3 #include "refs-internal.h"
4 #include "../iterator.h"
5 #include "../dir-iterator.h"
6 #include "../lockfile.h"
13 struct object_id old_oid;
19 * Information used (along with the information in ref_entry) to
20 * describe a single cached reference. This data structure only
21 * occurs embedded in a union in struct ref_entry, and only when
22 * (ref_entry->flag & REF_DIR) is zero.
26 * The name of the object to which this reference resolves
27 * (which may be a tag object). If REF_ISBROKEN, this is
28 * null. If REF_ISSYMREF, then this is the name of the object
29 * referred to by the last reference in the symlink chain.
34 * If REF_KNOWS_PEELED, then this field holds the peeled value
35 * of this reference, or null if the reference is known not to
36 * be peelable. See the documentation for peel_ref() for an
37 * exact definition of "peelable".
39 struct object_id peeled;
42 struct files_ref_store;
45 * Information used (along with the information in ref_entry) to
46 * describe a level in the hierarchy of references. This data
47 * structure only occurs embedded in a union in struct ref_entry, and
48 * only when (ref_entry.flag & REF_DIR) is set. In that case,
49 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
50 * in the directory have already been read:
52 * (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
53 * or packed references, already read.
55 * (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
56 * references that hasn't been read yet (nor has any of its
59 * Entries within a directory are stored within a growable array of
60 * pointers to ref_entries (entries, nr, alloc). Entries 0 <= i <
61 * sorted are sorted by their component name in strcmp() order and the
62 * remaining entries are unsorted.
64 * Loose references are read lazily, one directory at a time. When a
65 * directory of loose references is read, then all of the references
66 * in that directory are stored, and REF_INCOMPLETE stubs are created
67 * for any subdirectories, but the subdirectories themselves are not
68 * read. The reading is triggered by get_ref_dir().
74 * Entries with index 0 <= i < sorted are sorted by name. New
75 * entries are appended to the list unsorted, and are sorted
76 * only when required; thus we avoid the need to sort the list
77 * after the addition of every reference.
81 /* A pointer to the files_ref_store that contains this ref_dir. */
82 struct files_ref_store *ref_store;
84 struct ref_entry **entries;
88 * Bit values for ref_entry::flag. REF_ISSYMREF=0x01,
89 * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
90 * public values; see refs.h.
94 * The field ref_entry->u.value.peeled of this value entry contains
95 * the correct peeled value for the reference, which might be
96 * null_sha1 if the reference is not a tag or if it is broken.
98 #define REF_KNOWS_PEELED 0x10
100 /* ref_entry represents a directory of references */
104 * Entry has not yet been read from disk (used only for REF_DIR
105 * entries representing loose references)
107 #define REF_INCOMPLETE 0x40
110 * A ref_entry represents either a reference or a "subdirectory" of
113 * Each directory in the reference namespace is represented by a
114 * ref_entry with (flags & REF_DIR) set and containing a subdir member
115 * that holds the entries in that directory that have been read so
116 * far. If (flags & REF_INCOMPLETE) is set, then the directory and
117 * its subdirectories haven't been read yet. REF_INCOMPLETE is only
118 * used for loose reference directories.
120 * References are represented by a ref_entry with (flags & REF_DIR)
121 * unset and a value member that describes the reference's value. The
122 * flag member is at the ref_entry level, but it is also needed to
123 * interpret the contents of the value field (in other words, a
124 * ref_value object is not very much use without the enclosing
127 * Reference names cannot end with slash and directories' names are
128 * always stored with a trailing slash (except for the top-level
129 * directory, which is always denoted by ""). This has two nice
130 * consequences: (1) when the entries in each subdir are sorted
131 * lexicographically by name (as they usually are), the references in
132 * a whole tree can be generated in lexicographic order by traversing
133 * the tree in left-to-right, depth-first order; (2) the names of
134 * references and subdirectories cannot conflict, and therefore the
135 * presence of an empty subdirectory does not block the creation of a
136 * similarly-named reference. (The fact that reference names with the
137 * same leading components can conflict *with each other* is a
138 * separate issue that is regulated by verify_refname_available().)
140 * Please note that the name field contains the fully-qualified
141 * reference (or subdirectory) name. Space could be saved by only
142 * storing the relative names. But that would require the full names
143 * to be generated on the fly when iterating in do_for_each_ref(), and
144 * would break callback functions, who have always been able to assume
145 * that the name strings that they are passed will not be freed during
149 unsigned char flag; /* ISSYMREF? ISPACKED? */
151 struct ref_value value; /* if not (flags&REF_DIR) */
152 struct ref_dir subdir; /* if (flags&REF_DIR) */
155 * The full name of the reference (e.g., "refs/heads/master")
156 * or the full name of the directory with a trailing slash
157 * (e.g., "refs/heads/"):
159 char name[FLEX_ARRAY];
162 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
163 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len);
164 static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
165 const char *dirname, size_t len,
167 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry);
168 static int files_log_ref_write(struct files_ref_store *refs,
169 const char *refname, const unsigned char *old_sha1,
170 const unsigned char *new_sha1, const char *msg,
171 int flags, struct strbuf *err);
173 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
176 assert(entry->flag & REF_DIR);
177 dir = &entry->u.subdir;
178 if (entry->flag & REF_INCOMPLETE) {
179 read_loose_refs(entry->name, dir);
182 * Manually add refs/bisect, which, being
183 * per-worktree, might not appear in the directory
184 * listing for refs/ in the main repo.
186 if (!strcmp(entry->name, "refs/")) {
187 int pos = search_ref_dir(dir, "refs/bisect/", 12);
189 struct ref_entry *child_entry;
190 child_entry = create_dir_entry(dir->ref_store,
193 add_entry_to_dir(dir, child_entry);
196 entry->flag &= ~REF_INCOMPLETE;
201 static struct ref_entry *create_ref_entry(const char *refname,
202 const unsigned char *sha1, int flag,
205 struct ref_entry *ref;
208 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
209 die("Reference has invalid format: '%s'", refname);
210 FLEX_ALLOC_STR(ref, name, refname);
211 hashcpy(ref->u.value.oid.hash, sha1);
212 oidclr(&ref->u.value.peeled);
217 static void clear_ref_dir(struct ref_dir *dir);
219 static void free_ref_entry(struct ref_entry *entry)
221 if (entry->flag & REF_DIR) {
223 * Do not use get_ref_dir() here, as that might
224 * trigger the reading of loose refs.
226 clear_ref_dir(&entry->u.subdir);
232 * Add a ref_entry to the end of dir (unsorted). Entry is always
233 * stored directly in dir; no recursion into subdirectories is
236 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
238 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
239 dir->entries[dir->nr++] = entry;
240 /* optimize for the case that entries are added in order */
242 (dir->nr == dir->sorted + 1 &&
243 strcmp(dir->entries[dir->nr - 2]->name,
244 dir->entries[dir->nr - 1]->name) < 0))
245 dir->sorted = dir->nr;
249 * Clear and free all entries in dir, recursively.
251 static void clear_ref_dir(struct ref_dir *dir)
254 for (i = 0; i < dir->nr; i++)
255 free_ref_entry(dir->entries[i]);
257 dir->sorted = dir->nr = dir->alloc = 0;
262 * Create a struct ref_entry object for the specified dirname.
263 * dirname is the name of the directory with a trailing slash (e.g.,
264 * "refs/heads/") or "" for the top-level directory.
266 static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
267 const char *dirname, size_t len,
270 struct ref_entry *direntry;
271 FLEX_ALLOC_MEM(direntry, name, dirname, len);
272 direntry->u.subdir.ref_store = ref_store;
273 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
277 static int ref_entry_cmp(const void *a, const void *b)
279 struct ref_entry *one = *(struct ref_entry **)a;
280 struct ref_entry *two = *(struct ref_entry **)b;
281 return strcmp(one->name, two->name);
284 static void sort_ref_dir(struct ref_dir *dir);
286 struct string_slice {
291 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
293 const struct string_slice *key = key_;
294 const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
295 int cmp = strncmp(key->str, ent->name, key->len);
298 return '\0' - (unsigned char)ent->name[key->len];
302 * Return the index of the entry with the given refname from the
303 * ref_dir (non-recursively), sorting dir if necessary. Return -1 if
304 * no such entry is found. dir must already be complete.
306 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
308 struct ref_entry **r;
309 struct string_slice key;
311 if (refname == NULL || !dir->nr)
317 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
318 ref_entry_cmp_sslice);
323 return r - dir->entries;
327 * Search for a directory entry directly within dir (without
328 * recursing). Sort dir if necessary. subdirname must be a directory
329 * name (i.e., end in '/'). If mkdir is set, then create the
330 * directory if it is missing; otherwise, return NULL if the desired
331 * directory cannot be found. dir must already be complete.
333 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
334 const char *subdirname, size_t len,
337 int entry_index = search_ref_dir(dir, subdirname, len);
338 struct ref_entry *entry;
339 if (entry_index == -1) {
343 * Since dir is complete, the absence of a subdir
344 * means that the subdir really doesn't exist;
345 * therefore, create an empty record for it but mark
346 * the record complete.
348 entry = create_dir_entry(dir->ref_store, subdirname, len, 0);
349 add_entry_to_dir(dir, entry);
351 entry = dir->entries[entry_index];
353 return get_ref_dir(entry);
357 * If refname is a reference name, find the ref_dir within the dir
358 * tree that should hold refname. If refname is a directory name
359 * (i.e., ends in '/'), then return that ref_dir itself. dir must
360 * represent the top-level directory and must already be complete.
361 * Sort ref_dirs and recurse into subdirectories as necessary. If
362 * mkdir is set, then create any missing directories; otherwise,
363 * return NULL if the desired directory cannot be found.
365 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
366 const char *refname, int mkdir)
369 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
370 size_t dirnamelen = slash - refname + 1;
371 struct ref_dir *subdir;
372 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
384 * Find the value entry with the given name in dir, sorting ref_dirs
385 * and recursing into subdirectories as necessary. If the name is not
386 * found or it corresponds to a directory entry, return NULL.
388 static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
391 struct ref_entry *entry;
392 dir = find_containing_dir(dir, refname, 0);
395 entry_index = search_ref_dir(dir, refname, strlen(refname));
396 if (entry_index == -1)
398 entry = dir->entries[entry_index];
399 return (entry->flag & REF_DIR) ? NULL : entry;
403 * Remove the entry with the given name from dir, recursing into
404 * subdirectories as necessary. If refname is the name of a directory
405 * (i.e., ends with '/'), then remove the directory and its contents.
406 * If the removal was successful, return the number of entries
407 * remaining in the directory entry that contained the deleted entry.
408 * If the name was not found, return -1. Please note that this
409 * function only deletes the entry from the cache; it does not delete
410 * it from the filesystem or ensure that other cache entries (which
411 * might be symbolic references to the removed entry) are updated.
412 * Nor does it remove any containing dir entries that might be made
413 * empty by the removal. dir must represent the top-level directory
414 * and must already be complete.
416 static int remove_entry(struct ref_dir *dir, const char *refname)
418 int refname_len = strlen(refname);
420 struct ref_entry *entry;
421 int is_dir = refname[refname_len - 1] == '/';
424 * refname represents a reference directory. Remove
425 * the trailing slash; otherwise we will get the
426 * directory *representing* refname rather than the
427 * one *containing* it.
429 char *dirname = xmemdupz(refname, refname_len - 1);
430 dir = find_containing_dir(dir, dirname, 0);
433 dir = find_containing_dir(dir, refname, 0);
437 entry_index = search_ref_dir(dir, refname, refname_len);
438 if (entry_index == -1)
440 entry = dir->entries[entry_index];
442 memmove(&dir->entries[entry_index],
443 &dir->entries[entry_index + 1],
444 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
447 if (dir->sorted > entry_index)
449 free_ref_entry(entry);
454 * Add a ref_entry to the ref_dir (unsorted), recursing into
455 * subdirectories as necessary. dir must represent the top-level
456 * directory. Return 0 on success.
458 static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
460 dir = find_containing_dir(dir, ref->name, 1);
463 add_entry_to_dir(dir, ref);
468 * Emit a warning and return true iff ref1 and ref2 have the same name
469 * and the same sha1. Die if they have the same name but different
472 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
474 if (strcmp(ref1->name, ref2->name))
477 /* Duplicate name; make sure that they don't conflict: */
479 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
480 /* This is impossible by construction */
481 die("Reference directory conflict: %s", ref1->name);
483 if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
484 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
486 warning("Duplicated ref: %s", ref1->name);
491 * Sort the entries in dir non-recursively (if they are not already
492 * sorted) and remove any duplicate entries.
494 static void sort_ref_dir(struct ref_dir *dir)
497 struct ref_entry *last = NULL;
500 * This check also prevents passing a zero-length array to qsort(),
501 * which is a problem on some platforms.
503 if (dir->sorted == dir->nr)
506 QSORT(dir->entries, dir->nr, ref_entry_cmp);
508 /* Remove any duplicates: */
509 for (i = 0, j = 0; j < dir->nr; j++) {
510 struct ref_entry *entry = dir->entries[j];
511 if (last && is_dup_ref(last, entry))
512 free_ref_entry(entry);
514 last = dir->entries[i++] = entry;
516 dir->sorted = dir->nr = i;
520 * Return true if refname, which has the specified oid and flags, can
521 * be resolved to an object in the database. If the referred-to object
522 * does not exist, emit a warning and return false.
524 static int ref_resolves_to_object(const char *refname,
525 const struct object_id *oid,
528 if (flags & REF_ISBROKEN)
530 if (!has_sha1_file(oid->hash)) {
531 error("%s does not point to a valid object!", refname);
538 * Return true if the reference described by entry can be resolved to
539 * an object in the database; otherwise, emit a warning and return
542 static int entry_resolves_to_object(struct ref_entry *entry)
544 return ref_resolves_to_object(entry->name,
545 &entry->u.value.oid, entry->flag);
548 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
551 * Call fn for each reference in dir that has index in the range
552 * offset <= index < dir->nr. Recurse into subdirectories that are in
553 * that index range, sorting them before iterating. This function
554 * does not sort dir itself; it should be sorted beforehand. fn is
555 * called for all references, including broken ones.
557 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
558 each_ref_entry_fn fn, void *cb_data)
561 assert(dir->sorted == dir->nr);
562 for (i = offset; i < dir->nr; i++) {
563 struct ref_entry *entry = dir->entries[i];
565 if (entry->flag & REF_DIR) {
566 struct ref_dir *subdir = get_ref_dir(entry);
567 sort_ref_dir(subdir);
568 retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
570 retval = fn(entry, cb_data);
579 * Load all of the refs from the dir into our in-memory cache. The hard work
580 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
581 * through all of the sub-directories. We do not even need to care about
582 * sorting, as traversal order does not matter to us.
