 {
228         /*
229          * execvp failed.  If possible, we'd like to let start_command
230          * know, so failures like ENOENT can be handled right away; but
231          * otherwise, finish_command will still report the error.
232          */
233         xwrite(child_notifier, "", 1);
234 }
235
236 static void prepare_cmd(struct argv_array *out, const struct child_process *cmd)
237 {
238         if (!cmd->argv[0])
239                 die("BUG: command is empty");
240
241         /*
242          * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
243          * attempt to interpret the command with 'sh'.
244          */
245         argv_array_push(out, SHELL_PATH);
246
247         if (cmd->git_cmd) {
248                 argv_array_push(out, "git");
249                 argv_array_pushv(out, cmd->argv);
250         } else if (cmd->use_shell) {
251                 prepare_shell_cmd(out, cmd->argv);
252         } else {
253                 argv_array_pushv(out, cmd->argv);
254         }
255
256         /*
257          * If there are no '/' characters in the command then perform a path
258          * lookup and use the resolved path as the command to exec.  If there
259          * are no '/' characters or if the command wasn't found in the path,
260          * have exec attempt to invoke the command directly.
261          */
262         if (!strchr(out->argv[1], '/')) {
263                 char *program = locate_in_PATH(out->argv[1]);
264                 if (program) {
265                         free((char *)out->argv[1]);
266                         out->argv[1] = program;
267                 }
268         }
269 }
270
271 static char **prep_childenv(const char *const *deltaenv)
272 {
273         extern char **environ;
274         char **childenv;
275         struct string_list env = STRING_LIST_INIT_DUP;
276         struct strbuf key = STRBUF_INIT;
277         const char *const *p;
278         int i;
279
280         /* Construct a sorted string list consisting of the current environ */
281         for (p = (const char *const *) environ; p && *p; p++) {
282                 const char *equals = strchr(*p, '=');
283
284                 if (equals) {
285                         strbuf_reset(&key);
286                         strbuf_add(&key, *p, equals - *p);
287                         string_list_append(&env, key.buf)->util = (void *) *p;
288                 } else {
289                         string_list_append(&env, *p)->util = (void *) *p;
290                 }
291         }
292         string_list_sort(&env);
293
294         /* Merge in 'deltaenv' with the current environ */
295         for (p = deltaenv; p && *p; p++) {
296                 const char *equals = strchr(*p, '=');
297
298                 if (equals) {
299                         /* ('key=value'), insert or replace entry */
300                         strbuf_reset(&key);
301                         strbuf_add(&key, *p, equals - *p);
302                         string_list_insert(&env, key.buf)->util = (void *) *p;
303                 } else {
304                         /* otherwise ('key') remove existing entry */
305                         string_list_remove(&env, *p, 0);
306                 }
307         }
308
309         /* Create an array of 'char *' to be used as the childenv */
310         childenv = xmalloc((env.nr + 1) * sizeof(char *));
311         for (i = 0; i < env.nr; i++)
312                 childenv[i] = env.items[i].util;
313         childenv[env.nr] = NULL;
314
315         string_list_clear(&env, 0);
316         strbuf_release(&key);
317         return childenv;
318 }
319 #endif
320
321 static inline void set_cloexec(int fd)
322 {
323         int flags = fcntl(fd, F_GETFD);
324         if (flags >= 0)
325                 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
326 }
327
328 static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
329 {
330         int status, code = -1;
331         pid_t waiting;
332         int failed_errno = 0;
333
334         while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
335                 ;       /* nothing */
336         if (in_signal)
337                 return 0;
338
339         if (waiting < 0) {
340                 failed_errno = errno;
341                 error_errno("waitpid for %s failed", argv0);
342         } else if (waiting != pid) {
343                 error("waitpid is confused (%s)", argv0);
344         } else if (WIFSIGNALED(status)) {
345                 code = WTERMSIG(status);
346                 if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
347                         error("%s died of signal %d", argv0, code);
348                 /*
349                  * This return value is chosen so that code & 0xff
350                  * mimics the exit code that a POSIX shell would report for
351                  * a program that died from this signal.
352                  */
353                 code += 128;
354         } else if (WIFEXITED(status)) {
355                 code = WEXITSTATUS(status);
356                 /*
357                  * Convert special exit code when execvp failed.
358                  */
359                 if (code == 127) {
360                         code = -1;
361                         failed_errno = ENOENT;
362                 }
363         } else {
364                 error("waitpid is confused (%s)", argv0);
365         }
366
367         clear_child_for_cleanup(pid);
368
369         errno = failed_errno;
370         return code;
371 }
372
373 int start_command(struct child_process *cmd)
374 {
375         int need_in, need_out, need_err;
376         int fdin[2], fdout[2], fderr[2];
377         int failed_errno;
378         char *str;
379
380         if (!cmd->argv)
381                 cmd->argv = cmd->args.argv;
382         if (!cmd->env)
383                 cmd->env = cmd->env_array.argv;
384
385         /*
386          * In case of errors we must keep the promise to close FDs
387          * that have been passed in via ->in and ->out.
