refs_verify_refname_available(): implement once for all backends
[git] / refs / files-backend.c
1 #include "../cache.h"
2 #include "../refs.h"
3 #include "refs-internal.h"
4 #include "../iterator.h"
5 #include "../dir-iterator.h"
6 #include "../lockfile.h"
7 #include "../object.h"
8 #include "../dir.h"
9
10 struct ref_lock {
11         char *ref_name;
12         struct lock_file *lk;
13         struct object_id old_oid;
14 };
15
16 struct ref_entry;
17
18 /*
19  * Information used (along with the information in ref_entry) to
20  * describe a single cached reference.  This data structure only
21  * occurs embedded in a union in struct ref_entry, and only when
22  * (ref_entry->flag & REF_DIR) is zero.
23  */
24 struct ref_value {
25         /*
26          * The name of the object to which this reference resolves
27          * (which may be a tag object).  If REF_ISBROKEN, this is
28          * null.  If REF_ISSYMREF, then this is the name of the object
29          * referred to by the last reference in the symlink chain.
30          */
31         struct object_id oid;
32
33         /*
34          * If REF_KNOWS_PEELED, then this field holds the peeled value
35          * of this reference, or null if the reference is known not to
36          * be peelable.  See the documentation for peel_ref() for an
37          * exact definition of "peelable".
38          */
39         struct object_id peeled;
40 };
41
42 struct files_ref_store;
43
44 /*
45  * Information used (along with the information in ref_entry) to
46  * describe a level in the hierarchy of references.  This data
47  * structure only occurs embedded in a union in struct ref_entry, and
48  * only when (ref_entry.flag & REF_DIR) is set.  In that case,
49  * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
50  * in the directory have already been read:
51  *
52  *     (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
53  *         or packed references, already read.
54  *
55  *     (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
56  *         references that hasn't been read yet (nor has any of its
57  *         subdirectories).
58  *
59  * Entries within a directory are stored within a growable array of
60  * pointers to ref_entries (entries, nr, alloc).  Entries 0 <= i <
61  * sorted are sorted by their component name in strcmp() order and the
62  * remaining entries are unsorted.
63  *
64  * Loose references are read lazily, one directory at a time.  When a
65  * directory of loose references is read, then all of the references
66  * in that directory are stored, and REF_INCOMPLETE stubs are created
67  * for any subdirectories, but the subdirectories themselves are not
68  * read.  The reading is triggered by get_ref_dir().
69  */
70 struct ref_dir {
71         int nr, alloc;
72
73         /*
74          * Entries with index 0 <= i < sorted are sorted by name.  New
75          * entries are appended to the list unsorted, and are sorted
76          * only when required; thus we avoid the need to sort the list
77          * after the addition of every reference.
78          */
79         int sorted;
80
81         /* A pointer to the files_ref_store that contains this ref_dir. */
82         struct files_ref_store *ref_store;
83
84         struct ref_entry **entries;
85 };
86
87 /*
88  * Bit values for ref_entry::flag.  REF_ISSYMREF=0x01,
89  * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
90  * public values; see refs.h.
91  */
92
93 /*
94  * The field ref_entry->u.value.peeled of this value entry contains
95  * the correct peeled value for the reference, which might be
96  * null_sha1 if the reference is not a tag or if it is broken.
97  */
98 #define REF_KNOWS_PEELED 0x10
99
100 /* ref_entry represents a directory of references */
101 #define REF_DIR 0x20
102
103 /*
104  * Entry has not yet been read from disk (used only for REF_DIR
105  * entries representing loose references)
106  */
107 #define REF_INCOMPLETE 0x40
108
109 /*
110  * A ref_entry represents either a reference or a "subdirectory" of
111  * references.
112  *
113  * Each directory in the reference namespace is represented by a
114  * ref_entry with (flags & REF_DIR) set and containing a subdir member
115  * that holds the entries in that directory that have been read so
116  * far.  If (flags & REF_INCOMPLETE) is set, then the directory and
117  * its subdirectories haven't been read yet.  REF_INCOMPLETE is only
118  * used for loose reference directories.
119  *
120  * References are represented by a ref_entry with (flags & REF_DIR)
121  * unset and a value member that describes the reference's value.  The
122  * flag member is at the ref_entry level, but it is also needed to
123  * interpret the contents of the value field (in other words, a
124  * ref_value object is not very much use without the enclosing
125  * ref_entry).
126  *
127  * Reference names cannot end with slash and directories' names are
128  * always stored with a trailing slash (except for the top-level
129  * directory, which is always denoted by "").  This has two nice
130  * consequences: (1) when the entries in each subdir are sorted
131  * lexicographically by name (as they usually are), the references in
132  * a whole tree can be generated in lexicographic order by traversing
133  * the tree in left-to-right, depth-first order; (2) the names of
134  * references and subdirectories cannot conflict, and therefore the
135  * presence of an empty subdirectory does not block the creation of a
136  * similarly-named reference.  (The fact that reference names with the
137  * same leading components can conflict *with each other* is a
138  * separate issue that is regulated by verify_refname_available().)
139  *
140  * Please note that the name field contains the fully-qualified
141  * reference (or subdirectory) name.  Space could be saved by only
142  * storing the relative names.  But that would require the full names
143  * to be generated on the fly when iterating in do_for_each_ref(), and
144  * would break callback functions, who have always been able to assume
145  * that the name strings that they are passed will not be freed during
146  * the iteration.
147  */
148 struct ref_entry {
149         unsigned char flag; /* ISSYMREF? ISPACKED? */
150         union {
151                 struct ref_value value; /* if not (flags&REF_DIR) */
152                 struct ref_dir subdir; /* if (flags&REF_DIR) */
153         } u;
154         /*
155          * The full name of the reference (e.g., "refs/heads/master")
156          * or the full name of the directory with a trailing slash
157          * (e.g., "refs/heads/"):
158          */
159         char name[FLEX_ARRAY];
160 };
161
162 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
163 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len);
164 static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
165                                           const char *dirname, size_t len,
166                                           int incomplete);
167 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry);
168 static int files_log_ref_write(struct files_ref_store *refs,
169                                const char *refname, const unsigned char *old_sha1,
170                                const unsigned char *new_sha1, const char *msg,
171                                int flags, struct strbuf *err);
172
173 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
174 {
175         struct ref_dir *dir;
176         assert(entry->flag & REF_DIR);
177         dir = &entry->u.subdir;
178         if (entry->flag & REF_INCOMPLETE) {
179                 read_loose_refs(entry->name, dir);
180
181                 /*
182                  * Manually add refs/bisect, which, being
183                  * per-worktree, might not appear in the directory
184                  * listing for refs/ in the main repo.