584 static void prime_ref_dir(struct ref_dir *dir)
587 for (i = 0; i < dir->nr; i++) {
588 struct ref_entry *entry = dir->entries[i];
589 if (entry->flag & REF_DIR)
590 prime_ref_dir(get_ref_dir(entry));
595 * A level in the reference hierarchy that is currently being iterated
598 struct cache_ref_iterator_level {
600 * The ref_dir being iterated over at this level. The ref_dir
601 * is sorted before being stored here.
606 * The index of the current entry within dir (which might
607 * itself be a directory). If index == -1, then the iteration
608 * hasn't yet begun. If index == dir->nr, then the iteration
609 * through this level is over.
615 * Represent an iteration through a ref_dir in the memory cache. The
616 * iteration recurses through subdirectories.
618 struct cache_ref_iterator {
619 struct ref_iterator base;
622 * The number of levels currently on the stack. This is always
623 * at least 1, because when it becomes zero the iteration is
624 * ended and this struct is freed.
628 /* The number of levels that have been allocated on the stack */
632 * A stack of levels. levels[0] is the uppermost level that is
633 * being iterated over in this iteration. (This is not
634 * necessary the top level in the references hierarchy. If we
635 * are iterating through a subtree, then levels[0] will hold
636 * the ref_dir for that subtree, and subsequent levels will go
639 struct cache_ref_iterator_level *levels;
642 static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
644 struct cache_ref_iterator *iter =
645 (struct cache_ref_iterator *)ref_iterator;
648 struct cache_ref_iterator_level *level =
649 &iter->levels[iter->levels_nr - 1];
650 struct ref_dir *dir = level->dir;
651 struct ref_entry *entry;
653 if (level->index == -1)
656 if (++level->index == level->dir->nr) {
657 /* This level is exhausted; pop up a level */
658 if (--iter->levels_nr == 0)
659 return ref_iterator_abort(ref_iterator);
664 entry = dir->entries[level->index];
666 if (entry->flag & REF_DIR) {
667 /* push down a level */
668 ALLOC_GROW(iter->levels, iter->levels_nr + 1,
671 level = &iter->levels[iter->levels_nr++];
672 level->dir = get_ref_dir(entry);
675 iter->base.refname = entry->name;
676 iter->base.oid = &entry->u.value.oid;
677 iter->base.flags = entry->flag;
683 static enum peel_status peel_entry(struct ref_entry *entry, int repeel);
685 static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
686 struct object_id *peeled)
688 struct cache_ref_iterator *iter =
689 (struct cache_ref_iterator *)ref_iterator;
690 struct cache_ref_iterator_level *level;
691 struct ref_entry *entry;
693 level = &iter->levels[iter->levels_nr - 1];
695 if (level->index == -1)
696 die("BUG: peel called before advance for cache iterator");
698 entry = level->dir->entries[level->index];
700 if (peel_entry(entry, 0))
702 oidcpy(peeled, &entry->u.value.peeled);
706 static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
708 struct cache_ref_iterator *iter =
709 (struct cache_ref_iterator *)ref_iterator;
712 base_ref_iterator_free(ref_iterator);
716 static struct ref_iterator_vtable cache_ref_iterator_vtable = {
717 cache_ref_iterator_advance,
718 cache_ref_iterator_peel,
719 cache_ref_iterator_abort
722 static struct ref_iterator *cache_ref_iterator_begin(struct ref_dir *dir)
724 struct cache_ref_iterator *iter;
725 struct ref_iterator *ref_iterator;
726 struct cache_ref_iterator_level *level;
728 iter = xcalloc(1, sizeof(*iter));
729 ref_iterator = &iter->base;
730 base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
731 ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
734 level = &iter->levels[0];
741 struct nonmatching_ref_data {
742 const struct string_list *skip;
743 const char *conflicting_refname;
746 static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
748 struct nonmatching_ref_data *data = vdata;
750 if (data->skip && string_list_has_string(data->skip, entry->name))
753 data->conflicting_refname = entry->name;
758 * Return 0 if a reference named refname could be created without
759 * conflicting with the name of an existing reference in dir.
760 * See verify_refname_available for more information.
762 static int verify_refname_available_dir(const char *refname,
763 const struct string_list *extras,
764 const struct string_list *skip,
769 const char *extra_refname;
771 struct strbuf dirname = STRBUF_INIT;
775 * For the sake of comments in this function, suppose that
776 * refname is "refs/foo/bar".
781 strbuf_grow(&dirname, strlen(refname) + 1);
782 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
783 /* Expand dirname to the new prefix, not including the trailing slash: */
784 strbuf_add(&dirname, refname + dirname.len, slash - refname - dirname.len);
787 * We are still at a leading dir of the refname (e.g.,
788 * "refs/foo"; if there is a reference with that name,
789 * it is a conflict, *unless* it is in skip.
792 pos = search_ref_dir(dir, dirname.buf, dirname.len);
794 (!skip || !string_list_has_string(skip, dirname.buf))) {
796 * We found a reference whose name is
797 * a proper prefix of refname; e.g.,
798 * "refs/foo", and is not in skip.
800 strbuf_addf(err, "'%s' exists; cannot create '%s'",
801 dirname.buf, refname);
806 if (extras && string_list_has_string(extras, dirname.buf) &&
807 (!skip || !string_list_has_string(skip, dirname.buf))) {
808 strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
809 refname, dirname.buf);
814 * Otherwise, we can try to continue our search with
815 * the next component. So try to look up the
816 * directory, e.g., "refs/foo/". If we come up empty,
817 * we know there is nothing under this whole prefix,
818 * but even in that case we still have to continue the
819 * search for conflicts with extras.
821 strbuf_addch(&dirname, '/');
823 pos = search_ref_dir(dir, dirname.buf, dirname.len);
826 * There was no directory "refs/foo/",
827 * so there is nothing under this
828 * whole prefix. So there is no need
829 * to continue looking for conflicting
830 * references. But we need to continue
831 * looking for conflicting extras.
835 dir = get_ref_dir(dir->entries[pos]);
841 * We are at the leaf of our refname (e.g., "refs/foo/bar").
842 * There is no point in searching for a reference with that
843 * name, because a refname isn't considered to conflict with
844 * itself. But we still need to check for references whose
845 * names are in the "refs/foo/bar/" namespace, because they
848 strbuf_addstr(&dirname, refname + dirname.len);
849 strbuf_addch(&dirname, '/');
852 pos = search_ref_dir(dir, dirname.buf, dirname.len);
856 * We found a directory named "$refname/"
857 * (e.g., "refs/foo/bar/"). It is a problem
858 * iff it contains any ref that is not in
861 struct nonmatching_ref_data data;
864 data.conflicting_refname = NULL;
865 dir = get_ref_dir(dir->entries[pos]);
867 if (do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data)) {
868 strbuf_addf(err, "'%s' exists; cannot create '%s'",
869 data.conflicting_refname, refname);
875 extra_refname = find_descendant_ref(dirname.buf, extras, skip);
877 strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
878 refname, extra_refname);
883 strbuf_release(&dirname);
887 struct packed_ref_cache {
888 struct ref_entry *root;
891 * Count of references to the data structure in this instance,
892 * including the pointer from files_ref_store::packed if any.
893 * The data will not be freed as long as the reference count
896 unsigned int referrers;
899 * Iff the packed-refs file associated with this instance is
900 * currently locked for writing, this points at the associated
901 * lock (which is owned by somebody else). The referrer count
902 * is also incremented when the file is locked and decremented
903 * when it is unlocked.
905 struct lock_file *lock;
907 /* The metadata from when this packed-refs cache was read */
908 struct stat_validity validity;
912 * Future: need to be in "struct repository"
913 * when doing a full libification.
915 struct files_ref_store {
916 struct ref_store base;
917 unsigned int store_flags;
921 char *packed_refs_path;
923 struct ref_entry *loose;
924 struct packed_ref_cache *packed;
927 /* Lock used for the main packed-refs file: */
928 static struct lock_file packlock;
931 * Increment the reference count of *packed_refs.
933 static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
935 packed_refs->referrers++;
939 * Decrease the reference count of *packed_refs. If it goes to zero,
940 * free *packed_refs and return true; otherwise return false.
942 static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
944 if (!--packed_refs->referrers) {
945 free_ref_entry(packed_refs->root);
946 stat_validity_clear(&packed_refs->validity);
954 static void clear_packed_ref_cache(struct files_ref_store *refs)
957 struct packed_ref_cache *packed_refs = refs->packed;
959 if (packed_refs->lock)
960 die("internal error: packed-ref cache cleared while locked");
962 release_packed_ref_cache(packed_refs);
966 static void clear_loose_ref_cache(struct files_ref_store *refs)
969 free_ref_entry(refs->loose);
975 * Create a new submodule ref cache and add it to the internal
978 static struct ref_store *files_ref_store_create(const char *gitdir,
981 struct files_ref_store *refs = xcalloc(1, sizeof(*refs));
982 struct ref_store *ref_store = (struct ref_store *)refs;
983 struct strbuf sb = STRBUF_INIT;
985 base_ref_store_init(ref_store, &refs_be_files);
986 refs->store_flags = flags;
988 refs->gitdir = xstrdup(gitdir);
989 get_common_dir_noenv(&sb, gitdir);
990 refs->gitcommondir = strbuf_detach(&sb, NULL);
991 strbuf_addf(&sb, "%s/packed-refs", refs->gitcommondir);
992 refs->packed_refs_path = strbuf_detach(&sb, NULL);
998 * Die if refs is not the main ref store. caller is used in any
999 * necessary error messages.
1001 static void files_assert_main_repository(struct files_ref_store *refs,
1004 if (refs->store_flags & REF_STORE_MAIN)
1007 die("BUG: operation %s only allowed for main ref store", caller);
1011 * Downcast ref_store to files_ref_store. Die if ref_store is not a
1012 * files_ref_store. required_flags is compared with ref_store's
1013 * store_flags to ensure the ref_store has all required capabilities.
1014 * "caller" is used in any necessary error messages.
1016 static struct files_ref_store *files_downcast(struct ref_store *ref_store,
1017 unsigned int required_flags,
1020 struct files_ref_store *refs;
1022 if (ref_store->be != &refs_be_files)
1023 die("BUG: ref_store is type \"%s\" not \"files\" in %s",
1024 ref_store->be->name, caller);
1026 refs = (struct files_ref_store *)ref_store;
1028 if ((refs->store_flags & required_flags) != required_flags)
1029 die("BUG: operation %s requires abilities 0x%x, but only have 0x%x",
1030 caller, required_flags, refs->store_flags);
1035 /* The length of a peeled reference line in packed-refs, including EOL: */
1036 #define PEELED_LINE_LENGTH 42
1039 * The packed-refs header line that we write out. Perhaps other
1040 * traits will be added later. The trailing space is required.
1042 static const char PACKED_REFS_HEADER[] =
1043 "# pack-refs with: peeled fully-peeled \n";
1046 * Parse one line from a packed-refs file. Write the SHA1 to sha1.
1047 * Return a pointer to the refname within the line (null-terminated),
1048 * or NULL if there was a problem.
1050 static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
1055 * 42: the answer to everything.
1057 * In this case, it happens to be the answer to
1058 * 40 (length of sha1 hex representation)
1059 * +1 (space in between hex and name)
1060 * +1 (newline at the end of the line)
1062 if (line->len <= 42)
1065 if (get_sha1_hex(line->buf, sha1) < 0)
1067 if (!isspace(line->buf[40]))
1070 ref = line->buf + 41;
1074 if (line->buf[line->len - 1] != '\n')
1076 line->buf[--line->len] = 0;
1082 * Read f, which is a packed-refs file, into dir.
1084 * A comment line of the form "# pack-refs with: " may contain zero or
1085 * more traits. We interpret the traits as follows:
1089 * Probably no references are peeled. But if the file contains a
1090 * peeled value for a reference, we will use it.
1094 * References under "refs/tags/", if they *can* be peeled, *are*
1095 * peeled in this file. References outside of "refs/tags/" are
1096 * probably not peeled even if they could have been, but if we find
1097 * a peeled value for such a reference we will use it.
1101 * All references in the file that can be peeled are peeled.
1102 * Inversely (and this is more important), any references in the
1103 * file for which no peeled value is recorded is not peelable. This
1104 * trait should typically be written alongside "peeled" for
1105 * compatibility with older clients, but we do not require it
1106 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
1108 static void read_packed_refs(FILE *f, struct ref_dir *dir)
1110 struct ref_entry *last = NULL;
1111 struct strbuf line = STRBUF_INIT;
1112 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1114 while (strbuf_getwholeline(&line, f, '\n') != EOF) {
1115 unsigned char sha1[20];
1116 const char *refname;
1119 if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
1120 if (strstr(traits, " fully-peeled "))
1121 peeled = PEELED_FULLY;
1122 else if (strstr(traits, " peeled "))
1123 peeled = PEELED_TAGS;
1124 /* perhaps other traits later as well */
1128 refname = parse_ref_line(&line, sha1);
1130 int flag = REF_ISPACKED;
1132 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1133 if (!refname_is_safe(refname))
1134 die("packed refname is dangerous: %s", refname);
1136 flag |= REF_BAD_NAME | REF_ISBROKEN;
1138 last = create_ref_entry(refname, sha1, flag, 0);
1139 if (peeled == PEELED_FULLY ||
1140 (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1141 last->flag |= REF_KNOWS_PEELED;
1146 line.buf[0] == '^' &&
1147 line.len == PEELED_LINE_LENGTH &&
1148 line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1149 !get_sha1_hex(line.buf + 1, sha1)) {
1150 hashcpy(last->u.value.peeled.hash, sha1);
1152 * Regardless of what the file header said,
1153 * we definitely know the value of *this*
1156 last->flag |= REF_KNOWS_PEELED;
1160 strbuf_release(&line);
1163 static const char *files_packed_refs_path(struct files_ref_store *refs)
1165 return refs->packed_refs_path;
1168 static void files_reflog_path(struct files_ref_store *refs,
1170 const char *refname)
1174 * FIXME: of course this is wrong in multi worktree
1175 * setting. To be fixed real soon.