388          */
389
390         need_in = !cmd->no_stdin && cmd->in < 0;
391         if (need_in) {
392                 if (pipe(fdin) < 0) {
393                         failed_errno = errno;
394                         if (cmd->out > 0)
395                                 close(cmd->out);
396                         str = "standard input";
397                         goto fail_pipe;
398                 }
399                 cmd->in = fdin[1];
400         }
401
402         need_out = !cmd->no_stdout
403                 && !cmd->stdout_to_stderr
404                 && cmd->out < 0;
405         if (need_out) {
406                 if (pipe(fdout) < 0) {
407                         failed_errno = errno;
408                         if (need_in)
409                                 close_pair(fdin);
410                         else if (cmd->in)
411                                 close(cmd->in);
412                         str = "standard output";
413                         goto fail_pipe;
414                 }
415                 cmd->out = fdout[0];
416         }
417
418         need_err = !cmd->no_stderr && cmd->err < 0;
419         if (need_err) {
420                 if (pipe(fderr) < 0) {
421                         failed_errno = errno;
422                         if (need_in)
423                                 close_pair(fdin);
424                         else if (cmd->in)
425                                 close(cmd->in);
426                         if (need_out)
427                                 close_pair(fdout);
428                         else if (cmd->out)
429                                 close(cmd->out);
430                         str = "standard error";
431 fail_pipe:
432                         error("cannot create %s pipe for %s: %s",
433                                 str, cmd->argv[0], strerror(failed_errno));
434                         child_process_clear(cmd);
435                         errno = failed_errno;
436                         return -1;
437                 }
438                 cmd->err = fderr[0];
439         }
440
441         trace_argv_printf(cmd->argv, "trace: run_command:");
442         fflush(NULL);
443
444 #ifndef GIT_WINDOWS_NATIVE
445 {
446         int notify_pipe[2];
447         char **childenv;
448         struct argv_array argv = ARGV_ARRAY_INIT;
449
450         if (pipe(notify_pipe))
451                 notify_pipe[0] = notify_pipe[1] = -1;
452
453         prepare_cmd(&argv, cmd);
454         childenv = prep_childenv(cmd->env);
455
456         cmd->pid = fork();
457         failed_errno = errno;
458         if (!cmd->pid) {
459                 /*
460                  * Redirect the channel to write syscall error messages to
461                  * before redirecting the process's stderr so that all die()
462                  * in subsequent call paths use the parent's stderr.
463                  */
464                 if (cmd->no_stderr || need_err) {
465                         int child_err = dup(2);
466                         set_cloexec(child_err);
467                         set_error_handle(fdopen(child_err, "w"));
468                 }
469
470                 close(notify_pipe[0]);
471                 set_cloexec(notify_pipe[1]);
472                 child_notifier = notify_pipe[1];
473                 atexit(notify_parent);
474
475                 if (cmd->no_stdin)
476                         dup_devnull(0);
477                 else if (need_in) {
478                         dup2(fdin[0], 0);
479                         close_pair(fdin);
480                 } else if (cmd->in) {
481                         dup2(cmd->in, 0);
482                         close(cmd->in);
483                 }
484
485                 if (cmd->no_stderr)
486                         dup_devnull(2);
487                 else if (need_err) {
488                         dup2(fderr[1], 2);
489                         close_pair(fderr);
490                 } else if (cmd->err > 1) {
491                         dup2(cmd->err, 2);
492                         close(cmd->err);
493                 }
494
495                 if (cmd->no_stdout)
496                         dup_devnull(1);
497                 else if (cmd->stdout_to_stderr)
498                         dup2(2, 1);
499                 else if (need_out) {
500                         dup2(fdout[1], 1);
501                         close_pair(fdout);
502                 } else if (cmd->out > 1) {
503                         dup2(cmd->out, 1);
504                         close(cmd->out);
505                 }
506
507                 if (cmd->dir && chdir(cmd->dir))
508                         die_errno("exec '%s': cd to '%s' failed", cmd->argv[0],
509                             cmd->dir);
510
511                 /*
512                  * Attempt to exec using the command and arguments starting at
513                  * argv.argv[1].  argv.argv[0] contains SHELL_PATH which will
514                  * be used in the event exec failed with ENOEXEC at which point
515                  * we will try to interpret the command using 'sh'.