185                  */
186                 if (!strcmp(entry->name, "refs/")) {
187                         int pos = search_ref_dir(dir, "refs/bisect/", 12);
188                         if (pos < 0) {
189                                 struct ref_entry *child_entry;
190                                 child_entry = create_dir_entry(dir->ref_store,
191                                                                "refs/bisect/",
192                                                                12, 1);
193                                 add_entry_to_dir(dir, child_entry);
194                         }
195                 }
196                 entry->flag &= ~REF_INCOMPLETE;
197         }
198         return dir;
199 }
200
201 static struct ref_entry *create_ref_entry(const char *refname,
202                                           const unsigned char *sha1, int flag,
203                                           int check_name)
204 {
205         struct ref_entry *ref;
206
207         if (check_name &&
208             check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
209                 die("Reference has invalid format: '%s'", refname);
210         FLEX_ALLOC_STR(ref, name, refname);
211         hashcpy(ref->u.value.oid.hash, sha1);
212         oidclr(&ref->u.value.peeled);
213         ref->flag = flag;
214         return ref;
215 }
216
217 static void clear_ref_dir(struct ref_dir *dir);
218
219 static void free_ref_entry(struct ref_entry *entry)
220 {
221         if (entry->flag & REF_DIR) {
222                 /*
223                  * Do not use get_ref_dir() here, as that might
224                  * trigger the reading of loose refs.
225                  */
226                 clear_ref_dir(&entry->u.subdir);
227         }
228         free(entry);
229 }
230
231 /*
232  * Add a ref_entry to the end of dir (unsorted).  Entry is always
233  * stored directly in dir; no recursion into subdirectories is
234  * done.
235  */
236 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
237 {
238         ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
239         dir->entries[dir->nr++] = entry;
240         /* optimize for the case that entries are added in order */
241         if (dir->nr == 1 ||
242             (dir->nr == dir->sorted + 1 &&
243              strcmp(dir->entries[dir->nr - 2]->name,
244                     dir->entries[dir->nr - 1]->name) < 0))
245                 dir->sorted = dir->nr;
246 }
247
248 /*
249  * Clear and free all entries in dir, recursively.
250  */
251 static void clear_ref_dir(struct ref_dir *dir)
252 {
253         int i;
254         for (i = 0; i < dir->nr; i++)
255                 free_ref_entry(dir->entries[i]);
256         free(dir->entries);
257         dir->sorted = dir->nr = dir->alloc = 0;
258         dir->entries = NULL;
259 }
260
261 /*
262  * Create a struct ref_entry object for the specified dirname.
263  * dirname is the name of the directory with a trailing slash (e.g.,
264  * "refs/heads/") or "" for the top-level directory.
265  */
266 static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
267                                           const char *dirname, size_t len,
268                                           int incomplete)
269 {
270         struct ref_entry *direntry;
271         FLEX_ALLOC_MEM(direntry, name, dirname, len);
272         direntry->u.subdir.ref_store = ref_store;
273         direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
274         return direntry;
275 }
276
277 static int ref_entry_cmp(const void *a, const void *b)
278 {
279         struct ref_entry *one = *(struct ref_entry **)a;
280         struct ref_entry *two = *(struct ref_entry **)b;
281         return strcmp(one->name, two->name);
282 }
283
284 static void sort_ref_dir(struct ref_dir *dir);
285
286 struct string_slice {
287         size_t len;
288         const char *str;
289 };
290
291 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
292 {
293         const struct string_slice *key = key_;
294         const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
295         int cmp = strncmp(key->str, ent->name, key->len);
296         if (cmp)
297                 return cmp;
298         return '\0' - (unsigned char)ent->name[key->len];
299 }
300
301 /*
302  * Return the index of the entry with the given refname from the
303  * ref_dir (non-recursively), sorting dir if necessary.  Return -1 if
304  * no such entry is found.  dir must already be complete.
305  */
306 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
307 {
308         struct ref_entry **r;
309         struct string_slice key;
310
311         if (refname == NULL || !dir->nr)
312                 return -1;
313
314         sort_ref_dir(dir);
315         key.len = len;
316         key.str = refname;
317         r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
318                     ref_entry_cmp_sslice);
319
320         if (r == NULL)
321                 return -1;
322
323         return r - dir->entries;
324 }
325
326 /*
327  * Search for a directory entry directly within dir (without
328  * recursing).  Sort dir if necessary.  subdirname must be a directory
329  * name (i.e., end in '/').  If mkdir is set, then create the
330  * directory if it is missing; otherwise, return NULL if the desired
331  * directory cannot be found.  dir must already be complete.
332  */
333 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
334                                          const char *subdirname, size_t len,
335                                          int mkdir)
336 {
337         int entry_index = search_ref_dir(dir, subdirname, len);
338         struct ref_entry *entry;
339         if (entry_index == -1) {
340                 if (!mkdir)
341                         return NULL;
342                 /*
343                  * Since dir is complete, the absence of a subdir
344                  * means that the subdir really doesn't exist;
345                  * therefore, create an empty record for it but mark
346                  * the record complete.
347                  */
348                 entry = create_dir_entry(dir->ref_store, subdirname, len, 0);
349                 add_entry_to_dir(dir, entry);
350         } else {
351                 entry = dir->entries[entry_index];
352         }
353         return get_ref_dir(entry);
354 }
355
356 /*
357  * If refname is a reference name, find the ref_dir within the dir
358  * tree that should hold refname.  If refname is a directory name
359  * (i.e., ends in '/'), then return that ref_dir itself.  dir must
360  * represent the top-level directory and must already be complete.
361  * Sort ref_dirs and recurse into subdirectories as necessary.  If
362  * mkdir is set, then create any missing directories; otherwise,
363  * return NULL if the desired directory cannot be found.