1177 strbuf_addf(sb, "%s/logs", refs->gitcommondir);
1181 switch (ref_type(refname)) {
1182 case REF_TYPE_PER_WORKTREE:
1183 case REF_TYPE_PSEUDOREF:
1184 strbuf_addf(sb, "%s/logs/%s", refs->gitdir, refname);
1186 case REF_TYPE_NORMAL:
1187 strbuf_addf(sb, "%s/logs/%s", refs->gitcommondir, refname);
1190 die("BUG: unknown ref type %d of ref %s",
1191 ref_type(refname), refname);
1195 static void files_ref_path(struct files_ref_store *refs,
1197 const char *refname)
1199 switch (ref_type(refname)) {
1200 case REF_TYPE_PER_WORKTREE:
1201 case REF_TYPE_PSEUDOREF:
1202 strbuf_addf(sb, "%s/%s", refs->gitdir, refname);
1204 case REF_TYPE_NORMAL:
1205 strbuf_addf(sb, "%s/%s", refs->gitcommondir, refname);
1208 die("BUG: unknown ref type %d of ref %s",
1209 ref_type(refname), refname);
1214 * Get the packed_ref_cache for the specified files_ref_store,
1215 * creating it if necessary.
1217 static struct packed_ref_cache *get_packed_ref_cache(struct files_ref_store *refs)
1219 const char *packed_refs_file = files_packed_refs_path(refs);
1222 !stat_validity_check(&refs->packed->validity, packed_refs_file))
1223 clear_packed_ref_cache(refs);
1225 if (!refs->packed) {
1228 refs->packed = xcalloc(1, sizeof(*refs->packed));
1229 acquire_packed_ref_cache(refs->packed);
1230 refs->packed->root = create_dir_entry(refs, "", 0, 0);
1231 f = fopen(packed_refs_file, "r");
1233 stat_validity_update(&refs->packed->validity, fileno(f));
1234 read_packed_refs(f, get_ref_dir(refs->packed->root));
1238 return refs->packed;
1241 static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1243 return get_ref_dir(packed_ref_cache->root);
1246 static struct ref_dir *get_packed_refs(struct files_ref_store *refs)
1248 return get_packed_ref_dir(get_packed_ref_cache(refs));
1252 * Add a reference to the in-memory packed reference cache. This may
1253 * only be called while the packed-refs file is locked (see
1254 * lock_packed_refs()). To actually write the packed-refs file, call
1255 * commit_packed_refs().
1257 static void add_packed_ref(struct files_ref_store *refs,
1258 const char *refname, const unsigned char *sha1)
1260 struct packed_ref_cache *packed_ref_cache = get_packed_ref_cache(refs);
1262 if (!packed_ref_cache->lock)
1263 die("internal error: packed refs not locked");
1264 add_ref(get_packed_ref_dir(packed_ref_cache),
1265 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1269 * Read the loose references from the namespace dirname into dir
1270 * (without recursing). dirname must end with '/'. dir must be the
1271 * directory entry corresponding to dirname.
1273 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1275 struct files_ref_store *refs = dir->ref_store;
1278 int dirnamelen = strlen(dirname);
1279 struct strbuf refname;
1280 struct strbuf path = STRBUF_INIT;
1281 size_t path_baselen;
1283 files_ref_path(refs, &path, dirname);
1284 path_baselen = path.len;
1286 d = opendir(path.buf);
1288 strbuf_release(&path);
1292 strbuf_init(&refname, dirnamelen + 257);
1293 strbuf_add(&refname, dirname, dirnamelen);
1295 while ((de = readdir(d)) != NULL) {
1296 unsigned char sha1[20];
1300 if (de->d_name[0] == '.')
1302 if (ends_with(de->d_name, ".lock"))
1304 strbuf_addstr(&refname, de->d_name);
1305 strbuf_addstr(&path, de->d_name);
1306 if (stat(path.buf, &st) < 0) {
1307 ; /* silently ignore */
1308 } else if (S_ISDIR(st.st_mode)) {
1309 strbuf_addch(&refname, '/');
1310 add_entry_to_dir(dir,
1311 create_dir_entry(refs, refname.buf,
1314 if (!refs_resolve_ref_unsafe(&refs->base,
1316 RESOLVE_REF_READING,
1319 flag |= REF_ISBROKEN;
1320 } else if (is_null_sha1(sha1)) {
1322 * It is so astronomically unlikely
1323 * that NULL_SHA1 is the SHA-1 of an
1324 * actual object that we consider its
1325 * appearance in a loose reference
1326 * file to be repo corruption
1327 * (probably due to a software bug).
1329 flag |= REF_ISBROKEN;
1332 if (check_refname_format(refname.buf,
1333 REFNAME_ALLOW_ONELEVEL)) {
1334 if (!refname_is_safe(refname.buf))
1335 die("loose refname is dangerous: %s", refname.buf);
1337 flag |= REF_BAD_NAME | REF_ISBROKEN;
1339 add_entry_to_dir(dir,
1340 create_ref_entry(refname.buf, sha1, flag, 0));
1342 strbuf_setlen(&refname, dirnamelen);
1343 strbuf_setlen(&path, path_baselen);
1345 strbuf_release(&refname);
1346 strbuf_release(&path);
1350 static struct ref_dir *get_loose_refs(struct files_ref_store *refs)
1354 * Mark the top-level directory complete because we
1355 * are about to read the only subdirectory that can
1358 refs->loose = create_dir_entry(refs, "", 0, 0);
1360 * Create an incomplete entry for "refs/":
1362 add_entry_to_dir(get_ref_dir(refs->loose),
1363 create_dir_entry(refs, "refs/", 5, 1));
1365 return get_ref_dir(refs->loose);
1369 * Return the ref_entry for the given refname from the packed
1370 * references. If it does not exist, return NULL.
1372 static struct ref_entry *get_packed_ref(struct files_ref_store *refs,
1373 const char *refname)
1375 return find_ref(get_packed_refs(refs), refname);
1379 * A loose ref file doesn't exist; check for a packed ref.
1381 static int resolve_packed_ref(struct files_ref_store *refs,
1382 const char *refname,
1383 unsigned char *sha1, unsigned int *flags)
1385 struct ref_entry *entry;
1388 * The loose reference file does not exist; check for a packed
1391 entry = get_packed_ref(refs, refname);
1393 hashcpy(sha1, entry->u.value.oid.hash);
1394 *flags |= REF_ISPACKED;
1397 /* refname is not a packed reference. */
1401 static int files_read_raw_ref(struct ref_store *ref_store,
1402 const char *refname, unsigned char *sha1,
1403 struct strbuf *referent, unsigned int *type)
1405 struct files_ref_store *refs =
1406 files_downcast(ref_store, REF_STORE_READ, "read_raw_ref");
1407 struct strbuf sb_contents = STRBUF_INIT;
1408 struct strbuf sb_path = STRBUF_INIT;
1415 int remaining_retries = 3;
1418 strbuf_reset(&sb_path);
1420 files_ref_path(refs, &sb_path, refname);
1426 * We might have to loop back here to avoid a race
1427 * condition: first we lstat() the file, then we try
1428 * to read it as a link or as a file. But if somebody
1429 * changes the type of the file (file <-> directory
1430 * <-> symlink) between the lstat() and reading, then
1431 * we don't want to report that as an error but rather
1432 * try again starting with the lstat().
1434 * We'll keep a count of the retries, though, just to avoid
1435 * any confusing situation sending us into an infinite loop.
1438 if (remaining_retries-- <= 0)
1441 if (lstat(path, &st) < 0) {
1442 if (errno != ENOENT)
1444 if (resolve_packed_ref(refs, refname, sha1, type)) {
1452 /* Follow "normalized" - ie "refs/.." symlinks by hand */
1453 if (S_ISLNK(st.st_mode)) {
1454 strbuf_reset(&sb_contents);
1455 if (strbuf_readlink(&sb_contents, path, 0) < 0) {
1456 if (errno == ENOENT || errno == EINVAL)
1457 /* inconsistent with lstat; retry */
1462 if (starts_with(sb_contents.buf, "refs/") &&
1463 !check_refname_format(sb_contents.buf, 0)) {
1464 strbuf_swap(&sb_contents, referent);
1465 *type |= REF_ISSYMREF;
1470 * It doesn't look like a refname; fall through to just
1471 * treating it like a non-symlink, and reading whatever it
1476 /* Is it a directory? */
1477 if (S_ISDIR(st.st_mode)) {
1479 * Even though there is a directory where the loose
1480 * ref is supposed to be, there could still be a
1483 if (resolve_packed_ref(refs, refname, sha1, type)) {
1492 * Anything else, just open it and try to use it as
1495 fd = open(path, O_RDONLY);
1497 if (errno == ENOENT && !S_ISLNK(st.st_mode))
1498 /* inconsistent with lstat; retry */
1503 strbuf_reset(&sb_contents);
1504 if (strbuf_read(&sb_contents, fd, 256) < 0) {
1505 int save_errno = errno;
1511 strbuf_rtrim(&sb_contents);
1512 buf = sb_contents.buf;
1513 if (starts_with(buf, "ref:")) {
1515 while (isspace(*buf))
1518 strbuf_reset(referent);
1519 strbuf_addstr(referent, buf);
1520 *type |= REF_ISSYMREF;
1526 * Please note that FETCH_HEAD has additional
1527 * data after the sha.
1529 if (get_sha1_hex(buf, sha1) ||
1530 (buf[40] != '\0' && !isspace(buf[40]))) {
1531 *type |= REF_ISBROKEN;
1540 strbuf_release(&sb_path);
1541 strbuf_release(&sb_contents);
1546 static void unlock_ref(struct ref_lock *lock)
1548 /* Do not free lock->lk -- atexit() still looks at them */
1550 rollback_lock_file(lock->lk);
1551 free(lock->ref_name);
1556 * Lock refname, without following symrefs, and set *lock_p to point
1557 * at a newly-allocated lock object. Fill in lock->old_oid, referent,
1558 * and type similarly to read_raw_ref().
1560 * The caller must verify that refname is a "safe" reference name (in
1561 * the sense of refname_is_safe()) before calling this function.
1563 * If the reference doesn't already exist, verify that refname doesn't
1564 * have a D/F conflict with any existing references. extras and skip
1565 * are passed to verify_refname_available_dir() for this check.
1567 * If mustexist is not set and the reference is not found or is
1568 * broken, lock the reference anyway but clear sha1.
1570 * Return 0 on success. On failure, write an error message to err and
1571 * return TRANSACTION_NAME_CONFLICT or TRANSACTION_GENERIC_ERROR.
1573 * Implementation note: This function is basically
1578 * but it includes a lot more code to
1579 * - Deal with possible races with other processes
1580 * - Avoid calling verify_refname_available_dir() when it can be
1581 * avoided, namely if we were successfully able to read the ref
1582 * - Generate informative error messages in the case of failure
1584 static int lock_raw_ref(struct files_ref_store *refs,
1585 const char *refname, int mustexist,
1586 const struct string_list *extras,
1587 const struct string_list *skip,
1588 struct ref_lock **lock_p,
1589 struct strbuf *referent,
1593 struct ref_lock *lock;
1594 struct strbuf ref_file = STRBUF_INIT;
1595 int attempts_remaining = 3;
1596 int ret = TRANSACTION_GENERIC_ERROR;
1599 files_assert_main_repository(refs, "lock_raw_ref");
1603 /* First lock the file so it can't change out from under us. */
1605 *lock_p = lock = xcalloc(1, sizeof(*lock));
1607 lock->ref_name = xstrdup(refname);
1608 files_ref_path(refs, &ref_file, refname);
1611 switch (safe_create_leading_directories(ref_file.buf)) {
1613 break; /* success */
1616 * Suppose refname is "refs/foo/bar". We just failed
1617 * to create the containing directory, "refs/foo",
1618 * because there was a non-directory in the way. This
1619 * indicates a D/F conflict, probably because of
1620 * another reference such as "refs/foo". There is no
1621 * reason to expect this error to be transitory.
1623 if (refs_verify_refname_available(&refs->base, refname,
1624 extras, skip, err)) {
1627 * To the user the relevant error is
1628 * that the "mustexist" reference is
1632 strbuf_addf(err, "unable to resolve reference '%s'",
1636 * The error message set by
1637 * verify_refname_available_dir() is OK.
1639 ret = TRANSACTION_NAME_CONFLICT;
1643 * The file that is in the way isn't a loose
1644 * reference. Report it as a low-level
1647 strbuf_addf(err, "unable to create lock file %s.lock; "
1648 "non-directory in the way",
1653 /* Maybe another process was tidying up. Try again. */
1654 if (--attempts_remaining > 0)
1658 strbuf_addf(err, "unable to create directory for %s",
1664 lock->lk = xcalloc(1, sizeof(struct lock_file));
1666 if (hold_lock_file_for_update(lock->lk, ref_file.buf, LOCK_NO_DEREF) < 0) {
1667 if (errno == ENOENT && --attempts_remaining > 0) {
1669 * Maybe somebody just deleted one of the
1670 * directories leading to ref_file. Try
1675 unable_to_lock_message(ref_file.buf, errno, err);
1681 * Now we hold the lock and can read the reference without
1682 * fear that its value will change.
1685 if (files_read_raw_ref(&refs->base, refname,
1686 lock->old_oid.hash, referent, type)) {
1687 if (errno == ENOENT) {
1689 /* Garden variety missing reference. */
1690 strbuf_addf(err, "unable to resolve reference '%s'",
1695 * Reference is missing, but that's OK. We
1696 * know that there is not a conflict with
1697 * another loose reference because
1698 * (supposing that we are trying to lock
1699 * reference "refs/foo/bar"):
1701 * - We were successfully able to create
1702 * the lockfile refs/foo/bar.lock, so we
1703 * know there cannot be a loose reference
1706 * - We got ENOENT and not EISDIR, so we
1707 * know that there cannot be a loose
1708 * reference named "refs/foo/bar/baz".
1711 } else if (errno == EISDIR) {
1713 * There is a directory in the way. It might have
1714 * contained references that have been deleted. If
1715 * we don't require that the reference already
1716 * exists, try to remove the directory so that it
1717 * doesn't cause trouble when we want to rename the
1718 * lockfile into place later.
1721 /* Garden variety missing reference. */
1722 strbuf_addf(err, "unable to resolve reference '%s'",
1725 } else if (remove_dir_recursively(&ref_file,
1726 REMOVE_DIR_EMPTY_ONLY)) {
1727 if (refs_verify_refname_available(
1728 &refs->base, refname,
1729 extras, skip, err)) {
1731 * The error message set by
1732 * verify_refname_available() is OK.