516                  */
517                 execve(argv.argv[1], (char *const *) argv.argv + 1,
518                        (char *const *) childenv);
519                 if (errno == ENOEXEC)
520                         execve(argv.argv[0], (char *const *) argv.argv,
521                                (char *const *) childenv);
522
523                 if (errno == ENOENT) {
524                         if (!cmd->silent_exec_failure)
525                                 error("cannot run %s: %s", cmd->argv[0],
526                                         strerror(ENOENT));
527                         exit(127);
528                 } else {
529                         die_errno("cannot exec '%s'", cmd->argv[0]);
530                 }
531         }
532         if (cmd->pid < 0)
533                 error_errno("cannot fork() for %s", cmd->argv[0]);
534         else if (cmd->clean_on_exit)
535                 mark_child_for_cleanup(cmd->pid, cmd);
536
537         /*
538          * Wait for child's exec. If the exec succeeds (or if fork()
539          * failed), EOF is seen immediately by the parent. Otherwise, the
540          * child process sends a single byte.
541          * Note that use of this infrastructure is completely advisory,
542          * therefore, we keep error checks minimal.
543          */
544         close(notify_pipe[1]);
545         if (read(notify_pipe[0], &notify_pipe[1], 1) == 1) {
546                 /*
547                  * At this point we know that fork() succeeded, but exec()
548                  * failed. Errors have been reported to our stderr.
549                  */
550                 wait_or_whine(cmd->pid, cmd->argv[0], 0);
551                 failed_errno = errno;
552                 cmd->pid = -1;
553         }
554         close(notify_pipe[0]);
555
556         argv_array_clear(&argv);
557         free(childenv);
558 }
559 #else
560 {
561         int fhin = 0, fhout = 1, fherr = 2;
562         const char **sargv = cmd->argv;
563         struct argv_array nargv = ARGV_ARRAY_INIT;
564
565         if (cmd->no_stdin)
566                 fhin = open("/dev/null", O_RDWR);
567         else if (need_in)
568                 fhin = dup(fdin[0]);
569         else if (cmd->in)
570                 fhin = dup(cmd->in);
571
572         if (cmd->no_stderr)
573                 fherr = open("/dev/null", O_RDWR);
574         else if (need_err)
575                 fherr = dup(fderr[1]);
576         else if (cmd->err > 2)
577                 fherr = dup(cmd->err);
578
579         if (cmd->no_stdout)
580                 fhout = open("/dev/null", O_RDWR);
581         else if (cmd->stdout_to_stderr)
582                 fhout = dup(fherr);
583         else if (need_out)
584                 fhout = dup(fdout[1]);
585         else if (cmd->out > 1)
586                 fhout = dup(cmd->out);
587
588         if (cmd->git_cmd)
589                 cmd->argv = prepare_git_cmd(&nargv, cmd->argv);
590         else if (cmd->use_shell)
591                 cmd->argv = prepare_shell_cmd(&nargv, cmd->argv);
592
593         cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env,
594                         cmd->dir, fhin, fhout, fherr);
595         failed_errno = errno;
596         if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
597                 error_errno("cannot spawn %s", cmd->argv[0]);
598         if (cmd->clean_on_exit && cmd->pid >= 0)
599                 mark_child_for_cleanup(cmd->pid, cmd);
600
601         argv_array_clear(&nargv);
602         cmd->argv = sargv;
603         if (fhin != 0)
604                 close(fhin);
605         if (fhout != 1)
606                 close(fhout);
607         if (fherr != 2)
608                 close(fherr);
609 }
610 #endif
611
612         if (cmd->pid < 0) {
613                 if (need_in)
614                         close_pair(fdin);
615                 else if (cmd->in)
616                         close(cmd->in);
617                 if (need_out)
618                         close_pair(fdout);
619                 else if (cmd->out)
620                         close(cmd->out);
621                 if (need_err)
622                         close_pair(fderr);
623                 else if (cmd->err)
624                         close(cmd->err);
625                 child_process_clear(cmd);
626                 errno = failed_errno;
627                 return -1;
628         }
629
630         if (need_in)
631                 close(fdin[0]);
632         else if (cmd->in)
633                 close(cmd->in);
634
635         if (need_out)
636                 close(fdout[1]);
637         else if (cmd->out)
638                 close(cmd->out);
639
640         if (need_err)
641                 close(fderr[1]);
642         else if (cmd->err)
643                 close(cmd->err);
644
645         return 0;
646 }
647
648 int finish_command(struct child_process *cmd)
649 {
650         int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0);
651         child_process_clear(cmd);
652         return ret;
653 }
654
655 int finish_command_in_signal(struct child_process *cmd)
656 {
657         return wait_or_whine(cmd->pid, cmd->argv[0], 1);
658 }
659
660
661 int run_command(struct child_process *cmd)
662 {
663         int code;
664
665         if (cmd->out < 0 || cmd->err < 0)
666                 die("BUG: run_command with a pipe can cause deadlock");
667
668         code = start_command(cmd);
669         if (code)
670                 return code;
671         return finish_command(cmd);
672 }
673
674 int run_command_v_opt(const char **argv, int opt)
675 {
676         return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
677 }
678
679 int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
680 {
681         struct child_process cmd = CHILD_PROCESS_INIT;
682         cmd.argv = argv;
683         cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
684         cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
685         cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
686         cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
687         cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
688         cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