364  */
365 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
366                                            const char *refname, int mkdir)
367 {
368         const char *slash;
369         for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
370                 size_t dirnamelen = slash - refname + 1;
371                 struct ref_dir *subdir;
372                 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
373                 if (!subdir) {
374                         dir = NULL;
375                         break;
376                 }
377                 dir = subdir;
378         }
379
380         return dir;
381 }
382
383 /*
384  * Find the value entry with the given name in dir, sorting ref_dirs
385  * and recursing into subdirectories as necessary.  If the name is not
386  * found or it corresponds to a directory entry, return NULL.
387  */
388 static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
389 {
390         int entry_index;
391         struct ref_entry *entry;
392         dir = find_containing_dir(dir, refname, 0);
393         if (!dir)
394                 return NULL;
395         entry_index = search_ref_dir(dir, refname, strlen(refname));
396         if (entry_index == -1)
397                 return NULL;
398         entry = dir->entries[entry_index];
399         return (entry->flag & REF_DIR) ? NULL : entry;
400 }
401
402 /*
403  * Remove the entry with the given name from dir, recursing into
404  * subdirectories as necessary.  If refname is the name of a directory
405  * (i.e., ends with '/'), then remove the directory and its contents.
406  * If the removal was successful, return the number of entries
407  * remaining in the directory entry that contained the deleted entry.
408  * If the name was not found, return -1.  Please note that this
409  * function only deletes the entry from the cache; it does not delete
410  * it from the filesystem or ensure that other cache entries (which
411  * might be symbolic references to the removed entry) are updated.
412  * Nor does it remove any containing dir entries that might be made
413  * empty by the removal.  dir must represent the top-level directory
414  * and must already be complete.
415  */
416 static int remove_entry(struct ref_dir *dir, const char *refname)
417 {
418         int refname_len = strlen(refname);
419         int entry_index;
420         struct ref_entry *entry;
421         int is_dir = refname[refname_len - 1] == '/';
422         if (is_dir) {
423                 /*
424                  * refname represents a reference directory.  Remove
425                  * the trailing slash; otherwise we will get the
426                  * directory *representing* refname rather than the
427                  * one *containing* it.
428                  */
429                 char *dirname = xmemdupz(refname, refname_len - 1);
430                 dir = find_containing_dir(dir, dirname, 0);
431                 free(dirname);
432         } else {
433                 dir = find_containing_dir(dir, refname, 0);
434         }
435         if (!dir)
436                 return -1;
437         entry_index = search_ref_dir(dir, refname, refname_len);
438         if (entry_index == -1)
439                 return -1;
440         entry = dir->entries[entry_index];
441
442         memmove(&dir->entries[entry_index],
443                 &dir->entries[entry_index + 1],
444                 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
445                 );
446         dir->nr--;
447         if (dir->sorted > entry_index)
448                 dir->sorted--;
449         free_ref_entry(entry);
450         return dir->nr;
451 }
452
453 /*
454  * Add a ref_entry to the ref_dir (unsorted), recursing into
455  * subdirectories as necessary.  dir must represent the top-level
456  * directory.  Return 0 on success.
457  */
458 static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
459 {
460         dir = find_containing_dir(dir, ref->name, 1);
461         if (!dir)
462                 return -1;
463         add_entry_to_dir(dir, ref);
464         return 0;
465 }
466
467 /*
468  * Emit a warning and return true iff ref1 and ref2 have the same name
469  * and the same sha1.  Die if they have the same name but different
470  * sha1s.
471  */
472 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
473 {
474         if (strcmp(ref1->name, ref2->name))
475                 return 0;
476
477         /* Duplicate name; make sure that they don't conflict: */
478
479         if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
480                 /* This is impossible by construction */
481                 die("Reference directory conflict: %s", ref1->name);
482
483         if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
484                 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
485
486         warning("Duplicated ref: %s", ref1->name);
487         return 1;
488 }
489
490 /*
491  * Sort the entries in dir non-recursively (if they are not already
492  * sorted) and remove any duplicate entries.
493  */
494 static void sort_ref_dir(struct ref_dir *dir)
495 {
496         int i, j;
497         struct ref_entry *last = NULL;
498
499         /*
500          * This check also prevents passing a zero-length array to qsort(),
501          * which is a problem on some platforms.
502          */
503         if (dir->sorted == dir->nr)
504                 return;
505
506         QSORT(dir->entries, dir->nr, ref_entry_cmp);
507
508         /* Remove any duplicates: */
509         for (i = 0, j = 0; j < dir->nr; j++) {
510                 struct ref_entry *entry = dir->entries[j];
511                 if (last && is_dup_ref(last, entry))
512                         free_ref_entry(entry);
513                 else
514                         last = dir->entries[i++] = entry;
515         }
516         dir->sorted = dir->nr = i;
517 }
518
519 /*
520  * Return true if refname, which has the specified oid and flags, can
521  * be resolved to an object in the database. If the referred-to object
522  * does not exist, emit a warning and return false.
523  */
524 static int ref_resolves_to_object(const char *refname,
525                                   const struct object_id *oid,
526                                   unsigned int flags)
527 {
528         if (flags & REF_ISBROKEN)
529                 return 0;
530         if (!has_sha1_file(oid->hash)) {
531                 error("%s does not point to a valid object!", refname);
532                 return 0;
533         }
534         return 1;
535 }
536
537 /*
538  * Return true if the reference described by entry can be resolved to
539  * an object in the database; otherwise, emit a warning and return
540  * false.
541  */
542 static int entry_resolves_to_object(struct ref_entry *entry)
543 {
544         return ref_resolves_to_object(entry->name,
545                                       &entry->u.value.oid, entry->flag);
546 }
547
548 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
549
550 /*
551  * Call fn for each reference in dir that has index in the range
552  * offset <= index < dir->nr.  Recurse into subdirectories that are in
553  * that index range, sorting them before iterating.  This function
554  * does not sort dir itself; it should be sorted beforehand.  fn is
555  * called for all references, including broken ones.
556  */
557 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
558                                     each_ref_entry_fn fn, void *cb_data)
559 {
560         int i;
561         assert(dir->sorted == dir->nr);
562         for (i = offset; i < dir->nr; i++) {
563                 struct ref_entry *entry = dir->entries[i];
564                 int retval;
565                 if (entry->flag & REF_DIR) {
566                         struct ref_dir *subdir = get_ref_dir(entry);
567                         sort_ref_dir(subdir);
568                         retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
569                 } else {
570                         retval = fn(entry, cb_data);
571                 }
572                 if (retval)
573                         return retval;
574         }
575         return 0;
576 }
577
578 /*
579  * Load all of the refs from the dir into our in-memory cache. The hard work
580  * of loading loose refs is done by get_ref_dir(), so we just need to recurse
581  * through all of the sub-directories. We do not even need to care about
582  * sorting, as traversal order does not matter to us.