1734 ret = TRANSACTION_NAME_CONFLICT;
1738 * We can't delete the directory,
1739 * but we also don't know of any
1740 * references that it should
1743 strbuf_addf(err, "there is a non-empty directory '%s' "
1744 "blocking reference '%s'",
1745 ref_file.buf, refname);
1749 } else if (errno == EINVAL && (*type & REF_ISBROKEN)) {
1750 strbuf_addf(err, "unable to resolve reference '%s': "
1751 "reference broken", refname);
1754 strbuf_addf(err, "unable to resolve reference '%s': %s",
1755 refname, strerror(errno));
1760 * If the ref did not exist and we are creating it,
1761 * make sure there is no existing packed ref whose
1762 * name begins with our refname, nor a packed ref
1763 * whose name is a proper prefix of our refname.
1765 if (verify_refname_available_dir(
1766 refname, extras, skip,
1767 get_packed_refs(refs),
1781 strbuf_release(&ref_file);
1786 * Peel the entry (if possible) and return its new peel_status. If
1787 * repeel is true, re-peel the entry even if there is an old peeled
1788 * value that is already stored in it.
1790 * It is OK to call this function with a packed reference entry that
1791 * might be stale and might even refer to an object that has since
1792 * been garbage-collected. In such a case, if the entry has
1793 * REF_KNOWS_PEELED then leave the status unchanged and return
1794 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1796 static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1798 enum peel_status status;
1800 if (entry->flag & REF_KNOWS_PEELED) {
1802 entry->flag &= ~REF_KNOWS_PEELED;
1803 oidclr(&entry->u.value.peeled);
1805 return is_null_oid(&entry->u.value.peeled) ?
1806 PEEL_NON_TAG : PEEL_PEELED;
1809 if (entry->flag & REF_ISBROKEN)
1811 if (entry->flag & REF_ISSYMREF)
1812 return PEEL_IS_SYMREF;
1814 status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
1815 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1816 entry->flag |= REF_KNOWS_PEELED;
1820 static int files_peel_ref(struct ref_store *ref_store,
1821 const char *refname, unsigned char *sha1)
1823 struct files_ref_store *refs =
1824 files_downcast(ref_store, REF_STORE_READ | REF_STORE_ODB,
1827 unsigned char base[20];
1829 if (current_ref_iter && current_ref_iter->refname == refname) {
1830 struct object_id peeled;
1832 if (ref_iterator_peel(current_ref_iter, &peeled))
1834 hashcpy(sha1, peeled.hash);
1838 if (refs_read_ref_full(ref_store, refname,
1839 RESOLVE_REF_READING, base, &flag))
1843 * If the reference is packed, read its ref_entry from the
1844 * cache in the hope that we already know its peeled value.
1845 * We only try this optimization on packed references because
1846 * (a) forcing the filling of the loose reference cache could
1847 * be expensive and (b) loose references anyway usually do not
1848 * have REF_KNOWS_PEELED.
1850 if (flag & REF_ISPACKED) {
1851 struct ref_entry *r = get_packed_ref(refs, refname);
1853 if (peel_entry(r, 0))
1855 hashcpy(sha1, r->u.value.peeled.hash);
1860 return peel_object(base, sha1);
1863 struct files_ref_iterator {
1864 struct ref_iterator base;
1866 struct packed_ref_cache *packed_ref_cache;
1867 struct ref_iterator *iter0;
1871 static int files_ref_iterator_advance(struct ref_iterator *ref_iterator)
1873 struct files_ref_iterator *iter =
1874 (struct files_ref_iterator *)ref_iterator;
1877 while ((ok = ref_iterator_advance(iter->iter0)) == ITER_OK) {
1878 if (iter->flags & DO_FOR_EACH_PER_WORKTREE_ONLY &&
1879 ref_type(iter->iter0->refname) != REF_TYPE_PER_WORKTREE)
1882 if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
1883 !ref_resolves_to_object(iter->iter0->refname,
1885 iter->iter0->flags))
1888 iter->base.refname = iter->iter0->refname;
1889 iter->base.oid = iter->iter0->oid;
1890 iter->base.flags = iter->iter0->flags;
1895 if (ref_iterator_abort(ref_iterator) != ITER_DONE)
1901 static int files_ref_iterator_peel(struct ref_iterator *ref_iterator,
1902 struct object_id *peeled)
1904 struct files_ref_iterator *iter =
1905 (struct files_ref_iterator *)ref_iterator;
1907 return ref_iterator_peel(iter->iter0, peeled);
1910 static int files_ref_iterator_abort(struct ref_iterator *ref_iterator)
1912 struct files_ref_iterator *iter =
1913 (struct files_ref_iterator *)ref_iterator;
1917 ok = ref_iterator_abort(iter->iter0);
1919 release_packed_ref_cache(iter->packed_ref_cache);
1920 base_ref_iterator_free(ref_iterator);
1924 static struct ref_iterator_vtable files_ref_iterator_vtable = {
1925 files_ref_iterator_advance,
1926 files_ref_iterator_peel,
1927 files_ref_iterator_abort
1930 static struct ref_iterator *files_ref_iterator_begin(
1931 struct ref_store *ref_store,
1932 const char *prefix, unsigned int flags)
1934 struct files_ref_store *refs;
1935 struct ref_dir *loose_dir, *packed_dir;
1936 struct ref_iterator *loose_iter, *packed_iter;
1937 struct files_ref_iterator *iter;
1938 struct ref_iterator *ref_iterator;
1940 if (ref_paranoia < 0)
1941 ref_paranoia = git_env_bool("GIT_REF_PARANOIA", 0);
1943 flags |= DO_FOR_EACH_INCLUDE_BROKEN;
1945 refs = files_downcast(ref_store,
1946 REF_STORE_READ | (ref_paranoia ? 0 : REF_STORE_ODB),
1947 "ref_iterator_begin");
1949 iter = xcalloc(1, sizeof(*iter));
1950 ref_iterator = &iter->base;
1951 base_ref_iterator_init(ref_iterator, &files_ref_iterator_vtable);
1954 * We must make sure that all loose refs are read before
1955 * accessing the packed-refs file; this avoids a race
1956 * condition if loose refs are migrated to the packed-refs
1957 * file by a simultaneous process, but our in-memory view is
1958 * from before the migration. We ensure this as follows:
1959 * First, we call prime_ref_dir(), which pre-reads the loose
1960 * references for the subtree into the cache. (If they've
1961 * already been read, that's OK; we only need to guarantee
1962 * that they're read before the packed refs, not *how much*
1963 * before.) After that, we call get_packed_ref_cache(), which
1964 * internally checks whether the packed-ref cache is up to
1965 * date with what is on disk, and re-reads it if not.
1968 loose_dir = get_loose_refs(refs);
1970 if (prefix && *prefix)
1971 loose_dir = find_containing_dir(loose_dir, prefix, 0);
1974 prime_ref_dir(loose_dir);
1975 loose_iter = cache_ref_iterator_begin(loose_dir);
1977 /* There's nothing to iterate over. */
1978 loose_iter = empty_ref_iterator_begin();
1981 iter->packed_ref_cache = get_packed_ref_cache(refs);
1982 acquire_packed_ref_cache(iter->packed_ref_cache);
1983 packed_dir = get_packed_ref_dir(iter->packed_ref_cache);
1985 if (prefix && *prefix)
1986 packed_dir = find_containing_dir(packed_dir, prefix, 0);
1989 packed_iter = cache_ref_iterator_begin(packed_dir);
1991 /* There's nothing to iterate over. */
1992 packed_iter = empty_ref_iterator_begin();
1995 iter->iter0 = overlay_ref_iterator_begin(loose_iter, packed_iter);
1996 iter->flags = flags;
1998 return ref_iterator;
2002 * Verify that the reference locked by lock has the value old_sha1.
2003 * Fail if the reference doesn't exist and mustexist is set. Return 0
2004 * on success. On error, write an error message to err, set errno, and
2005 * return a negative value.
2007 static int verify_lock(struct ref_store *ref_store, struct ref_lock *lock,
2008 const unsigned char *old_sha1, int mustexist,
2013 if (refs_read_ref_full(ref_store, lock->ref_name,
2014 mustexist ? RESOLVE_REF_READING : 0,
2015 lock->old_oid.hash, NULL)) {
2017 int save_errno = errno;
2018 strbuf_addf(err, "can't verify ref '%s'", lock->ref_name);
2022 oidclr(&lock->old_oid);
2026 if (old_sha1 && hashcmp(lock->old_oid.hash, old_sha1)) {
2027 strbuf_addf(err, "ref '%s' is at %s but expected %s",
2029 oid_to_hex(&lock->old_oid),
2030 sha1_to_hex(old_sha1));
2037 static int remove_empty_directories(struct strbuf *path)
2040 * we want to create a file but there is a directory there;
2041 * if that is an empty directory (or a directory that contains
2042 * only empty directories), remove them.
2044 return remove_dir_recursively(path, REMOVE_DIR_EMPTY_ONLY);
2047 static int create_reflock(const char *path, void *cb)
2049 struct lock_file *lk = cb;
2051 return hold_lock_file_for_update(lk, path, LOCK_NO_DEREF) < 0 ? -1 : 0;
2055 * Locks a ref returning the lock on success and NULL on failure.
2056 * On failure errno is set to something meaningful.
2058 static struct ref_lock *lock_ref_sha1_basic(struct files_ref_store *refs,
2059 const char *refname,
2060 const unsigned char *old_sha1,
2061 const struct string_list *extras,
2062 const struct string_list *skip,
2063 unsigned int flags, int *type,
2066 struct strbuf ref_file = STRBUF_INIT;
2067 struct ref_lock *lock;
2069 int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
2070 int resolve_flags = RESOLVE_REF_NO_RECURSE;
2073 files_assert_main_repository(refs, "lock_ref_sha1_basic");
2076 lock = xcalloc(1, sizeof(struct ref_lock));
2079 resolve_flags |= RESOLVE_REF_READING;
2080 if (flags & REF_DELETING)
2081 resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
2083 files_ref_path(refs, &ref_file, refname);
2084 resolved = !!refs_resolve_ref_unsafe(&refs->base,
2085 refname, resolve_flags,
2086 lock->old_oid.hash, type);
2087 if (!resolved && errno == EISDIR) {
2089 * we are trying to lock foo but we used to
2090 * have foo/bar which now does not exist;
2091 * it is normal for the empty directory 'foo'
2094 if (remove_empty_directories(&ref_file)) {
2096 if (!refs_verify_refname_available(
2098 refname, extras, skip, err))
2099 strbuf_addf(err, "there are still refs under '%s'",
2103 resolved = !!refs_resolve_ref_unsafe(&refs->base,
2104 refname, resolve_flags,
2105 lock->old_oid.hash, type);
2109 if (last_errno != ENOTDIR ||
2110 !refs_verify_refname_available(&refs->base, refname,
2112 strbuf_addf(err, "unable to resolve reference '%s': %s",
2113 refname, strerror(last_errno));
2119 * If the ref did not exist and we are creating it, make sure
2120 * there is no existing packed ref whose name begins with our
2121 * refname, nor a packed ref whose name is a proper prefix of
2124 if (is_null_oid(&lock->old_oid) &&
2125 verify_refname_available_dir(refname, extras, skip,
2126 get_packed_refs(refs),
2128 last_errno = ENOTDIR;
2132 lock->lk = xcalloc(1, sizeof(struct lock_file));
2134 lock->ref_name = xstrdup(refname);
2136 if (raceproof_create_file(ref_file.buf, create_reflock, lock->lk)) {
2138 unable_to_lock_message(ref_file.buf, errno, err);
2142 if (verify_lock(&refs->base, lock, old_sha1, mustexist, err)) {
2153 strbuf_release(&ref_file);
2159 * Write an entry to the packed-refs file for the specified refname.
2160 * If peeled is non-NULL, write it as the entry's peeled value.
2162 static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2163 unsigned char *peeled)
2165 fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2167 fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2171 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2173 static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2175 enum peel_status peel_status = peel_entry(entry, 0);
2177 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2178 error("internal error: %s is not a valid packed reference!",
2180 write_packed_entry(cb_data, entry->name, entry->u.value.oid.hash,
2181 peel_status == PEEL_PEELED ?
2182 entry->u.value.peeled.hash : NULL);
2187 * Lock the packed-refs file for writing. Flags is passed to
2188 * hold_lock_file_for_update(). Return 0 on success. On errors, set
2189 * errno appropriately and return a nonzero value.
2191 static int lock_packed_refs(struct files_ref_store *refs, int flags)
2193 static int timeout_configured = 0;
2194 static int timeout_value = 1000;
2195 struct packed_ref_cache *packed_ref_cache;
2197 files_assert_main_repository(refs, "lock_packed_refs");
2199 if (!timeout_configured) {
2200 git_config_get_int("core.packedrefstimeout", &timeout_value);
2201 timeout_configured = 1;
2204 if (hold_lock_file_for_update_timeout(
2205 &packlock, files_packed_refs_path(refs),
2206 flags, timeout_value) < 0)
2209 * Get the current packed-refs while holding the lock. If the
2210 * packed-refs file has been modified since we last read it,
2211 * this will automatically invalidate the cache and re-read
2212 * the packed-refs file.
2214 packed_ref_cache = get_packed_ref_cache(refs);
2215 packed_ref_cache->lock = &packlock;
2216 /* Increment the reference count to prevent it from being freed: */
2217 acquire_packed_ref_cache(packed_ref_cache);
2222 * Write the current version of the packed refs cache from memory to
2223 * disk. The packed-refs file must already be locked for writing (see
2224 * lock_packed_refs()). Return zero on success. On errors, set errno
2225 * and return a nonzero value
2227 static int commit_packed_refs(struct files_ref_store *refs)
2229 struct packed_ref_cache *packed_ref_cache =
2230 get_packed_ref_cache(refs);
2235 files_assert_main_repository(refs, "commit_packed_refs");
2237 if (!packed_ref_cache->lock)
2238 die("internal error: packed-refs not locked");
2240 out = fdopen_lock_file(packed_ref_cache->lock, "w");
2242 die_errno("unable to fdopen packed-refs descriptor");
2244 fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2245 do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2246 0, write_packed_entry_fn, out);
2248 if (commit_lock_file(packed_ref_cache->lock)) {
2252 packed_ref_cache->lock = NULL;
2253 release_packed_ref_cache(packed_ref_cache);
2259 * Rollback the lockfile for the packed-refs file, and discard the
2260 * in-memory packed reference cache. (The packed-refs file will be
2261 * read anew if it is needed again after this function is called.)