689         cmd.dir = dir;
690         cmd.env = env;
691         return run_command(&cmd);
692 }
693
694 #ifndef NO_PTHREADS
695 static pthread_t main_thread;
696 static int main_thread_set;
697 static pthread_key_t async_key;
698 static pthread_key_t async_die_counter;
699
700 static void *run_thread(void *data)
701 {
702         struct async *async = data;
703         intptr_t ret;
704
705         if (async->isolate_sigpipe) {
706                 sigset_t mask;
707                 sigemptyset(&mask);
708                 sigaddset(&mask, SIGPIPE);
709                 if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
710                         ret = error("unable to block SIGPIPE in async thread");
711                         return (void *)ret;
712                 }
713         }
714
715         pthread_setspecific(async_key, async);
716         ret = async->proc(async->proc_in, async->proc_out, async->data);
717         return (void *)ret;
718 }
719
720 static NORETURN void die_async(const char *err, va_list params)
721 {
722         vreportf("fatal: ", err, params);
723
724         if (in_async()) {
725                 struct async *async = pthread_getspecific(async_key);
726                 if (async->proc_in >= 0)
727                         close(async->proc_in);
728                 if (async->proc_out >= 0)
729                         close(async->proc_out);
730                 pthread_exit((void *)128);
731         }
732
733         exit(128);
734 }
735
736 static int async_die_is_recursing(void)
737 {
738         void *ret = pthread_getspecific(async_die_counter);
739         pthread_setspecific(async_die_counter, (void *)1);
740         return ret != NULL;
741 }
742
743 int in_async(void)
744 {
745         if (!main_thread_set)
746                 return 0; /* no asyncs started yet */
747         return !pthread_equal(main_thread, pthread_self());
748 }
749
750 static void NORETURN async_exit(int code)
751 {
752         pthread_exit((void *)(intptr_t)code);
753 }
754
755 #else
756
757 static struct {
758         void (**handlers)(void);
759         size_t nr;
760         size_t alloc;
761 } git_atexit_hdlrs;
762
763 static int git_atexit_installed;
764
765 static void git_atexit_dispatch(void)
766 {
767         size_t i;
768
769         for (i=git_atexit_hdlrs.nr ; i ; i--)
770                 git_atexit_hdlrs.handlers[i-1]();
771 }
772
773 static void git_atexit_clear(void)
774 {
775         free(git_atexit_hdlrs.handlers);
776         memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
777         git_atexit_installed = 0;
778 }
779
780 #undef atexit
781 int git_atexit(void (*handler)(void))
782 {
783         ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
784         git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
785         if (!git_atexit_installed) {
786                 if (atexit(&git_atexit_dispatch))
787                         return -1;
788                 git_atexit_installed = 1;
789         }
790         return 0;
791 }
792 #define atexit git_atexit
793
794 static int process_is_async;
795 int in_async(void)
796 {
797         return process_is_async;
798 }
799
800 static void NORETURN async_exit(int code)
801 {
802         exit(code);
803 }
804
805 #endif
806
807 void check_pipe(int err)
808 {
809         if (err == EPIPE) {
810                 if (in_async())
811                         async_exit(141);
812
813                 signal(SIGPIPE, SIG_DFL);
814                 raise(SIGPIPE);
815                 /* Should never happen, but just in case... */
816                 exit(141);
817         }
818 }
819
820 int start_async(struct async *async)
821 {
822         int need_in, need_out;
823         int fdin[2], fdout[2];
824         int proc_in, proc_out;
825
826         need_in = async->in < 0;
827         if (need_in) {
828                 if (pipe(fdin) < 0) {
829                         if (async->out > 0)
830                                 close(async->out);
831                         return error_errno("cannot create pipe");
832                 }
833                 async->in = fdin[1];
834         }
835
836         need_out = async->out < 0;
837         if (need_out) {
838                 if (pipe(fdout) < 0) {
839                         if (need_in)
840                                 close_pair(fdin);
841                         else if (async->in)
842                                 close(async->in);
843                         return error_errno("cannot create pipe");
844                 }
845                 async->out = fdout[0];
846         }
847
848         if (need_in)
849                 proc_in = fdin[0];
850         else if (async->in)
851                 proc_in = async->in;
852         else
853                 proc_in = -1;
854
855         if (need_out)
856                 proc_out = fdout[1];
857         else if (async->out)
858                 proc_out = async->out;
859         else
860                 proc_out = -1;
861
862 #ifdef NO_PTHREADS
863         /* Flush stdio before fork() to avoid cloning buffers */
864         fflush(NULL);
865
866         async->pid = fork();
867         if (async->pid < 0) {
868                 error_errno("fork (async) failed");
869                 goto error;
870         }
871         if (!async->pid) {
872                 if (need_in)
873                         close(fdin[1]);
874                 if (need_out)
875                         close(fdout[0]);
876                 git_atexit_clear();
877                 process_is_async = 1;
878                 exit(!!async->proc(proc_in, proc_out, async->data));
879         }
880
881         mark_child_for_cleanup(async->pid, NULL);
882
883         if (need_in)
884                 close(fdin[0]);
885         else if (async->in)
886                 close(async->in);
887
888         if (need_out)
889                 close(fdout[1]);
890         else if (async->out)
891                 close(async->out);
892 #else
893         if (!main_thread_set) {
894                 /*
895                  * We assume that the first time that start_async is called
896                  * it is from the main thread.