583  */
584 static void prime_ref_dir(struct ref_dir *dir)
585 {
586         int i;
587         for (i = 0; i < dir->nr; i++) {
588                 struct ref_entry *entry = dir->entries[i];
589                 if (entry->flag & REF_DIR)
590                         prime_ref_dir(get_ref_dir(entry));
591         }
592 }
593
594 /*
595  * A level in the reference hierarchy that is currently being iterated
596  * through.
597  */
598 struct cache_ref_iterator_level {
599         /*
600          * The ref_dir being iterated over at this level. The ref_dir
601          * is sorted before being stored here.
602          */
603         struct ref_dir *dir;
604
605         /*
606          * The index of the current entry within dir (which might
607          * itself be a directory). If index == -1, then the iteration
608          * hasn't yet begun. If index == dir->nr, then the iteration
609          * through this level is over.
610          */
611         int index;
612 };
613
614 /*
615  * Represent an iteration through a ref_dir in the memory cache. The
616  * iteration recurses through subdirectories.
617  */
618 struct cache_ref_iterator {
619         struct ref_iterator base;
620
621         /*
622          * The number of levels currently on the stack. This is always
623          * at least 1, because when it becomes zero the iteration is
624          * ended and this struct is freed.
625          */
626         size_t levels_nr;
627
628         /* The number of levels that have been allocated on the stack */
629         size_t levels_alloc;
630
631         /*
632          * A stack of levels. levels[0] is the uppermost level that is
633          * being iterated over in this iteration. (This is not
634          * necessary the top level in the references hierarchy. If we
635          * are iterating through a subtree, then levels[0] will hold
636          * the ref_dir for that subtree, and subsequent levels will go
637          * on from there.)
638          */
639         struct cache_ref_iterator_level *levels;
640 };
641
642 static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
643 {
644         struct cache_ref_iterator *iter =
645                 (struct cache_ref_iterator *)ref_iterator;
646
647         while (1) {
648                 struct cache_ref_iterator_level *level =
649                         &iter->levels[iter->levels_nr - 1];
650                 struct ref_dir *dir = level->dir;
651                 struct ref_entry *entry;
652
653                 if (level->index == -1)
654                         sort_ref_dir(dir);
655
656                 if (++level->index == level->dir->nr) {
657                         /* This level is exhausted; pop up a level */
658                         if (--iter->levels_nr == 0)
659                                 return ref_iterator_abort(ref_iterator);
660
661                         continue;
662                 }
663
664                 entry = dir->entries[level->index];
665
666                 if (entry->flag & REF_DIR) {
667                         /* push down a level */
668                         ALLOC_GROW(iter->levels, iter->levels_nr + 1,
669                                    iter->levels_alloc);
670
671                         level = &iter->levels[iter->levels_nr++];
672                         level->dir = get_ref_dir(entry);
673                         level->index = -1;
674                 } else {
675                         iter->base.refname = entry->name;
676                         iter->base.oid = &entry->u.value.oid;
677                         iter->base.flags = entry->flag;
678                         return ITER_OK;
679                 }
680         }
681 }
682
683 static enum peel_status peel_entry(struct ref_entry *entry, int repeel);
684
685 static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
686                                    struct object_id *peeled)
687 {
688         struct cache_ref_iterator *iter =
689                 (struct cache_ref_iterator *)ref_iterator;
690         struct cache_ref_iterator_level *level;
691         struct ref_entry *entry;
692
693         level = &iter->levels[iter->levels_nr - 1];
694
695         if (level->index == -1)
696                 die("BUG: peel called before advance for cache iterator");
697
698         entry = level->dir->entries[level->index];
699
700         if (peel_entry(entry, 0))
701                 return -1;
702         oidcpy(peeled, &entry->u.value.peeled);
703         return 0;
704 }
705
706 static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
707 {
708         struct cache_ref_iterator *iter =
709                 (struct cache_ref_iterator *)ref_iterator;
710
711         free(iter->levels);
712         base_ref_iterator_free(ref_iterator);
713         return ITER_DONE;
714 }
715
716 static struct ref_iterator_vtable cache_ref_iterator_vtable = {
717         cache_ref_iterator_advance,
718         cache_ref_iterator_peel,
719         cache_ref_iterator_abort
720 };
721
722 static struct ref_iterator *cache_ref_iterator_begin(struct ref_dir *dir)
723 {
724         struct cache_ref_iterator *iter;
725         struct ref_iterator *ref_iterator;
726         struct cache_ref_iterator_level *level;
727
728         iter = xcalloc(1, sizeof(*iter));
729         ref_iterator = &iter->base;
730         base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
731         ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
732
733         iter->levels_nr = 1;
734         level = &iter->levels[0];
735         level->index = -1;
736         level->dir = dir;
737
738         return ref_iterator;
739 }
740
741 struct nonmatching_ref_data {
742         const struct string_list *skip;
743         const char *conflicting_refname;
744 };
745
746 static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
747 {
748         struct nonmatching_ref_data *data = vdata;
749
750         if (data->skip && string_list_has_string(data->skip, entry->name))
751                 return 0;
752
753         data->conflicting_refname = entry->name;
754         return 1;
755 }
756
757 /*
758  * Return 0 if a reference named refname could be created without
759  * conflicting with the name of an existing reference in dir.
760  * See verify_refname_available for more information.
761  */
762 static int verify_refname_available_dir(const char *refname,
763                                         const struct string_list *extras,
764                                         const struct string_list *skip,
765                                         struct ref_dir *dir,
766                                         struct strbuf *err)
767 {
768         const char *slash;
769         const char *extra_refname;
770         int pos;
771         struct strbuf dirname = STRBUF_INIT;
772         int ret = -1;
773
774         /*
775          * For the sake of comments in this function, suppose that
776          * refname is "refs/foo/bar".