2263 static void rollback_packed_refs(struct files_ref_store *refs)
2265 struct packed_ref_cache *packed_ref_cache =
2266 get_packed_ref_cache(refs);
2268 files_assert_main_repository(refs, "rollback_packed_refs");
2270 if (!packed_ref_cache->lock)
2271 die("internal error: packed-refs not locked");
2272 rollback_lock_file(packed_ref_cache->lock);
2273 packed_ref_cache->lock = NULL;
2274 release_packed_ref_cache(packed_ref_cache);
2275 clear_packed_ref_cache(refs);
2278 struct ref_to_prune {
2279 struct ref_to_prune *next;
2280 unsigned char sha1[20];
2281 char name[FLEX_ARRAY];
2284 struct pack_refs_cb_data {
2286 struct ref_dir *packed_refs;
2287 struct ref_to_prune *ref_to_prune;
2291 * An each_ref_entry_fn that is run over loose references only. If
2292 * the loose reference can be packed, add an entry in the packed ref
2293 * cache. If the reference should be pruned, also add it to
2294 * ref_to_prune in the pack_refs_cb_data.
2296 static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2298 struct pack_refs_cb_data *cb = cb_data;
2299 enum peel_status peel_status;
2300 struct ref_entry *packed_entry;
2301 int is_tag_ref = starts_with(entry->name, "refs/tags/");
2303 /* Do not pack per-worktree refs: */
2304 if (ref_type(entry->name) != REF_TYPE_NORMAL)
2307 /* ALWAYS pack tags */
2308 if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2311 /* Do not pack symbolic or broken refs: */
2312 if ((entry->flag & REF_ISSYMREF) || !entry_resolves_to_object(entry))
2315 /* Add a packed ref cache entry equivalent to the loose entry. */
2316 peel_status = peel_entry(entry, 1);
2317 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2318 die("internal error peeling reference %s (%s)",
2319 entry->name, oid_to_hex(&entry->u.value.oid));
2320 packed_entry = find_ref(cb->packed_refs, entry->name);
2322 /* Overwrite existing packed entry with info from loose entry */
2323 packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2324 oidcpy(&packed_entry->u.value.oid, &entry->u.value.oid);
2326 packed_entry = create_ref_entry(entry->name, entry->u.value.oid.hash,
2327 REF_ISPACKED | REF_KNOWS_PEELED, 0);
2328 add_ref(cb->packed_refs, packed_entry);
2330 oidcpy(&packed_entry->u.value.peeled, &entry->u.value.peeled);
2332 /* Schedule the loose reference for pruning if requested. */
2333 if ((cb->flags & PACK_REFS_PRUNE)) {
2334 struct ref_to_prune *n;
2335 FLEX_ALLOC_STR(n, name, entry->name);
2336 hashcpy(n->sha1, entry->u.value.oid.hash);
2337 n->next = cb->ref_to_prune;
2338 cb->ref_to_prune = n;
2344 REMOVE_EMPTY_PARENTS_REF = 0x01,
2345 REMOVE_EMPTY_PARENTS_REFLOG = 0x02
2349 * Remove empty parent directories associated with the specified
2350 * reference and/or its reflog, but spare [logs/]refs/ and immediate
2351 * subdirs. flags is a combination of REMOVE_EMPTY_PARENTS_REF and/or
2352 * REMOVE_EMPTY_PARENTS_REFLOG.
2354 static void try_remove_empty_parents(struct files_ref_store *refs,
2355 const char *refname,
2358 struct strbuf buf = STRBUF_INIT;
2359 struct strbuf sb = STRBUF_INIT;
2363 strbuf_addstr(&buf, refname);
2365 for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2366 while (*p && *p != '/')
2368 /* tolerate duplicate slashes; see check_refname_format() */
2372 q = buf.buf + buf.len;
2373 while (flags & (REMOVE_EMPTY_PARENTS_REF | REMOVE_EMPTY_PARENTS_REFLOG)) {
2374 while (q > p && *q != '/')
2376 while (q > p && *(q-1) == '/')
2380 strbuf_setlen(&buf, q - buf.buf);
2383 files_ref_path(refs, &sb, buf.buf);
2384 if ((flags & REMOVE_EMPTY_PARENTS_REF) && rmdir(sb.buf))
2385 flags &= ~REMOVE_EMPTY_PARENTS_REF;
2388 files_reflog_path(refs, &sb, buf.buf);
2389 if ((flags & REMOVE_EMPTY_PARENTS_REFLOG) && rmdir(sb.buf))
2390 flags &= ~REMOVE_EMPTY_PARENTS_REFLOG;
2392 strbuf_release(&buf);
2393 strbuf_release(&sb);
2396 /* make sure nobody touched the ref, and unlink */
2397 static void prune_ref(struct files_ref_store *refs, struct ref_to_prune *r)
2399 struct ref_transaction *transaction;
2400 struct strbuf err = STRBUF_INIT;
2402 if (check_refname_format(r->name, 0))
2405 transaction = ref_store_transaction_begin(&refs->base, &err);
2407 ref_transaction_delete(transaction, r->name, r->sha1,
2408 REF_ISPRUNING | REF_NODEREF, NULL, &err) ||
2409 ref_transaction_commit(transaction, &err)) {
2410 ref_transaction_free(transaction);
2411 error("%s", err.buf);
2412 strbuf_release(&err);
2415 ref_transaction_free(transaction);
2416 strbuf_release(&err);
2419 static void prune_refs(struct files_ref_store *refs, struct ref_to_prune *r)
2427 static int files_pack_refs(struct ref_store *ref_store, unsigned int flags)
2429 struct files_ref_store *refs =
2430 files_downcast(ref_store, REF_STORE_WRITE | REF_STORE_ODB,
2432 struct pack_refs_cb_data cbdata;
2434 memset(&cbdata, 0, sizeof(cbdata));
2435 cbdata.flags = flags;
2437 lock_packed_refs(refs, LOCK_DIE_ON_ERROR);
2438 cbdata.packed_refs = get_packed_refs(refs);
2440 do_for_each_entry_in_dir(get_loose_refs(refs), 0,
2441 pack_if_possible_fn, &cbdata);
2443 if (commit_packed_refs(refs))
2444 die_errno("unable to overwrite old ref-pack file");
2446 prune_refs(refs, cbdata.ref_to_prune);
2451 * Rewrite the packed-refs file, omitting any refs listed in
2452 * 'refnames'. On error, leave packed-refs unchanged, write an error
2453 * message to 'err', and return a nonzero value.
2455 * The refs in 'refnames' needn't be sorted. `err` must not be NULL.
2457 static int repack_without_refs(struct files_ref_store *refs,
2458 struct string_list *refnames, struct strbuf *err)
2460 struct ref_dir *packed;
2461 struct string_list_item *refname;
2462 int ret, needs_repacking = 0, removed = 0;
2464 files_assert_main_repository(refs, "repack_without_refs");
2467 /* Look for a packed ref */
2468 for_each_string_list_item(refname, refnames) {
2469 if (get_packed_ref(refs, refname->string)) {
2470 needs_repacking = 1;
2475 /* Avoid locking if we have nothing to do */
2476 if (!needs_repacking)
2477 return 0; /* no refname exists in packed refs */
2479 if (lock_packed_refs(refs, 0)) {
2480 unable_to_lock_message(files_packed_refs_path(refs), errno, err);
2483 packed = get_packed_refs(refs);
2485 /* Remove refnames from the cache */
2486 for_each_string_list_item(refname, refnames)
2487 if (remove_entry(packed, refname->string) != -1)
2491 * All packed entries disappeared while we were
2492 * acquiring the lock.
2494 rollback_packed_refs(refs);
2498 /* Write what remains */
2499 ret = commit_packed_refs(refs);
2501 strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2506 static int files_delete_refs(struct ref_store *ref_store,
2507 struct string_list *refnames, unsigned int flags)
2509 struct files_ref_store *refs =
2510 files_downcast(ref_store, REF_STORE_WRITE, "delete_refs");
2511 struct strbuf err = STRBUF_INIT;
2517 result = repack_without_refs(refs, refnames, &err);
2520 * If we failed to rewrite the packed-refs file, then
2521 * it is unsafe to try to remove loose refs, because
2522 * doing so might expose an obsolete packed value for
2523 * a reference that might even point at an object that
2524 * has been garbage collected.
2526 if (refnames->nr == 1)
2527 error(_("could not delete reference %s: %s"),
2528 refnames->items[0].string, err.buf);
2530 error(_("could not delete references: %s"), err.buf);
2535 for (i = 0; i < refnames->nr; i++) {
2536 const char *refname = refnames->items[i].string;
2538 if (refs_delete_ref(&refs->base, NULL, refname, NULL, flags))
2539 result |= error(_("could not remove reference %s"), refname);
2543 strbuf_release(&err);
2548 * People using contrib's git-new-workdir have .git/logs/refs ->
2549 * /some/other/path/.git/logs/refs, and that may live on another device.
2551 * IOW, to avoid cross device rename errors, the temporary renamed log must
2552 * live into logs/refs.
2554 #define TMP_RENAMED_LOG "refs/.tmp-renamed-log"
2557 const char *tmp_renamed_log;
2561 static int rename_tmp_log_callback(const char *path, void *cb_data)
2563 struct rename_cb *cb = cb_data;
2565 if (rename(cb->tmp_renamed_log, path)) {
2567 * rename(a, b) when b is an existing directory ought
2568 * to result in ISDIR, but Solaris 5.8 gives ENOTDIR.
2569 * Sheesh. Record the true errno for error reporting,
2570 * but report EISDIR to raceproof_create_file() so
2571 * that it knows to retry.
2573 cb->true_errno = errno;
2574 if (errno == ENOTDIR)
2582 static int rename_tmp_log(struct files_ref_store *refs, const char *newrefname)
2584 struct strbuf path = STRBUF_INIT;
2585 struct strbuf tmp = STRBUF_INIT;
2586 struct rename_cb cb;
2589 files_reflog_path(refs, &path, newrefname);
2590 files_reflog_path(refs, &tmp, TMP_RENAMED_LOG);
2591 cb.tmp_renamed_log = tmp.buf;
2592 ret = raceproof_create_file(path.buf, rename_tmp_log_callback, &cb);
2594 if (errno == EISDIR)
2595 error("directory not empty: %s", path.buf);
2597 error("unable to move logfile %s to %s: %s",
2599 strerror(cb.true_errno));
2602 strbuf_release(&path);
2603 strbuf_release(&tmp);
2607 static int write_ref_to_lockfile(struct ref_lock *lock,
2608 const unsigned char *sha1, struct strbuf *err);
2609 static int commit_ref_update(struct files_ref_store *refs,
2610 struct ref_lock *lock,
2611 const unsigned char *sha1, const char *logmsg,
2612 struct strbuf *err);
2614 static int files_rename_ref(struct ref_store *ref_store,
2615 const char *oldrefname, const char *newrefname,
2618 struct files_ref_store *refs =
2619 files_downcast(ref_store, REF_STORE_WRITE, "rename_ref");
2620 unsigned char sha1[20], orig_sha1[20];
2621 int flag = 0, logmoved = 0;
2622 struct ref_lock *lock;
2623 struct stat loginfo;
2624 struct strbuf sb_oldref = STRBUF_INIT;
2625 struct strbuf sb_newref = STRBUF_INIT;
2626 struct strbuf tmp_renamed_log = STRBUF_INIT;
2628 struct strbuf err = STRBUF_INIT;
2630 files_reflog_path(refs, &sb_oldref, oldrefname);
2631 files_reflog_path(refs, &sb_newref, newrefname);
2632 files_reflog_path(refs, &tmp_renamed_log, TMP_RENAMED_LOG);
2634 log = !lstat(sb_oldref.buf, &loginfo);
2635 if (log && S_ISLNK(loginfo.st_mode)) {
2636 ret = error("reflog for %s is a symlink", oldrefname);
2640 if (!refs_resolve_ref_unsafe(&refs->base, oldrefname,
2641 RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2642 orig_sha1, &flag)) {
2643 ret = error("refname %s not found", oldrefname);
2647 if (flag & REF_ISSYMREF) {
2648 ret = error("refname %s is a symbolic ref, renaming it is not supported",
2652 if (!refs_rename_ref_available(&refs->base, oldrefname, newrefname)) {
2657 if (log && rename(sb_oldref.buf, tmp_renamed_log.buf)) {
2658 ret = error("unable to move logfile logs/%s to logs/"TMP_RENAMED_LOG": %s",
2659 oldrefname, strerror(errno));
2663 if (refs_delete_ref(&refs->base, logmsg, oldrefname,
2664 orig_sha1, REF_NODEREF)) {
2665 error("unable to delete old %s", oldrefname);
2670 * Since we are doing a shallow lookup, sha1 is not the
2671 * correct value to pass to delete_ref as old_sha1. But that
2672 * doesn't matter, because an old_sha1 check wouldn't add to
2673 * the safety anyway; we want to delete the reference whatever
2674 * its current value.
2676 if (!refs_read_ref_full(&refs->base, newrefname,
2677 RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2679 refs_delete_ref(&refs->base, NULL, newrefname,
2680 NULL, REF_NODEREF)) {
2681 if (errno == EISDIR) {
2682 struct strbuf path = STRBUF_INIT;
2685 files_ref_path(refs, &path, newrefname);
2686 result = remove_empty_directories(&path);
2687 strbuf_release(&path);
2690 error("Directory not empty: %s", newrefname);
2694 error("unable to delete existing %s", newrefname);
2699 if (log && rename_tmp_log(refs, newrefname))
2704 lock = lock_ref_sha1_basic(refs, newrefname, NULL, NULL, NULL,
2705 REF_NODEREF, NULL, &err);
2707 error("unable to rename '%s' to '%s': %s", oldrefname, newrefname, err.buf);
2708 strbuf_release(&err);
2711 hashcpy(lock->old_oid.hash, orig_sha1);
2713 if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2714 commit_ref_update(refs, lock, orig_sha1, logmsg, &err)) {
2715 error("unable to write current sha1 into %s: %s", newrefname, err.buf);
2716 strbuf_release(&err);
2724 lock = lock_ref_sha1_basic(refs, oldrefname, NULL, NULL, NULL,
2725 REF_NODEREF, NULL, &err);
2727 error("unable to lock %s for rollback: %s", oldrefname, err.buf);
2728 strbuf_release(&err);
2732 flag = log_all_ref_updates;
2733 log_all_ref_updates = LOG_REFS_NONE;
2734 if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2735 commit_ref_update(refs, lock, orig_sha1, NULL, &err)) {
2736 error("unable to write current sha1 into %s: %s", oldrefname, err.buf);
2737 strbuf_release(&err);
2739 log_all_ref_updates = flag;
2742 if (logmoved && rename(sb_newref.buf, sb_oldref.buf))
2743 error("unable to restore logfile %s from %s: %s",
2744 oldrefname, newrefname, strerror(errno));
2745 if (!logmoved && log &&
2746 rename(tmp_renamed_log.buf, sb_oldref.buf))
2747 error("unable to restore logfile %s from logs/"TMP_RENAMED_LOG": %s",
2748 oldrefname, strerror(errno));
2751 strbuf_release(&sb_newref);
2752 strbuf_release(&sb_oldref);
2753 strbuf_release(&tmp_renamed_log);
2758 static int close_ref(struct ref_lock *lock)
2760 if (close_lock_file(lock->lk))
2765 static int commit_ref(struct ref_lock *lock)
2767 char *path = get_locked_file_path(lock->lk);
2770 if (!lstat(path, &st) && S_ISDIR(st.st_mode)) {
2772 * There is a directory at the path we want to rename
2773 * the lockfile to. Hopefully it is empty; try to
2776 size_t len = strlen(path);
2777 struct strbuf sb_path = STRBUF_INIT;
2779 strbuf_attach(&sb_path, path, len, len);
2782 * If this fails, commit_lock_file() will also fail
2783 * and will report the problem.