897                  */
898                 main_thread_set = 1;
899                 main_thread = pthread_self();
900                 pthread_key_create(&async_key, NULL);
901                 pthread_key_create(&async_die_counter, NULL);
902                 set_die_routine(die_async);
903                 set_die_is_recursing_routine(async_die_is_recursing);
904         }
905
906         if (proc_in >= 0)
907                 set_cloexec(proc_in);
908         if (proc_out >= 0)
909                 set_cloexec(proc_out);
910         async->proc_in = proc_in;
911         async->proc_out = proc_out;
912         {
913                 int err = pthread_create(&async->tid, NULL, run_thread, async);
914                 if (err) {
915                         error_errno("cannot create thread");
916                         goto error;
917                 }
918         }
919 #endif
920         return 0;
921
922 error:
923         if (need_in)
924                 close_pair(fdin);
925         else if (async->in)
926                 close(async->in);
927
928         if (need_out)
929                 close_pair(fdout);
930         else if (async->out)
931                 close(async->out);
932         return -1;
933 }
934
935 int finish_async(struct async *async)
936 {
937 #ifdef NO_PTHREADS
938         return wait_or_whine(async->pid, "child process", 0);
939 #else
940         void *ret = (void *)(intptr_t)(-1);
941
942         if (pthread_join(async->tid, &ret))
943                 error("pthread_join failed");
944         return (int)(intptr_t)ret;
945 #endif
946 }
947
948 const char *find_hook(const char *name)
949 {
950         static struct strbuf path = STRBUF_INIT;
951
952         strbuf_reset(&path);
953         strbuf_git_path(&path, "hooks/%s", name);
954         if (access(path.buf, X_OK) < 0) {
955 #ifdef STRIP_EXTENSION
956                 strbuf_addstr(&path, STRIP_EXTENSION);
957                 if (access(path.buf, X_OK) >= 0)
958                         return path.buf;
959 #endif
960                 return NULL;
961         }
962         return path.buf;
963 }
964
965 int run_hook_ve(const char *const *env, const char *name, va_list args)
966 {
967         struct child_process hook = CHILD_PROCESS_INIT;
968         const char *p;
969
970         p = find_hook(name);
971         if (!p)
972                 return 0;
973
974         argv_array_push(&hook.args, p);
975         while ((p = va_arg(args, const char *)))
976                 argv_array_push(&hook.args, p);
977         hook.env = env;
978         hook.no_stdin = 1;
979         hook.stdout_to_stderr = 1;
980
981         return run_command(&hook);
982 }
983
984 int run_hook_le(const char *const *env, const char *name, ...)