777          */
778
779         assert(err);
780
781         strbuf_grow(&dirname, strlen(refname) + 1);
782         for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
783                 /* Expand dirname to the new prefix, not including the trailing slash: */
784                 strbuf_add(&dirname, refname + dirname.len, slash - refname - dirname.len);
785
786                 /*
787                  * We are still at a leading dir of the refname (e.g.,
788                  * "refs/foo"; if there is a reference with that name,
789                  * it is a conflict, *unless* it is in skip.
790                  */
791                 if (dir) {
792                         pos = search_ref_dir(dir, dirname.buf, dirname.len);
793                         if (pos >= 0 &&
794                             (!skip || !string_list_has_string(skip, dirname.buf))) {
795                                 /*
796                                  * We found a reference whose name is
797                                  * a proper prefix of refname; e.g.,
798                                  * "refs/foo", and is not in skip.
799                                  */
800                                 strbuf_addf(err, "'%s' exists; cannot create '%s'",
801                                             dirname.buf, refname);
802                                 goto cleanup;
803                         }
804                 }
805
806                 if (extras && string_list_has_string(extras, dirname.buf) &&
807                     (!skip || !string_list_has_string(skip, dirname.buf))) {
808                         strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
809                                     refname, dirname.buf);
810                         goto cleanup;
811                 }
812
813                 /*
814                  * Otherwise, we can try to continue our search with
815                  * the next component. So try to look up the
816                  * directory, e.g., "refs/foo/". If we come up empty,
817                  * we know there is nothing under this whole prefix,
818                  * but even in that case we still have to continue the
819                  * search for conflicts with extras.
820                  */
821                 strbuf_addch(&dirname, '/');
822                 if (dir) {
823                         pos = search_ref_dir(dir, dirname.buf, dirname.len);
824                         if (pos < 0) {
825                                 /*
826                                  * There was no directory "refs/foo/",
827                                  * so there is nothing under this
828                                  * whole prefix. So there is no need
829                                  * to continue looking for conflicting
830                                  * references. But we need to continue
831                                  * looking for conflicting extras.
832                                  */
833                                 dir = NULL;
834                         } else {
835                                 dir = get_ref_dir(dir->entries[pos]);
836                         }
837                 }
838         }
839
840         /*
841          * We are at the leaf of our refname (e.g., "refs/foo/bar").
842          * There is no point in searching for a reference with that
843          * name, because a refname isn't considered to conflict with
844          * itself. But we still need to check for references whose
845          * names are in the "refs/foo/bar/" namespace, because they
846          * *do* conflict.
847          */
848         strbuf_addstr(&dirname, refname + dirname.len);
849         strbuf_addch(&dirname, '/');
850
851         if (dir) {
852                 pos = search_ref_dir(dir, dirname.buf, dirname.len);
853
854                 if (pos >= 0) {
855                         /*
856                          * We found a directory named "$refname/"
857                          * (e.g., "refs/foo/bar/"). It is a problem
858                          * iff it contains any ref that is not in
859                          * "skip".
860                          */
861                         struct nonmatching_ref_data data;
862
863                         data.skip = skip;
864                         data.conflicting_refname = NULL;
865                         dir = get_ref_dir(dir->entries[pos]);
866                         sort_ref_dir(dir);
867                         if (do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data)) {
868                                 strbuf_addf(err, "'%s' exists; cannot create '%s'",
869                                             data.conflicting_refname, refname);
870                                 goto cleanup;
871                         }
872                 }
873         }
874
875         extra_refname = find_descendant_ref(dirname.buf, extras, skip);
876         if (extra_refname)
877                 strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
878                             refname, extra_refname);
879         else
880                 ret = 0;
881
882 cleanup:
883         strbuf_release(&dirname);
884         return ret;
885 }
886
887 struct packed_ref_cache {
888         struct ref_entry *root;
889
890         /*
891          * Count of references to the data structure in this instance,
892          * including the pointer from files_ref_store::packed if any.
893          * The data will not be freed as long as the reference count
894          * is nonzero.
895          */
896         unsigned int referrers;
897
898         /*
899          * Iff the packed-refs file associated with this instance is
900          * currently locked for writing, this points at the associated
901          * lock (which is owned by somebody else).  The referrer count
902          * is also incremented when the file is locked and decremented
903          * when it is unlocked.
904          */
905         struct lock_file *lock;
906
907         /* The metadata from when this packed-refs cache was read */
908         struct stat_validity validity;
909 };
910
911 /*
912  * Future: need to be in "struct repository"
913  * when doing a full libification.
914  */
915 struct files_ref_store {
916         struct ref_store base;
917         unsigned int store_flags;
918
919         char *gitdir;
920         char *gitcommondir;
921         char *packed_refs_path;
922
923         struct ref_entry *loose;
924         struct packed_ref_cache *packed;
925 };
926
927 /* Lock used for the main packed-refs file: */
928 static struct lock_file packlock;
929
930 /*
931  * Increment the reference count of *packed_refs.
932  */
933 static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
934 {
935         packed_refs->referrers++;
936 }
937
938 /*
939  * Decrease the reference count of *packed_refs.  If it goes to zero,
940  * free *packed_refs and return true; otherwise return false.
941  */
942 static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
943 {
944         if (!--packed_refs->referrers) {
945                 free_ref_entry(packed_refs->root);
946                 stat_validity_clear(&packed_refs->validity);
947                 free(packed_refs);
948                 return 1;
949         } else {
950                 return 0;
951         }
952 }
953
954 static void clear_packed_ref_cache(struct files_ref_store *refs)
955 {
956         if (refs->packed) {
957                 struct packed_ref_cache *packed_refs = refs->packed;
958
959                 if (packed_refs->lock)
960                         die("internal error: packed-ref cache cleared while locked");
961                 refs->packed = NULL;
962                 release_packed_ref_cache(packed_refs);
963         }
964 }
965
966 static void clear_loose_ref_cache(struct files_ref_store *refs)
967 {
968         if (refs->loose) {
969                 free_ref_entry(refs->loose);
970                 refs->loose = NULL;
971         }
972 }
973
974 /*
975  * Create a new submodule ref cache and add it to the internal
976  * set of caches.