2785 remove_empty_directories(&sb_path);
2786 strbuf_release(&sb_path);
2791 if (commit_lock_file(lock->lk))
2796 static int open_or_create_logfile(const char *path, void *cb)
2800 *fd = open(path, O_APPEND | O_WRONLY | O_CREAT, 0666);
2801 return (*fd < 0) ? -1 : 0;
2805 * Create a reflog for a ref. If force_create = 0, only create the
2806 * reflog for certain refs (those for which should_autocreate_reflog
2807 * returns non-zero). Otherwise, create it regardless of the reference
2808 * name. If the logfile already existed or was created, return 0 and
2809 * set *logfd to the file descriptor opened for appending to the file.
2810 * If no logfile exists and we decided not to create one, return 0 and
2811 * set *logfd to -1. On failure, fill in *err, set *logfd to -1, and
2814 static int log_ref_setup(struct files_ref_store *refs,
2815 const char *refname, int force_create,
2816 int *logfd, struct strbuf *err)
2818 struct strbuf logfile_sb = STRBUF_INIT;
2821 files_reflog_path(refs, &logfile_sb, refname);
2822 logfile = strbuf_detach(&logfile_sb, NULL);
2824 if (force_create || should_autocreate_reflog(refname)) {
2825 if (raceproof_create_file(logfile, open_or_create_logfile, logfd)) {
2826 if (errno == ENOENT)
2827 strbuf_addf(err, "unable to create directory for '%s': "
2828 "%s", logfile, strerror(errno));
2829 else if (errno == EISDIR)
2830 strbuf_addf(err, "there are still logs under '%s'",
2833 strbuf_addf(err, "unable to append to '%s': %s",
2834 logfile, strerror(errno));
2839 *logfd = open(logfile, O_APPEND | O_WRONLY, 0666);
2841 if (errno == ENOENT || errno == EISDIR) {
2843 * The logfile doesn't already exist,
2844 * but that is not an error; it only
2845 * means that we won't write log
2850 strbuf_addf(err, "unable to append to '%s': %s",
2851 logfile, strerror(errno));
2858 adjust_shared_perm(logfile);
2868 static int files_create_reflog(struct ref_store *ref_store,
2869 const char *refname, int force_create,
2872 struct files_ref_store *refs =
2873 files_downcast(ref_store, REF_STORE_WRITE, "create_reflog");
2876 if (log_ref_setup(refs, refname, force_create, &fd, err))
2885 static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
2886 const unsigned char *new_sha1,
2887 const char *committer, const char *msg)
2889 int msglen, written;
2890 unsigned maxlen, len;
2893 msglen = msg ? strlen(msg) : 0;
2894 maxlen = strlen(committer) + msglen + 100;
2895 logrec = xmalloc(maxlen);
2896 len = xsnprintf(logrec, maxlen, "%s %s %s\n",
2897 sha1_to_hex(old_sha1),
2898 sha1_to_hex(new_sha1),
2901 len += copy_reflog_msg(logrec + len - 1, msg) - 1;
2903 written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
2911 static int files_log_ref_write(struct files_ref_store *refs,
2912 const char *refname, const unsigned char *old_sha1,
2913 const unsigned char *new_sha1, const char *msg,
2914 int flags, struct strbuf *err)
2918 if (log_all_ref_updates == LOG_REFS_UNSET)
2919 log_all_ref_updates = is_bare_repository() ? LOG_REFS_NONE : LOG_REFS_NORMAL;
2921 result = log_ref_setup(refs, refname,
2922 flags & REF_FORCE_CREATE_REFLOG,
2930 result = log_ref_write_fd(logfd, old_sha1, new_sha1,
2931 git_committer_info(0), msg);
2933 struct strbuf sb = STRBUF_INIT;
2934 int save_errno = errno;
2936 files_reflog_path(refs, &sb, refname);
2937 strbuf_addf(err, "unable to append to '%s': %s",
2938 sb.buf, strerror(save_errno));
2939 strbuf_release(&sb);
2944 struct strbuf sb = STRBUF_INIT;
2945 int save_errno = errno;
2947 files_reflog_path(refs, &sb, refname);
2948 strbuf_addf(err, "unable to append to '%s': %s",
2949 sb.buf, strerror(save_errno));
2950 strbuf_release(&sb);
2957 * Write sha1 into the open lockfile, then close the lockfile. On
2958 * errors, rollback the lockfile, fill in *err and
2961 static int write_ref_to_lockfile(struct ref_lock *lock,
2962 const unsigned char *sha1, struct strbuf *err)
2964 static char term = '\n';
2968 o = parse_object(sha1);
2971 "trying to write ref '%s' with nonexistent object %s",
2972 lock->ref_name, sha1_to_hex(sha1));
2976 if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
2978 "trying to write non-commit object %s to branch '%s'",
2979 sha1_to_hex(sha1), lock->ref_name);
2983 fd = get_lock_file_fd(lock->lk);
2984 if (write_in_full(fd, sha1_to_hex(sha1), 40) != 40 ||
2985 write_in_full(fd, &term, 1) != 1 ||
2986 close_ref(lock) < 0) {
2988 "couldn't write '%s'", get_lock_file_path(lock->lk));
2996 * Commit a change to a loose reference that has already been written
2997 * to the loose reference lockfile. Also update the reflogs if
2998 * necessary, using the specified lockmsg (which can be NULL).
3000 static int commit_ref_update(struct files_ref_store *refs,
3001 struct ref_lock *lock,
3002 const unsigned char *sha1, const char *logmsg,
3005 files_assert_main_repository(refs, "commit_ref_update");
3007 clear_loose_ref_cache(refs);
3008 if (files_log_ref_write(refs, lock->ref_name,
3009 lock->old_oid.hash, sha1,
3011 char *old_msg = strbuf_detach(err, NULL);
3012 strbuf_addf(err, "cannot update the ref '%s': %s",
3013 lock->ref_name, old_msg);
3019 if (strcmp(lock->ref_name, "HEAD") != 0) {
3021 * Special hack: If a branch is updated directly and HEAD
3022 * points to it (may happen on the remote side of a push
3023 * for example) then logically the HEAD reflog should be
3025 * A generic solution implies reverse symref information,
3026 * but finding all symrefs pointing to the given branch
3027 * would be rather costly for this rare event (the direct
3028 * update of a branch) to be worth it. So let's cheat and
3029 * check with HEAD only which should cover 99% of all usage
3030 * scenarios (even 100% of the default ones).
3032 unsigned char head_sha1[20];
3034 const char *head_ref;
3036 head_ref = refs_resolve_ref_unsafe(&refs->base, "HEAD",
3037 RESOLVE_REF_READING,
3038 head_sha1, &head_flag);
3039 if (head_ref && (head_flag & REF_ISSYMREF) &&
3040 !strcmp(head_ref, lock->ref_name)) {
3041 struct strbuf log_err = STRBUF_INIT;
3042 if (files_log_ref_write(refs, "HEAD",
3043 lock->old_oid.hash, sha1,
3044 logmsg, 0, &log_err)) {
3045 error("%s", log_err.buf);
3046 strbuf_release(&log_err);
3051 if (commit_ref(lock)) {
3052 strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3061 static int create_ref_symlink(struct ref_lock *lock, const char *target)
3064 #ifndef NO_SYMLINK_HEAD
3065 char *ref_path = get_locked_file_path(lock->lk);
3067 ret = symlink(target, ref_path);
3071 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
3076 static void update_symref_reflog(struct files_ref_store *refs,
3077 struct ref_lock *lock, const char *refname,
3078 const char *target, const char *logmsg)
3080 struct strbuf err = STRBUF_INIT;
3081 unsigned char new_sha1[20];
3083 !refs_read_ref_full(&refs->base, target,
3084 RESOLVE_REF_READING, new_sha1, NULL) &&
3085 files_log_ref_write(refs, refname, lock->old_oid.hash,
3086 new_sha1, logmsg, 0, &err)) {
3087 error("%s", err.buf);
3088 strbuf_release(&err);
3092 static int create_symref_locked(struct files_ref_store *refs,
3093 struct ref_lock *lock, const char *refname,
3094 const char *target, const char *logmsg)
3096 if (prefer_symlink_refs && !create_ref_symlink(lock, target)) {
3097 update_symref_reflog(refs, lock, refname, target, logmsg);
3101 if (!fdopen_lock_file(lock->lk, "w"))
3102 return error("unable to fdopen %s: %s",
3103 lock->lk->tempfile.filename.buf, strerror(errno));
3105 update_symref_reflog(refs, lock, refname, target, logmsg);
3107 /* no error check; commit_ref will check ferror */
3108 fprintf(lock->lk->tempfile.fp, "ref: %s\n", target);
3109 if (commit_ref(lock) < 0)
3110 return error("unable to write symref for %s: %s", refname,
3115 static int files_create_symref(struct ref_store *ref_store,
3116 const char *refname, const char *target,
3119 struct files_ref_store *refs =
3120 files_downcast(ref_store, REF_STORE_WRITE, "create_symref");
3121 struct strbuf err = STRBUF_INIT;
3122 struct ref_lock *lock;
3125 lock = lock_ref_sha1_basic(refs, refname, NULL,
3126 NULL, NULL, REF_NODEREF, NULL,
3129 error("%s", err.buf);
3130 strbuf_release(&err);
3134 ret = create_symref_locked(refs, lock, refname, target, logmsg);
3139 int set_worktree_head_symref(const char *gitdir, const char *target, const char *logmsg)
3142 * FIXME: this obviously will not work well for future refs
3143 * backends. This function needs to die.
3145 struct files_ref_store *refs =
3146 files_downcast(get_main_ref_store(),
3150 static struct lock_file head_lock;
3151 struct ref_lock *lock;
3152 struct strbuf head_path = STRBUF_INIT;
3153 const char *head_rel;
3156 strbuf_addf(&head_path, "%s/HEAD", absolute_path(gitdir));
3157 if (hold_lock_file_for_update(&head_lock, head_path.buf,
3158 LOCK_NO_DEREF) < 0) {
3159 struct strbuf err = STRBUF_INIT;
3160 unable_to_lock_message(head_path.buf, errno, &err);
3161 error("%s", err.buf);
3162 strbuf_release(&err);
3163 strbuf_release(&head_path);
3167 /* head_rel will be "HEAD" for the main tree, "worktrees/wt/HEAD" for
3169 head_rel = remove_leading_path(head_path.buf,
3170 absolute_path(get_git_common_dir()));
3171 /* to make use of create_symref_locked(), initialize ref_lock */
3172 lock = xcalloc(1, sizeof(struct ref_lock));
3173 lock->lk = &head_lock;
3174 lock->ref_name = xstrdup(head_rel);
3176 ret = create_symref_locked(refs, lock, head_rel, target, logmsg);
3178 unlock_ref(lock); /* will free lock */
3179 strbuf_release(&head_path);
3183 static int files_reflog_exists(struct ref_store *ref_store,
3184 const char *refname)
3186 struct files_ref_store *refs =
3187 files_downcast(ref_store, REF_STORE_READ, "reflog_exists");
3188 struct strbuf sb = STRBUF_INIT;
3192 files_reflog_path(refs, &sb, refname);
3193 ret = !lstat(sb.buf, &st) && S_ISREG(st.st_mode);
3194 strbuf_release(&sb);
3198 static int files_delete_reflog(struct ref_store *ref_store,
3199 const char *refname)
3201 struct files_ref_store *refs =
3202 files_downcast(ref_store, REF_STORE_WRITE, "delete_reflog");
3203 struct strbuf sb = STRBUF_INIT;
3206 files_reflog_path(refs, &sb, refname);
3207 ret = remove_path(sb.buf);
3208 strbuf_release(&sb);
3212 static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3214 struct object_id ooid, noid;
3215 char *email_end, *message;
3216 unsigned long timestamp;
3218 const char *p = sb->buf;
3220 /* old SP new SP name <email> SP time TAB msg LF */
3221 if (!sb->len || sb->buf[sb->len - 1] != '\n' ||
3222 parse_oid_hex(p, &ooid, &p) || *p++ != ' ' ||
3223 parse_oid_hex(p, &noid, &p) || *p++ != ' ' ||
3224 !(email_end = strchr(p, '>')) ||
3225 email_end[1] != ' ' ||
3226 !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3227 !message || message[0] != ' ' ||
3228 (message[1] != '+' && message[1] != '-') ||
3229 !isdigit(message[2]) || !isdigit(message[3]) ||
3230 !isdigit(message[4]) || !isdigit(message[5]))
3231 return 0; /* corrupt? */
3232 email_end[1] = '\0';
3233 tz = strtol(message + 1, NULL, 10);
3234 if (message[6] != '\t')
3238 return fn(&ooid, &noid, p, timestamp, tz, message, cb_data);
3241 static char *find_beginning_of_line(char *bob, char *scan)
3243 while (bob < scan && *(--scan) != '\n')
3244 ; /* keep scanning backwards */
3246 * Return either beginning of the buffer, or LF at the end of
3247 * the previous line.