985 {
986         va_list args;
987         int ret;
988
989         va_start(args, name);
990         ret = run_hook_ve(env, name, args);
991         va_end(args);
992
993         return ret;
994 }
995
996 struct io_pump {
997         /* initialized by caller */
998         int fd;
999         int type; /* POLLOUT or POLLIN */
1000         union {
1001                 struct {
1002                         const char *buf;
1003                         size_t len;
1004                 } out;
1005                 struct {
1006                         struct strbuf *buf;
1007                         size_t hint;
1008                 } in;
1009         } u;
1010
1011         /* returned by pump_io */
1012         int error; /* 0 for success, otherwise errno */
1013
1014         /* internal use */
1015         struct pollfd *pfd;
1016 };
1017
1018 static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1019 {
1020         int pollsize = 0;
1021         int i;
1022
1023         for (i = 0; i < nr; i++) {
1024                 struct io_pump *io = &slots[i];
1025                 if (io->fd < 0)
1026                         continue;
1027                 pfd[pollsize].fd = io->fd;
1028                 pfd[pollsize].events = io->type;
1029                 io->pfd = &pfd[pollsize++];
1030         }
1031
1032         if (!pollsize)
1033                 return 0;
1034
1035         if (poll(pfd, pollsize, -1) < 0) {
1036                 if (errno == EINTR)
1037                         return 1;
1038                 die_errno("poll failed");
1039         }
1040
1041         for (i = 0; i < nr; i++) {
1042                 struct io_pump *io = &slots[i];
1043
1044                 if (io->fd < 0)
1045                         continue;
1046
1047                 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1048                         continue;
1049
1050                 if (io->type == POLLOUT) {
1051                         ssize_t len = xwrite(io->fd,
1052                                              io->u.out.buf, io->u.out.len);
1053                         if (len < 0) {
1054                                 io->error = errno;
1055                                 close(io->fd);
1056                                 io->fd = -1;
1057                         } else {
1058                                 io->u.out.buf += len;
1059                                 io->u.out.len -= len;
1060                                 if (!io->u.out.len) {
1061                                         close(io->fd);
1062                                         io->fd = -1;
1063                                 }
1064                         }
1065                 }
1066
1067                 if (io->type == POLLIN) {
1068                         ssize_t len = strbuf_read_once(io->u.in.buf,
1069                                                        io->fd, io->u.in.hint);
1070                         if (len < 0)
1071                                 io->error = errno;
1072                         if (len <= 0) {
1073                                 close(io->fd);
1074                                 io->fd = -1;
1075                         }
1076                 }
1077         }
1078
1079         return 1;
1080 }
1081
1082 static int pump_io(struct io_pump *slots, int nr)
1083 {
1084         struct pollfd *pfd;
1085         int i;
1086
1087         for (i = 0; i < nr; i++)
1088                 slots[i].error = 0;
1089
1090         ALLOC_ARRAY(pfd, nr);
1091         while (pump_io_round(slots, nr, pfd))
1092                 ; /* nothing */
1093         free(pfd);
1094
1095         /* There may be multiple errno values, so just pick the first. */
1096         for (i = 0; i < nr; i++) {
1097                 if (slots[i].error) {
1098                         errno = slots[i].error;
1099                         return -1;
1100                 }
1101         }
1102         return 0;
1103 }
1104
1105
1106 int pipe_command(struct child_process *cmd,
1107                  const char *in, size_t in_len,
1108                  struct strbuf *out, size_t out_hint,
1109                  struct strbuf *err, size_t err_hint)
1110 {
1111         struct io_pump io[3];
1112         int nr = 0;
1113
1114         if (in)
1115                 cmd->in = -1;
1116         if (out)
1117                 cmd->out = -1;
1118         if (err)
1119                 cmd->err = -1;
1120
1121         if (start_command(cmd) < 0)
1122                 return -1;
1123
1124         if (in) {
1125                 io[nr].fd = cmd->in;
1126                 io[nr].type = POLLOUT;
1127                 io[nr].u.out.buf = in;
1128                 io[nr].u.out.len = in_len;
1129                 nr++;
1130         }
1131         if (out) {
1132                 io[nr].fd = cmd->out;
1133                 io[nr].type = POLLIN;
1134                 io[nr].u.in.buf = out;
1135                 io[nr].u.in.hint = out_hint;
1136                 nr++;
1137         }
1138         if (err) {
1139                 io[nr].fd = cmd->err;
1140                 io[nr].type = POLLIN;
1141                 io[nr].u.in.buf = err;
1142                 io[nr].u.in.hint = err_hint;
1143                 nr++;
1144         }
1145
1146         if (pump_io(io, nr) < 0) {
1147                 finish_command(cmd); /* throw away exit code */
1148                 return -1;
1149         }
1150
1151         return finish_command(cmd);
1152 }
1153
1154 enum child_state {
1155         GIT_CP_FREE,
1156         GIT_CP_WORKING,
1157         GIT_CP_WAIT_CLEANUP,
1158 };
1159
1160 struct parallel_processes {
1161         void *data;
1162
1163         int max_processes;
1164         int nr_processes;
1165
1166         get_next_task_fn get_next_task;
1167         start_failure_fn start_failure;
1168         task_finished_fn task_finished;
1169
1170         struct {
1171                 enum child_state state;
1172                 struct child_process process;
1173                 struct strbuf err;
1174                 void *data;
1175         } *children;
1176         /*
1177          * The struct pollfd is logically part of *children,
1178          * but the system call expects it as its own array.