977  */
978 static struct ref_store *files_ref_store_create(const char *gitdir,
979                                                 unsigned int flags)
980 {
981         struct files_ref_store *refs = xcalloc(1, sizeof(*refs));
982         struct ref_store *ref_store = (struct ref_store *)refs;
983         struct strbuf sb = STRBUF_INIT;
984
985         base_ref_store_init(ref_store, &refs_be_files);
986         refs->store_flags = flags;
987
988         refs->gitdir = xstrdup(gitdir);
989         get_common_dir_noenv(&sb, gitdir);
990         refs->gitcommondir = strbuf_detach(&sb, NULL);
991         strbuf_addf(&sb, "%s/packed-refs", refs->gitcommondir);
992         refs->packed_refs_path = strbuf_detach(&sb, NULL);
993
994         return ref_store;
995 }
996
997 /*
998  * Die if refs is not the main ref store. caller is used in any
999  * necessary error messages.
1000  */
1001 static void files_assert_main_repository(struct files_ref_store *refs,
1002                                          const char *caller)
1003 {
1004         if (refs->store_flags & REF_STORE_MAIN)
1005                 return;
1006
1007         die("BUG: operation %s only allowed for main ref store", caller);
1008 }
1009
1010 /*
1011  * Downcast ref_store to files_ref_store. Die if ref_store is not a
1012  * files_ref_store. required_flags is compared with ref_store's
1013  * store_flags to ensure the ref_store has all required capabilities.
1014  * "caller" is used in any necessary error messages.
1015  */
1016 static struct files_ref_store *files_downcast(struct ref_store *ref_store,
1017                                               unsigned int required_flags,
1018                                               const char *caller)
1019 {
1020         struct files_ref_store *refs;
1021
1022         if (ref_store->be != &refs_be_files)
1023                 die("BUG: ref_store is type \"%s\" not \"files\" in %s",
1024                     ref_store->be->name, caller);
1025
1026         refs = (struct files_ref_store *)ref_store;
1027
1028         if ((refs->store_flags & required_flags) != required_flags)
1029                 die("BUG: operation %s requires abilities 0x%x, but only have 0x%x",
1030                     caller, required_flags, refs->store_flags);
1031
1032         return refs;
1033 }
1034
1035 /* The length of a peeled reference line in packed-refs, including EOL: */
1036 #define PEELED_LINE_LENGTH 42
1037
1038 /*
1039  * The packed-refs header line that we write out.  Perhaps other
1040  * traits will be added later.  The trailing space is required.
1041  */
1042 static const char PACKED_REFS_HEADER[] =
1043         "# pack-refs with: peeled fully-peeled \n";
1044
1045 /*
1046  * Parse one line from a packed-refs file.  Write the SHA1 to sha1.
1047  * Return a pointer to the refname within the line (null-terminated),
1048  * or NULL if there was a problem.
1049  */
1050 static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
1051 {
1052         const char *ref;
1053
1054         /*
1055          * 42: the answer to everything.
1056          *
1057          * In this case, it happens to be the answer to
1058          *  40 (length of sha1 hex representation)
1059          *  +1 (space in between hex and name)
1060          *  +1 (newline at the end of the line)
1061          */
1062         if (line->len <= 42)
1063                 return NULL;
1064
1065         if (get_sha1_hex(line->buf, sha1) < 0)
1066                 return NULL;
1067         if (!isspace(line->buf[40]))
1068                 return NULL;
1069
1070         ref = line->buf + 41;
1071         if (isspace(*ref))
1072                 return NULL;
1073
1074         if (line->buf[line->len - 1] != '\n')
1075                 return NULL;
1076         line->buf[--line->len] = 0;
1077
1078         return ref;
1079 }
1080
1081 /*
1082  * Read f, which is a packed-refs file, into dir.
1083  *
1084  * A comment line of the form "# pack-refs with: " may contain zero or
1085  * more traits. We interpret the traits as follows:
1086  *
1087  *   No traits:
1088  *
1089  *      Probably no references are peeled. But if the file contains a
1090  *      peeled value for a reference, we will use it.
1091  *
1092  *   peeled:
1093  *
1094  *      References under "refs/tags/", if they *can* be peeled, *are*
1095  *      peeled in this file. References outside of "refs/tags/" are
1096  *      probably not peeled even if they could have been, but if we find
1097  *      a peeled value for such a reference we will use it.
1098  *
1099  *   fully-peeled:
1100  *
1101  *      All references in the file that can be peeled are peeled.
1102  *      Inversely (and this is more important), any references in the
1103  *      file for which no peeled value is recorded is not peelable. This
1104  *      trait should typically be written alongside "peeled" for
1105  *      compatibility with older clients, but we do not require it
1106  *      (i.e., "peeled" is a no-op if "fully-peeled" is set).
1107  */
1108 static void read_packed_refs(FILE *f, struct ref_dir *dir)
1109 {
1110         struct ref_entry *last = NULL;
1111         struct strbuf line = STRBUF_INIT;
1112         enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1113
1114         while (strbuf_getwholeline(&line, f, '\n') != EOF) {
1115                 unsigned char sha1[20];
1116                 const char *refname;
1117                 const char *traits;
1118
1119                 if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
1120                         if (strstr(traits, " fully-peeled "))
1121                                 peeled = PEELED_FULLY;
1122                         else if (strstr(traits, " peeled "))
1123                                 peeled = PEELED_TAGS;
1124                         /* perhaps other traits later as well */
1125                         continue;
1126                 }
1127
1128                 refname = parse_ref_line(&line, sha1);
1129                 if (refname) {
1130                         int flag = REF_ISPACKED;
1131
1132                         if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1133                                 if (!refname_is_safe(refname))
1134                                         die("packed refname is dangerous: %s", refname);
1135                                 hashclr(sha1);
1136                                 flag |= REF_BAD_NAME | REF_ISBROKEN;
1137                         }
1138                         last = create_ref_entry(refname, sha1, flag, 0);
1139                         if (peeled == PEELED_FULLY ||
1140                             (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1141                                 last->flag |= REF_KNOWS_PEELED;
1142                         add_ref(dir, last);
1143                         continue;
1144                 }
1145                 if (last &&
1146                     line.buf[0] == '^' &&
1147                     line.len == PEELED_LINE_LENGTH &&
1148                     line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1149                     !get_sha1_hex(line.buf + 1, sha1)) {
1150                         hashcpy(last->u.value.peeled.hash, sha1);
1151                         /*
1152                          * Regardless of what the file header said,
1153                          * we definitely know the value of *this*
1154                          * reference:
1155                          */
1156                         last->flag |= REF_KNOWS_PEELED;
1157                 }
1158         }
1159
1160         strbuf_release(&line);
1161 }
1162
1163 static const char *files_packed_refs_path(struct files_ref_store *refs)
1164 {
1165         return refs->packed_refs_path;
1166 }
1167
1168 static void files_reflog_path(struct files_ref_store *refs,
1169                               struct strbuf *sb,
1170                               const char *refname)
1171 {
1172         if (!refname) {
1173                 /*
1174                  * FIXME: of course this is wrong in multi worktree
1175                  * setting. To be fixed real soon.