3252 static int files_for_each_reflog_ent_reverse(struct ref_store *ref_store,
3253 const char *refname,
3254 each_reflog_ent_fn fn,
3257 struct files_ref_store *refs =
3258 files_downcast(ref_store, REF_STORE_READ,
3259 "for_each_reflog_ent_reverse");
3260 struct strbuf sb = STRBUF_INIT;
3263 int ret = 0, at_tail = 1;
3265 files_reflog_path(refs, &sb, refname);
3266 logfp = fopen(sb.buf, "r");
3267 strbuf_release(&sb);
3271 /* Jump to the end */
3272 if (fseek(logfp, 0, SEEK_END) < 0)
3273 return error("cannot seek back reflog for %s: %s",
3274 refname, strerror(errno));
3276 while (!ret && 0 < pos) {
3282 /* Fill next block from the end */
3283 cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3284 if (fseek(logfp, pos - cnt, SEEK_SET))
3285 return error("cannot seek back reflog for %s: %s",
3286 refname, strerror(errno));
3287 nread = fread(buf, cnt, 1, logfp);
3289 return error("cannot read %d bytes from reflog for %s: %s",
3290 cnt, refname, strerror(errno));
3293 scanp = endp = buf + cnt;
3294 if (at_tail && scanp[-1] == '\n')
3295 /* Looking at the final LF at the end of the file */
3299 while (buf < scanp) {
3301 * terminating LF of the previous line, or the beginning
3306 bp = find_beginning_of_line(buf, scanp);
3310 * The newline is the end of the previous line,
3311 * so we know we have complete line starting
3312 * at (bp + 1). Prefix it onto any prior data
3313 * we collected for the line and process it.
3315 strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3318 ret = show_one_reflog_ent(&sb, fn, cb_data);
3324 * We are at the start of the buffer, and the
3325 * start of the file; there is no previous
3326 * line, and we have everything for this one.
3327 * Process it, and we can end the loop.
3329 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3330 ret = show_one_reflog_ent(&sb, fn, cb_data);
3337 * We are at the start of the buffer, and there
3338 * is more file to read backwards. Which means
3339 * we are in the middle of a line. Note that we
3340 * may get here even if *bp was a newline; that
3341 * just means we are at the exact end of the
3342 * previous line, rather than some spot in the
3345 * Save away what we have to be combined with
3346 * the data from the next read.
3348 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3355 die("BUG: reverse reflog parser had leftover data");
3358 strbuf_release(&sb);
3362 static int files_for_each_reflog_ent(struct ref_store *ref_store,
3363 const char *refname,
3364 each_reflog_ent_fn fn, void *cb_data)
3366 struct files_ref_store *refs =
3367 files_downcast(ref_store, REF_STORE_READ,
3368 "for_each_reflog_ent");
3370 struct strbuf sb = STRBUF_INIT;
3373 files_reflog_path(refs, &sb, refname);
3374 logfp = fopen(sb.buf, "r");
3375 strbuf_release(&sb);
3379 while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3380 ret = show_one_reflog_ent(&sb, fn, cb_data);
3382 strbuf_release(&sb);
3386 struct files_reflog_iterator {
3387 struct ref_iterator base;
3389 struct ref_store *ref_store;
3390 struct dir_iterator *dir_iterator;
3391 struct object_id oid;
3394 static int files_reflog_iterator_advance(struct ref_iterator *ref_iterator)
3396 struct files_reflog_iterator *iter =
3397 (struct files_reflog_iterator *)ref_iterator;
3398 struct dir_iterator *diter = iter->dir_iterator;
3401 while ((ok = dir_iterator_advance(diter)) == ITER_OK) {
3404 if (!S_ISREG(diter->st.st_mode))
3406 if (diter->basename[0] == '.')
3408 if (ends_with(diter->basename, ".lock"))
3411 if (refs_read_ref_full(iter->ref_store,
3412 diter->relative_path, 0,
3413 iter->oid.hash, &flags)) {
3414 error("bad ref for %s", diter->path.buf);
3418 iter->base.refname = diter->relative_path;
3419 iter->base.oid = &iter->oid;
3420 iter->base.flags = flags;
3424 iter->dir_iterator = NULL;
3425 if (ref_iterator_abort(ref_iterator) == ITER_ERROR)
3430 static int files_reflog_iterator_peel(struct ref_iterator *ref_iterator,
3431 struct object_id *peeled)
3433 die("BUG: ref_iterator_peel() called for reflog_iterator");
3436 static int files_reflog_iterator_abort(struct ref_iterator *ref_iterator)
3438 struct files_reflog_iterator *iter =
3439 (struct files_reflog_iterator *)ref_iterator;
3442 if (iter->dir_iterator)
3443 ok = dir_iterator_abort(iter->dir_iterator);
3445 base_ref_iterator_free(ref_iterator);
3449 static struct ref_iterator_vtable files_reflog_iterator_vtable = {
3450 files_reflog_iterator_advance,
3451 files_reflog_iterator_peel,
3452 files_reflog_iterator_abort
3455 static struct ref_iterator *files_reflog_iterator_begin(struct ref_store *ref_store)
3457 struct files_ref_store *refs =
3458 files_downcast(ref_store, REF_STORE_READ,
3459 "reflog_iterator_begin");
3460 struct files_reflog_iterator *iter = xcalloc(1, sizeof(*iter));
3461 struct ref_iterator *ref_iterator = &iter->base;
3462 struct strbuf sb = STRBUF_INIT;
3464 base_ref_iterator_init(ref_iterator, &files_reflog_iterator_vtable);
3465 files_reflog_path(refs, &sb, NULL);
3466 iter->dir_iterator = dir_iterator_begin(sb.buf);
3467 iter->ref_store = ref_store;
3468 strbuf_release(&sb);
3469 return ref_iterator;
3472 static int ref_update_reject_duplicates(struct string_list *refnames,
3475 int i, n = refnames->nr;
3479 for (i = 1; i < n; i++)
3480 if (!strcmp(refnames->items[i - 1].string, refnames->items[i].string)) {
3482 "multiple updates for ref '%s' not allowed.",
3483 refnames->items[i].string);
3490 * If update is a direct update of head_ref (the reference pointed to
3491 * by HEAD), then add an extra REF_LOG_ONLY update for HEAD.
3493 static int split_head_update(struct ref_update *update,
3494 struct ref_transaction *transaction,
3495 const char *head_ref,
3496 struct string_list *affected_refnames,
3499 struct string_list_item *item;
3500 struct ref_update *new_update;
3502 if ((update->flags & REF_LOG_ONLY) ||
3503 (update->flags & REF_ISPRUNING) ||
3504 (update->flags & REF_UPDATE_VIA_HEAD))
3507 if (strcmp(update->refname, head_ref))
3511 * First make sure that HEAD is not already in the
3512 * transaction. This insertion is O(N) in the transaction
3513 * size, but it happens at most once per transaction.
3515 item = string_list_insert(affected_refnames, "HEAD");
3517 /* An entry already existed */
3519 "multiple updates for 'HEAD' (including one "
3520 "via its referent '%s') are not allowed",
3522 return TRANSACTION_NAME_CONFLICT;
3525 new_update = ref_transaction_add_update(
3526 transaction, "HEAD",
3527 update->flags | REF_LOG_ONLY | REF_NODEREF,
3528 update->new_sha1, update->old_sha1,
3531 item->util = new_update;
3537 * update is for a symref that points at referent and doesn't have
3538 * REF_NODEREF set. Split it into two updates:
3539 * - The original update, but with REF_LOG_ONLY and REF_NODEREF set
3540 * - A new, separate update for the referent reference
3541 * Note that the new update will itself be subject to splitting when
3542 * the iteration gets to it.
3544 static int split_symref_update(struct files_ref_store *refs,
3545 struct ref_update *update,
3546 const char *referent,
3547 struct ref_transaction *transaction,
3548 struct string_list *affected_refnames,
3551 struct string_list_item *item;
3552 struct ref_update *new_update;
3553 unsigned int new_flags;
3556 * First make sure that referent is not already in the
3557 * transaction. This insertion is O(N) in the transaction
3558 * size, but it happens at most once per symref in a
3561 item = string_list_insert(affected_refnames, referent);
3563 /* An entry already existed */
3565 "multiple updates for '%s' (including one "
3566 "via symref '%s') are not allowed",
3567 referent, update->refname);
3568 return TRANSACTION_NAME_CONFLICT;
3571 new_flags = update->flags;
3572 if (!strcmp(update->refname, "HEAD")) {
3574 * Record that the new update came via HEAD, so that
3575 * when we process it, split_head_update() doesn't try
3576 * to add another reflog update for HEAD. Note that
3577 * this bit will be propagated if the new_update
3578 * itself needs to be split.
3580 new_flags |= REF_UPDATE_VIA_HEAD;
3583 new_update = ref_transaction_add_update(
3584 transaction, referent, new_flags,
3585 update->new_sha1, update->old_sha1,
3588 new_update->parent_update = update;
3591 * Change the symbolic ref update to log only. Also, it
3592 * doesn't need to check its old SHA-1 value, as that will be
3593 * done when new_update is processed.
3595 update->flags |= REF_LOG_ONLY | REF_NODEREF;
3596 update->flags &= ~REF_HAVE_OLD;
3598 item->util = new_update;
3604 * Return the refname under which update was originally requested.
3606 static const char *original_update_refname(struct ref_update *update)
3608 while (update->parent_update)
3609 update = update->parent_update;
3611 return update->refname;
3615 * Check whether the REF_HAVE_OLD and old_oid values stored in update
3616 * are consistent with oid, which is the reference's current value. If
3617 * everything is OK, return 0; otherwise, write an error message to
3618 * err and return -1.
3620 static int check_old_oid(struct ref_update *update, struct object_id *oid,
3623 if (!(update->flags & REF_HAVE_OLD) ||
3624 !hashcmp(oid->hash, update->old_sha1))
3627 if (is_null_sha1(update->old_sha1))
3628 strbuf_addf(err, "cannot lock ref '%s': "
3629 "reference already exists",
3630 original_update_refname(update));
3631 else if (is_null_oid(oid))
3632 strbuf_addf(err, "cannot lock ref '%s': "
3633 "reference is missing but expected %s",
3634 original_update_refname(update),
3635 sha1_to_hex(update->old_sha1));
3637 strbuf_addf(err, "cannot lock ref '%s': "
3638 "is at %s but expected %s",
3639 original_update_refname(update),
3641 sha1_to_hex(update->old_sha1));
3647 * Prepare for carrying out update:
3648 * - Lock the reference referred to by update.
3649 * - Read the reference under lock.
3650 * - Check that its old SHA-1 value (if specified) is correct, and in
3651 * any case record it in update->lock->old_oid for later use when
3652 * writing the reflog.
3653 * - If it is a symref update without REF_NODEREF, split it up into a
3654 * REF_LOG_ONLY update of the symref and add a separate update for
3655 * the referent to transaction.
3656 * - If it is an update of head_ref, add a corresponding REF_LOG_ONLY
3659 static int lock_ref_for_update(struct files_ref_store *refs,
3660 struct ref_update *update,
3661 struct ref_transaction *transaction,
3662 const char *head_ref,
3663 struct string_list *affected_refnames,
3666 struct strbuf referent = STRBUF_INIT;
3667 int mustexist = (update->flags & REF_HAVE_OLD) &&
3668 !is_null_sha1(update->old_sha1);
3670 struct ref_lock *lock;
3672 files_assert_main_repository(refs, "lock_ref_for_update");
3674 if ((update->flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1))
3675 update->flags |= REF_DELETING;
3678 ret = split_head_update(update, transaction, head_ref,
3679 affected_refnames, err);
3684 ret = lock_raw_ref(refs, update->refname, mustexist,
3685 affected_refnames, NULL,
3687 &update->type, err);
3691 reason = strbuf_detach(err, NULL);
3692 strbuf_addf(err, "cannot lock ref '%s': %s",
3693 original_update_refname(update), reason);
3698 update->backend_data = lock;
3700 if (update->type & REF_ISSYMREF) {
3701 if (update->flags & REF_NODEREF) {
3703 * We won't be reading the referent as part of
3704 * the transaction, so we have to read it here
3705 * to record and possibly check old_sha1:
3707 if (refs_read_ref_full(&refs->base,
3709 lock->old_oid.hash, NULL)) {
3710 if (update->flags & REF_HAVE_OLD) {
3711 strbuf_addf(err, "cannot lock ref '%s': "
3712 "error reading reference",
3713 original_update_refname(update));
3716 } else if (check_old_oid(update, &lock->old_oid, err)) {
3717 return TRANSACTION_GENERIC_ERROR;
3721 * Create a new update for the reference this
3722 * symref is pointing at. Also, we will record
3723 * and verify old_sha1 for this update as part
3724 * of processing the split-off update, so we
3725 * don't have to do it here.
3727 ret = split_symref_update(refs, update,
3728 referent.buf, transaction,
3729 affected_refnames, err);
3734 struct ref_update *parent_update;
3736 if (check_old_oid(update, &lock->old_oid, err))
3737 return TRANSACTION_GENERIC_ERROR;
3740 * If this update is happening indirectly because of a
3741 * symref update, record the old SHA-1 in the parent
3744 for (parent_update = update->parent_update;
3746 parent_update = parent_update->parent_update) {
3747 struct ref_lock *parent_lock = parent_update->backend_data;
3748 oidcpy(&parent_lock->old_oid, &lock->old_oid);
3752 if ((update->flags & REF_HAVE_NEW) &&
3753 !(update->flags & REF_DELETING) &&
3754 !(update->flags & REF_LOG_ONLY)) {
3755 if (!(update->type & REF_ISSYMREF) &&
3756 !hashcmp(lock->old_oid.hash, update->new_sha1)) {
3758 * The reference already has the desired
3759 * value, so we don't need to write it.