1179          */
1180         struct pollfd *pfd;
1181
1182         unsigned shutdown : 1;
1183
1184         int output_owner;
1185         struct strbuf buffered_output; /* of finished children */
1186 };
1187
1188 static int default_start_failure(struct strbuf *out,
1189                                  void *pp_cb,
1190                                  void *pp_task_cb)
1191 {
1192         return 0;
1193 }
1194
1195 static int default_task_finished(int result,
1196                                  struct strbuf *out,
1197                                  void *pp_cb,
1198                                  void *pp_task_cb)
1199 {
1200         return 0;
1201 }
1202
1203 static void kill_children(struct parallel_processes *pp, int signo)
1204 {
1205         int i, n = pp->max_processes;
1206
1207         for (i = 0; i < n; i++)
1208                 if (pp->children[i].state == GIT_CP_WORKING)
1209                         kill(pp->children[i].process.pid, signo);
1210 }
1211
1212 static struct parallel_processes *pp_for_signal;
1213
1214 static void handle_children_on_signal(int signo)
1215 {
1216         kill_children(pp_for_signal, signo);
1217         sigchain_pop(signo);
1218         raise(signo);
1219 }
1220
1221 static void pp_init(struct parallel_processes *pp,
1222                     int n,
1223                     get_next_task_fn get_next_task,
1224                     start_failure_fn start_failure,
1225                     task_finished_fn task_finished,
1226                     void *data)
1227 {
1228         int i;
1229
1230         if (n < 1)
1231                 n = online_cpus();
1232
1233         pp->max_processes = n;
1234
1235         trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1236
1237         pp->data = data;
1238         if (!get_next_task)
1239                 die("BUG: you need to specify a get_next_task function");
1240         pp->get_next_task = get_next_task;
1241
1242         pp->start_failure = start_failure ? start_failure : default_start_failure;
1243         pp->task_finished = task_finished ? task_finished : default_task_finished;
1244
1245         pp->nr_processes = 0;
1246         pp->output_owner = 0;
1247         pp->shutdown = 0;
1248         pp->children = xcalloc(n, sizeof(*pp->children));
1249         pp->pfd = xcalloc(n, sizeof(*pp->pfd));
1250         strbuf_init(&pp->buffered_output, 0);
1251
1252         for (i = 0; i < n; i++) {
1253                 strbuf_init(&pp->children[i].err, 0);
1254                 child_process_init(&pp->children[i].process);
1255                 pp->pfd[i].events = POLLIN | POLLHUP;
1256                 pp->pfd[i].fd = -1;
1257         }
1258
1259         pp_for_signal = pp;
1260         sigchain_push_common(handle_children_on_signal);
1261 }
1262
1263 static void pp_cleanup(struct parallel_processes *pp)
1264 {
1265         int i;
1266
1267         trace_printf("run_processes_parallel: done");
1268         for (i = 0; i < pp->max_processes; i++) {
1269                 strbuf_release(&pp->children[i].err);
1270                 child_process_clear(&pp->children[i].process);
1271         }
1272
1273         free(pp->children);
1274         free(pp->pfd);
1275
1276         /*
1277          * When get_next_task added messages to the buffer in its last
1278          * iteration, the buffered output is non empty.
1279          */
1280         strbuf_write(&pp->buffered_output, stderr);
1281         strbuf_release(&pp->buffered_output);
1282
1283         sigchain_pop_common();
1284 }
1285
1286 /* returns
1287  *  0 if a new task was started.
1288  *  1 if no new jobs was started (get_next_task ran out of work, non critical
1289  *    problem with starting a new command)
1290  * <0 no new job was started, user wishes to shutdown early. Use negative code
1291  *    to signal the children.