1176                  */
1177                 strbuf_addf(sb, "%s/logs", refs->gitcommondir);
1178                 return;
1179         }
1180
1181         switch (ref_type(refname)) {
1182         case REF_TYPE_PER_WORKTREE:
1183         case REF_TYPE_PSEUDOREF:
1184                 strbuf_addf(sb, "%s/logs/%s", refs->gitdir, refname);
1185                 break;
1186         case REF_TYPE_NORMAL:
1187                 strbuf_addf(sb, "%s/logs/%s", refs->gitcommondir, refname);
1188                 break;
1189         default:
1190                 die("BUG: unknown ref type %d of ref %s",
1191                     ref_type(refname), refname);
1192         }
1193 }
1194
1195 static void files_ref_path(struct files_ref_store *refs,
1196                            struct strbuf *sb,
1197                            const char *refname)
1198 {
1199         switch (ref_type(refname)) {
1200         case REF_TYPE_PER_WORKTREE:
1201         case REF_TYPE_PSEUDOREF:
1202                 strbuf_addf(sb, "%s/%s", refs->gitdir, refname);
1203                 break;
1204         case REF_TYPE_NORMAL:
1205                 strbuf_addf(sb, "%s/%s", refs->gitcommondir, refname);
1206                 break;
1207         default:
1208                 die("BUG: unknown ref type %d of ref %s",
1209                     ref_type(refname), refname);
1210         }
1211 }
1212
1213 /*
1214  * Get the packed_ref_cache for the specified files_ref_store,
1215  * creating it if necessary.
1216  */
1217 static struct packed_ref_cache *get_packed_ref_cache(struct files_ref_store *refs)
1218 {
1219         const char *packed_refs_file = files_packed_refs_path(refs);
1220
1221         if (refs->packed &&
1222             !stat_validity_check(&refs->packed->validity, packed_refs_file))
1223                 clear_packed_ref_cache(refs);
1224
1225         if (!refs->packed) {
1226                 FILE *f;
1227
1228                 refs->packed = xcalloc(1, sizeof(*refs->packed));
1229                 acquire_packed_ref_cache(refs->packed);
1230                 refs->packed->root = create_dir_entry(refs, "", 0, 0);
1231                 f = fopen(packed_refs_file, "r");
1232                 if (f) {
1233                         stat_validity_update(&refs->packed->validity, fileno(f));
1234                         read_packed_refs(f, get_ref_dir(refs->packed->root));
1235                         fclose(f);
1236                 }
1237         }
1238         return refs->packed;
1239 }
1240
1241 static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1242 {
1243         return get_ref_dir(packed_ref_cache->root);
1244 }
1245
1246 static struct ref_dir *get_packed_refs(struct files_ref_store *refs)
1247 {
1248         return get_packed_ref_dir(get_packed_ref_cache(refs));
1249 }
1250
1251 /*
1252  * Add a reference to the in-memory packed reference cache.  This may
1253  * only be called while the packed-refs file is locked (see
1254  * lock_packed_refs()).  To actually write the packed-refs file, call
1255  * commit_packed_refs().
1256  */
1257 static void add_packed_ref(struct files_ref_store *refs,
1258                            const char *refname, const unsigned char *sha1)
1259 {
1260         struct packed_ref_cache *packed_ref_cache = get_packed_ref_cache(refs);
1261
1262         if (!packed_ref_cache->lock)
1263                 die("internal error: packed refs not locked");
1264         add_ref(get_packed_ref_dir(packed_ref_cache),
1265                 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1266 }
1267
1268 /*
1269  * Read the loose references from the namespace dirname into dir
1270  * (without recursing).  dirname must end with '/'.  dir must be the
1271  * directory entry corresponding to dirname.
1272  */
1273 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1274 {
1275         struct files_ref_store *refs = dir->ref_store;
1276         DIR *d;
1277         struct dirent *de;
1278         int dirnamelen = strlen(dirname);
1279         struct strbuf refname;
1280         struct strbuf path = STRBUF_INIT;
1281         size_t path_baselen;
1282
1283         files_ref_path(refs, &path, dirname);
1284         path_baselen = path.len;
1285
1286         d = opendir(path.buf);
1287         if (!d) {
1288                 strbuf_release(&path);
1289                 return;
1290         }
1291
1292         strbuf_init(&refname, dirnamelen + 257);
1293         strbuf_add(&refname, dirname, dirnamelen);
1294
1295         while ((de = readdir(d)) != NULL) {
1296                 unsigned char sha1[20];
1297                 struct stat st;
1298                 int flag;
1299
1300                 if (de->d_name[0] == '.')
1301                         continue;
1302                 if (ends_with(de->d_name, ".lock"))
1303                         continue;
1304                 strbuf_addstr(&refname, de->d_name);
1305                 strbuf_addstr(&path, de->d_name);
1306                 if (stat(path.buf, &st) < 0) {
1307                         ; /* silently ignore */
1308                 } else if (S_ISDIR(st.st_mode)) {
1309                         strbuf_addch(&refname, '/');
1310                         add_entry_to_dir(dir,
1311                                          create_dir_entry(refs, refname.buf,
1312                                                           refname.len, 1));
1313                 } else {
1314                         if (!refs_resolve_ref_unsafe(&refs->base,
1315                                                      refname.buf,
1316                                                      RESOLVE_REF_READING,
1317                                                      sha1, &flag)) {
1318                                 hashclr(sha1);
1319                                 flag |= REF_ISBROKEN;
1320                         } else if (is_null_sha1(sha1)) {
1321                                 /*
1322                                  * It is so astronomically unlikely
1323                                  * that NULL_SHA1 is the SHA-1 of an
1324                                  * actual object that we consider its
1325                                  * appearance in a loose reference
1326                                  * file to be repo corruption
1327                                  * (probably due to a software bug).