3761 } else if (write_ref_to_lockfile(lock, update->new_sha1,
3763 char *write_err = strbuf_detach(err, NULL);
3766 * The lock was freed upon failure of
3767 * write_ref_to_lockfile():
3769 update->backend_data = NULL;
3771 "cannot update ref '%s': %s",
3772 update->refname, write_err);
3774 return TRANSACTION_GENERIC_ERROR;
3776 update->flags |= REF_NEEDS_COMMIT;
3779 if (!(update->flags & REF_NEEDS_COMMIT)) {
3781 * We didn't call write_ref_to_lockfile(), so
3782 * the lockfile is still open. Close it to
3783 * free up the file descriptor:
3785 if (close_ref(lock)) {
3786 strbuf_addf(err, "couldn't close '%s.lock'",
3788 return TRANSACTION_GENERIC_ERROR;
3794 static int files_transaction_commit(struct ref_store *ref_store,
3795 struct ref_transaction *transaction,
3798 struct files_ref_store *refs =
3799 files_downcast(ref_store, REF_STORE_WRITE,
3800 "ref_transaction_commit");
3802 struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3803 struct string_list_item *ref_to_delete;
3804 struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3805 char *head_ref = NULL;
3807 struct object_id head_oid;
3808 struct strbuf sb = STRBUF_INIT;
3812 if (transaction->state != REF_TRANSACTION_OPEN)
3813 die("BUG: commit called for transaction that is not open");
3815 if (!transaction->nr) {
3816 transaction->state = REF_TRANSACTION_CLOSED;
3821 * Fail if a refname appears more than once in the
3822 * transaction. (If we end up splitting up any updates using
3823 * split_symref_update() or split_head_update(), those
3824 * functions will check that the new updates don't have the
3825 * same refname as any existing ones.)
3827 for (i = 0; i < transaction->nr; i++) {
3828 struct ref_update *update = transaction->updates[i];
3829 struct string_list_item *item =
3830 string_list_append(&affected_refnames, update->refname);
3833 * We store a pointer to update in item->util, but at
3834 * the moment we never use the value of this field
3835 * except to check whether it is non-NULL.
3837 item->util = update;
3839 string_list_sort(&affected_refnames);
3840 if (ref_update_reject_duplicates(&affected_refnames, err)) {
3841 ret = TRANSACTION_GENERIC_ERROR;
3846 * Special hack: If a branch is updated directly and HEAD
3847 * points to it (may happen on the remote side of a push
3848 * for example) then logically the HEAD reflog should be
3851 * A generic solution would require reverse symref lookups,
3852 * but finding all symrefs pointing to a given branch would be
3853 * rather costly for this rare event (the direct update of a
3854 * branch) to be worth it. So let's cheat and check with HEAD
3855 * only, which should cover 99% of all usage scenarios (even
3856 * 100% of the default ones).
3858 * So if HEAD is a symbolic reference, then record the name of
3859 * the reference that it points to. If we see an update of
3860 * head_ref within the transaction, then split_head_update()
3861 * arranges for the reflog of HEAD to be updated, too.
3863 head_ref = refs_resolve_refdup(ref_store, "HEAD",
3864 RESOLVE_REF_NO_RECURSE,
3865 head_oid.hash, &head_type);
3867 if (head_ref && !(head_type & REF_ISSYMREF)) {
3873 * Acquire all locks, verify old values if provided, check
3874 * that new values are valid, and write new values to the
3875 * lockfiles, ready to be activated. Only keep one lockfile
3876 * open at a time to avoid running out of file descriptors.
3878 for (i = 0; i < transaction->nr; i++) {
3879 struct ref_update *update = transaction->updates[i];
3881 ret = lock_ref_for_update(refs, update, transaction,
3882 head_ref, &affected_refnames, err);
3887 /* Perform updates first so live commits remain referenced */
3888 for (i = 0; i < transaction->nr; i++) {
3889 struct ref_update *update = transaction->updates[i];
3890 struct ref_lock *lock = update->backend_data;
3892 if (update->flags & REF_NEEDS_COMMIT ||
3893 update->flags & REF_LOG_ONLY) {
3894 if (files_log_ref_write(refs,
3898 update->msg, update->flags,
3900 char *old_msg = strbuf_detach(err, NULL);
3902 strbuf_addf(err, "cannot update the ref '%s': %s",
3903 lock->ref_name, old_msg);
3906 update->backend_data = NULL;
3907 ret = TRANSACTION_GENERIC_ERROR;
3911 if (update->flags & REF_NEEDS_COMMIT) {
3912 clear_loose_ref_cache(refs);
3913 if (commit_ref(lock)) {
3914 strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3916 update->backend_data = NULL;
3917 ret = TRANSACTION_GENERIC_ERROR;
3922 /* Perform deletes now that updates are safely completed */
3923 for (i = 0; i < transaction->nr; i++) {
3924 struct ref_update *update = transaction->updates[i];
3925 struct ref_lock *lock = update->backend_data;
3927 if (update->flags & REF_DELETING &&
3928 !(update->flags & REF_LOG_ONLY)) {
3929 if (!(update->type & REF_ISPACKED) ||
3930 update->type & REF_ISSYMREF) {
3931 /* It is a loose reference. */
3933 files_ref_path(refs, &sb, lock->ref_name);
3934 if (unlink_or_msg(sb.buf, err)) {
3935 ret = TRANSACTION_GENERIC_ERROR;
3938 update->flags |= REF_DELETED_LOOSE;
3941 if (!(update->flags & REF_ISPRUNING))
3942 string_list_append(&refs_to_delete,
3947 if (repack_without_refs(refs, &refs_to_delete, err)) {
3948 ret = TRANSACTION_GENERIC_ERROR;
3952 /* Delete the reflogs of any references that were deleted: */
3953 for_each_string_list_item(ref_to_delete, &refs_to_delete) {
3955 files_reflog_path(refs, &sb, ref_to_delete->string);
3956 if (!unlink_or_warn(sb.buf))
3957 try_remove_empty_parents(refs, ref_to_delete->string,
3958 REMOVE_EMPTY_PARENTS_REFLOG);
3961 clear_loose_ref_cache(refs);
3964 strbuf_release(&sb);
3965 transaction->state = REF_TRANSACTION_CLOSED;
3967 for (i = 0; i < transaction->nr; i++) {
3968 struct ref_update *update = transaction->updates[i];
3969 struct ref_lock *lock = update->backend_data;
3974 if (update->flags & REF_DELETED_LOOSE) {
3976 * The loose reference was deleted. Delete any
3977 * empty parent directories. (Note that this
3978 * can only work because we have already
3979 * removed the lockfile.)
3981 try_remove_empty_parents(refs, update->refname,
3982 REMOVE_EMPTY_PARENTS_REF);
3986 string_list_clear(&refs_to_delete, 0);
3988 string_list_clear(&affected_refnames, 0);
3993 static int ref_present(const char *refname,
3994 const struct object_id *oid, int flags, void *cb_data)
3996 struct string_list *affected_refnames = cb_data;
3998 return string_list_has_string(affected_refnames, refname);
4001 static int files_initial_transaction_commit(struct ref_store *ref_store,
4002 struct ref_transaction *transaction,
4005 struct files_ref_store *refs =
4006 files_downcast(ref_store, REF_STORE_WRITE,
4007 "initial_ref_transaction_commit");
4009 struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
4013 if (transaction->state != REF_TRANSACTION_OPEN)
4014 die("BUG: commit called for transaction that is not open");
4016 /* Fail if a refname appears more than once in the transaction: */
4017 for (i = 0; i < transaction->nr; i++)
4018 string_list_append(&affected_refnames,
4019 transaction->updates[i]->refname);
4020 string_list_sort(&affected_refnames);
4021 if (ref_update_reject_duplicates(&affected_refnames, err)) {
4022 ret = TRANSACTION_GENERIC_ERROR;
4027 * It's really undefined to call this function in an active
4028 * repository or when there are existing references: we are
4029 * only locking and changing packed-refs, so (1) any
4030 * simultaneous processes might try to change a reference at
4031 * the same time we do, and (2) any existing loose versions of
4032 * the references that we are setting would have precedence
4033 * over our values. But some remote helpers create the remote
4034 * "HEAD" and "master" branches before calling this function,
4035 * so here we really only check that none of the references
4036 * that we are creating already exists.
4038 if (refs_for_each_rawref(&refs->base, ref_present,
4039 &affected_refnames))
4040 die("BUG: initial ref transaction called with existing refs");
4042 for (i = 0; i < transaction->nr; i++) {
4043 struct ref_update *update = transaction->updates[i];
4045 if ((update->flags & REF_HAVE_OLD) &&
4046 !is_null_sha1(update->old_sha1))
4047 die("BUG: initial ref transaction with old_sha1 set");
4048 if (refs_verify_refname_available(&refs->base, update->refname,
4049 &affected_refnames, NULL,
4051 ret = TRANSACTION_NAME_CONFLICT;
4056 if (lock_packed_refs(refs, 0)) {
4057 strbuf_addf(err, "unable to lock packed-refs file: %s",
4059 ret = TRANSACTION_GENERIC_ERROR;
4063 for (i = 0; i < transaction->nr; i++) {
4064 struct ref_update *update = transaction->updates[i];
4066 if ((update->flags & REF_HAVE_NEW) &&
4067 !is_null_sha1(update->new_sha1))
4068 add_packed_ref(refs, update->refname, update->new_sha1);
4071 if (commit_packed_refs(refs)) {
4072 strbuf_addf(err, "unable to commit packed-refs file: %s",
4074 ret = TRANSACTION_GENERIC_ERROR;
4079 transaction->state = REF_TRANSACTION_CLOSED;
4080 string_list_clear(&affected_refnames, 0);
4084 struct expire_reflog_cb {
4086 reflog_expiry_should_prune_fn *should_prune_fn;
4089 struct object_id last_kept_oid;
4092 static int expire_reflog_ent(struct object_id *ooid, struct object_id *noid,
4093 const char *email, unsigned long timestamp, int tz,
4094 const char *message, void *cb_data)
4096 struct expire_reflog_cb *cb = cb_data;
4097 struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
4099 if (cb->flags & EXPIRE_REFLOGS_REWRITE)
4100 ooid = &cb->last_kept_oid;
4102 if ((*cb->should_prune_fn)(ooid->hash, noid->hash, email, timestamp, tz,
4103 message, policy_cb)) {
4105 printf("would prune %s", message);
4106 else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4107 printf("prune %s", message);
4110 fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
4111 oid_to_hex(ooid), oid_to_hex(noid),
4112 email, timestamp, tz, message);
4113 oidcpy(&cb->last_kept_oid, noid);
4115 if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4116 printf("keep %s", message);
4121 static int files_reflog_expire(struct ref_store *ref_store,
4122 const char *refname, const unsigned char *sha1,
4124 reflog_expiry_prepare_fn prepare_fn,
4125 reflog_expiry_should_prune_fn should_prune_fn,
4126 reflog_expiry_cleanup_fn cleanup_fn,
4127 void *policy_cb_data)
4129 struct files_ref_store *refs =
4130 files_downcast(ref_store, REF_STORE_WRITE, "reflog_expire");
4131 static struct lock_file reflog_lock;
4132 struct expire_reflog_cb cb;
4133 struct ref_lock *lock;
4134 struct strbuf log_file_sb = STRBUF_INIT;
4138 struct strbuf err = STRBUF_INIT;
4140 memset(&cb, 0, sizeof(cb));
4142 cb.policy_cb = policy_cb_data;
4143 cb.should_prune_fn = should_prune_fn;
4146 * The reflog file is locked by holding the lock on the
4147 * reference itself, plus we might need to update the
4148 * reference if --updateref was specified:
4150 lock = lock_ref_sha1_basic(refs, refname, sha1,
4151 NULL, NULL, REF_NODEREF,
4154 error("cannot lock ref '%s': %s", refname, err.buf);
4155 strbuf_release(&err);
4158 if (!refs_reflog_exists(ref_store, refname)) {
4163 files_reflog_path(refs, &log_file_sb, refname);
4164 log_file = strbuf_detach(&log_file_sb, NULL);
4165 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4167 * Even though holding $GIT_DIR/logs/$reflog.lock has
4168 * no locking implications, we use the lock_file
4169 * machinery here anyway because it does a lot of the
4170 * work we need, including cleaning up if the program
4171 * exits unexpectedly.
4173 if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
4174 struct strbuf err = STRBUF_INIT;
4175 unable_to_lock_message(log_file, errno, &err);
4176 error("%s", err.buf);
4177 strbuf_release(&err);
4180 cb.newlog = fdopen_lock_file(&reflog_lock, "w");
4182 error("cannot fdopen %s (%s)",
4183 get_lock_file_path(&reflog_lock), strerror(errno));
4188 (*prepare_fn)(refname, sha1, cb.policy_cb);
4189 refs_for_each_reflog_ent(ref_store, refname, expire_reflog_ent, &cb);
4190 (*cleanup_fn)(cb.policy_cb);
4192 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4194 * It doesn't make sense to adjust a reference pointed
4195 * to by a symbolic ref based on expiring entries in
4196 * the symbolic reference's reflog. Nor can we update
4197 * a reference if there are no remaining reflog
4200 int update = (flags & EXPIRE_REFLOGS_UPDATE_REF) &&
4201 !(type & REF_ISSYMREF) &&
4202 !is_null_oid(&cb.last_kept_oid);
4204 if (close_lock_file(&reflog_lock)) {
4205 status |= error("couldn't write %s: %s", log_file,
4207 } else if (update &&
4208 (write_in_full(get_lock_file_fd(lock->lk),
4209 oid_to_hex(&cb.last_kept_oid), GIT_SHA1_HEXSZ) != GIT_SHA1_HEXSZ ||
4210 write_str_in_full(get_lock_file_fd(lock->lk), "\n") != 1 ||
4211 close_ref(lock) < 0)) {
4212 status |= error("couldn't write %s",
4213 get_lock_file_path(lock->lk));
4214 rollback_lock_file(&reflog_lock);
4215 } else if (commit_lock_file(&reflog_lock)) {
4216 status |= error("unable to write reflog '%s' (%s)",
4217 log_file, strerror(errno));
4218 } else if (update && commit_ref(lock)) {
4219 status |= error("couldn't set %s", lock->ref_name);
4227 rollback_lock_file(&reflog_lock);
4233 static int files_init_db(struct ref_store *ref_store, struct strbuf *err)
4235 struct files_ref_store *refs =
4236 files_downcast(ref_store, REF_STORE_WRITE, "init_db");
4237 struct strbuf sb = STRBUF_INIT;
4240 * Create .git/refs/{heads,tags}
4242 files_ref_path(refs, &sb, "refs/heads");
4243 safe_create_dir(sb.buf, 1);
4246 files_ref_path(refs, &sb, "refs/tags");
4247 safe_create_dir(sb.buf, 1);
4249 strbuf_release(&sb);
4253 struct ref_storage_be refs_be_files = {
4256 files_ref_store_create,
4258 files_transaction_commit,
4259 files_initial_transaction_commit,
4263 files_create_symref,
4267 files_ref_iterator_begin,
4270 files_reflog_iterator_begin,
4271 files_for_each_reflog_ent,
4272 files_for_each_reflog_ent_reverse,
4273 files_reflog_exists,
4274 files_create_reflog,
4275 files_delete_reflog,