1292  */
1293 static int pp_start_one(struct parallel_processes *pp)
1294 {
1295         int i, code;
1296
1297         for (i = 0; i < pp->max_processes; i++)
1298                 if (pp->children[i].state == GIT_CP_FREE)
1299                         break;
1300         if (i == pp->max_processes)
1301                 die("BUG: bookkeeping is hard");
1302
1303         code = pp->get_next_task(&pp->children[i].process,
1304                                  &pp->children[i].err,
1305                                  pp->data,
1306                                  &pp->children[i].data);
1307         if (!code) {
1308                 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1309                 strbuf_reset(&pp->children[i].err);
1310                 return 1;
1311         }
1312         pp->children[i].process.err = -1;
1313         pp->children[i].process.stdout_to_stderr = 1;
1314         pp->children[i].process.no_stdin = 1;
1315
1316         if (start_command(&pp->children[i].process)) {
1317                 code = pp->start_failure(&pp->children[i].err,
1318                                          pp->data,
1319                                          &pp->children[i].data);
1320                 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1321                 strbuf_reset(&pp->children[i].err);
1322                 if (code)
1323                         pp->shutdown = 1;
1324                 return code;
1325         }
1326
1327         pp->nr_processes++;
1328         pp->children[i].state = GIT_CP_WORKING;
1329         pp->pfd[i].fd = pp->children[i].process.err;
1330         return 0;
1331 }
1332
1333 static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1334 {
1335         int i;
1336
1337         while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1338                 if (errno == EINTR)
1339                         continue;
1340                 pp_cleanup(pp);
1341                 die_errno("poll");
1342         }
1343
1344         /* Buffer output from all pipes. */
1345         for (i = 0; i < pp->max_processes; i++) {
1346                 if (pp->children[i].state == GIT_CP_WORKING &&
1347                     pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1348                         int n = strbuf_read_once(&pp->children[i].err,
1349                                                  pp->children[i].process.err, 0);
1350                         if (n == 0) {
1351                                 close(pp->children[i].process.err);
1352                                 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1353                         } else if (n < 0)
1354                                 if (errno != EAGAIN)
1355                                         die_errno("read");
1356                 }
1357         }
1358 }
1359
1360 static void pp_output(struct parallel_processes *pp)
1361 {
1362         int i = pp->output_owner;
1363         if (pp->children[i].state == GIT_CP_WORKING &&
1364             pp->children[i].err.len) {
1365                 strbuf_write(&pp->children[i].err, stderr);
1366                 strbuf_reset(&pp->children[i].err);
1367         }
1368 }
1369
1370 static int pp_collect_finished(struct parallel_processes *pp)
1371 {
1372         int i, code;
1373         int n = pp->max_processes;
1374         int result = 0;
1375
1376         while (pp->nr_processes > 0) {
1377                 for (i = 0; i < pp->max_processes; i++)
1378                         if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1379                                 break;
1380                 if (i == pp->max_processes)
1381                         break;
1382
1383                 code = finish_command(&pp->children[i].process);
1384
1385                 code = pp->task_finished(code,
1386                                          &pp->children[i].err, pp->data,
1387                                          &pp->children[i].data);
1388
1389                 if (code)
1390                         result = code;
1391                 if (code < 0)
1392                         break;
1393
1394                 pp->nr_processes--;
1395                 pp->children[i].state = GIT_CP_FREE;
1396                 pp->pfd[i].fd = -1;
1397                 child_process_init(&pp->children[i].process);
1398
1399                 if (i != pp->output_owner) {
1400                         strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1401                         strbuf_reset(&pp->children[i].err);
1402                 } else {
1403                         strbuf_write(&pp->children[i].err, stderr);
1404                         strbuf_reset(&pp->children[i].err);
1405
1406                         /* Output all other finished child processes */
1407                         strbuf_write(&pp->buffered_output, stderr);
1408                         strbuf_reset(&pp->buffered_output);
1409
1410                         /*
1411                          * Pick next process to output live.
1412                          * NEEDSWORK:
1413                          * For now we pick it randomly by doing a round
1414                          * robin. Later we may want to pick the one with
1415                          * the most output or the longest or shortest
1416                          * running process time.
1417                          */
1418                         for (i = 0; i < n; i++)
1419                                 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1420                                         break;
1421                         pp->output_owner = (pp->output_owner + i) % n;
1422                 }
1423         }
1424         return result;
1425 }
1426
1427 int run_processes_parallel(int n,
1428                            get_next_task_fn get_next_task,
1429                            start_failure_fn start_failure,
1430                            task_finished_fn task_finished,
1431                            void *pp_cb)
1432 {
1433         int i, code;
1434         int output_timeout = 100;
1435         int spawn_cap = 4;
1436         struct parallel_processes pp;
1437
1438         pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1439         while (1) {
1440                 for (i = 0;
1441                     i < spawn_cap && !pp.shutdown &&
1442                     pp.nr_processes < pp.max_processes;
1443                     i++) {
1444                         code = pp_start_one(&pp);
1445                         if (!code)
1446                                 continue;
1447                         if (code < 0) {
1448                                 pp.shutdown = 1;
1449                                 kill_children(&pp, -code);
1450                         }
1451                         break;
1452                 }
1453                 if (!pp.nr_processes)
1454                         break;
1455                 pp_buffer_stderr(&pp, output_timeout);
1456                 pp_output(&pp);
1457                 code = pp_collect_finished(&pp);
1458                 if (code) {
1459                         pp.shutdown = 1;
1460                         if (code < 0)
1461                                 kill_children(&pp, -code);
1462                 }
1463         }
1464
1465         pp_cleanup(&pp);
1466         return 0;
1467 }