1328                                  */
1329                                 flag |= REF_ISBROKEN;
1330                         }
1331
1332                         if (check_refname_format(refname.buf,
1333                                                  REFNAME_ALLOW_ONELEVEL)) {
1334                                 if (!refname_is_safe(refname.buf))
1335                                         die("loose refname is dangerous: %s", refname.buf);
1336                                 hashclr(sha1);
1337                                 flag |= REF_BAD_NAME | REF_ISBROKEN;
1338                         }
1339                         add_entry_to_dir(dir,
1340                                          create_ref_entry(refname.buf, sha1, flag, 0));
1341                 }
1342                 strbuf_setlen(&refname, dirnamelen);
1343                 strbuf_setlen(&path, path_baselen);
1344         }
1345         strbuf_release(&refname);
1346         strbuf_release(&path);
1347         closedir(d);
1348 }
1349
1350 static struct ref_dir *get_loose_refs(struct files_ref_store *refs)
1351 {
1352         if (!refs->loose) {
1353                 /*
1354                  * Mark the top-level directory complete because we
1355                  * are about to read the only subdirectory that can
1356                  * hold references:
1357                  */
1358                 refs->loose = create_dir_entry(refs, "", 0, 0);
1359                 /*
1360                  * Create an incomplete entry for "refs/":
1361                  */
1362                 add_entry_to_dir(get_ref_dir(refs->loose),
1363                                  create_dir_entry(refs, "refs/", 5, 1));
1364         }
1365         return get_ref_dir(refs->loose);
1366 }
1367
1368 /*
1369  * Return the ref_entry for the given refname from the packed
1370  * references.  If it does not exist, return NULL.
1371  */
1372 static struct ref_entry *get_packed_ref(struct files_ref_store *refs,
1373                                         const char *refname)
1374 {
1375         return find_ref(get_packed_refs(refs), refname);
1376 }
1377
1378 /*
1379  * A loose ref file doesn't exist; check for a packed ref.
1380  */
1381 static int resolve_packed_ref(struct files_ref_store *refs,
1382                               const char *refname,
1383                               unsigned char *sha1, unsigned int *flags)
1384 {
1385         struct ref_entry *entry;
1386
1387         /*
1388          * The loose reference file does not exist; check for a packed
1389          * reference.
1390          */
1391         entry = get_packed_ref(refs, refname);
1392         if (entry) {
1393                 hashcpy(sha1, entry->u.value.oid.hash);
1394                 *flags |= REF_ISPACKED;
1395                 return 0;
1396         }
1397         /* refname is not a packed reference. */
1398         return -1;
1399 }
1400
1401 static int files_read_raw_ref(struct ref_store *ref_store,
1402                               const char *refname, unsigned char *sha1,
1403                               struct strbuf *referent, unsigned int *type)
1404 {
1405         struct files_ref_store *refs =
1406                 files_downcast(ref_store, REF_STORE_READ, "read_raw_ref");
1407         struct strbuf sb_contents = STRBUF_INIT;
1408         struct strbuf sb_path = STRBUF_INIT;
1409         const char *path;
1410         const char *buf;
1411         struct stat st;
1412         int fd;
1413         int ret = -1;
1414         int save_errno;
1415         int remaining_retries = 3;
1416
1417         *type = 0;
1418         strbuf_reset(&sb_path);
1419
1420         files_ref_path(refs, &sb_path, refname);
1421
1422         path = sb_path.buf;
1423
1424 stat_ref:
1425         /*
1426          * We might have to loop back here to avoid a race
1427          * condition: first we lstat() the file, then we try
1428          * to read it as a link or as a file.  But if somebody
1429          * changes the type of the file (file <-> directory
1430          * <-> symlink) between the lstat() and reading, then
1431          * we don't want to report that as an error but rather
1432          * try again starting with the lstat().
1433          *
1434          * We'll keep a count of the retries, though, just to avoid
1435          * any confusing situation sending us into an infinite loop.
1436          */
1437
1438         if (remaining_retries-- <= 0)
1439                 goto out;
1440
1441         if (lstat(path, &st) < 0) {
1442                 if (errno != ENOENT)
1443                         goto out;
1444                 if (resolve_packed_ref(refs, refname, sha1, type)) {
1445                         errno = ENOENT;
1446                         goto out;
1447                 }
1448                 ret = 0;
1449                 goto out;
1450         }
1451
1452         /* Follow "normalized" - ie "refs/.." symlinks by hand */
1453         if (S_ISLNK(st.st_mode)) {
1454                 strbuf_reset(&sb_contents);
1455                 if (strbuf_readlink(&sb_contents, path, 0) < 0) {
1456                         if (errno == ENOENT || errno == EINVAL)
1457                                 /* inconsistent with lstat; retry */
1458                                 goto stat_ref;
1459                         else
1460                                 goto out;
1461                 }
1462                 if (starts_with(sb_contents.buf, "refs/") &&
1463                     !check_refname_format(sb_contents.buf, 0)) {
1464                         strbuf_swap(&sb_contents, referent);
1465                         *type |= REF_ISSYMREF;
1466                         ret = 0;
1467                         goto out;
1468                 }
1469                 /*
1470                  * It doesn't look like a refname; fall through to just
1471                  * treating it like a non-symlink, and reading whatever it
1472                  * points to.
1473                  */
1474         }
1475
1476         /* Is it a directory? */
1477         if (S_ISDIR(st.st_mode)) {
1478                 /*
1479                  * Even though there is a directory where the loose
1480                  * ref is supposed to be, there could still be a
1481                  * packed ref:
1482                  */
1483                 if (resolve_packed_ref(refs, refname, sha1, type)) {
1484                         errno = EISDIR;
1485                         goto out;
1486                 }
1487                 ret = 0;
1488                 goto out;
1489         }
1490
1491         /*
1492          * Anything else, just open it and try to use it as
1493          * a ref
1494          */
1495         fd = open(path, O_RDONLY);
1496         if (fd < 0) {
1497                 if (errno == ENOENT && !S_ISLNK(st.st_mode))
1498                         /* inconsistent with lstat; retry */
1499                         goto stat_ref;
1500                 else
1501                         goto out;
1502         }
1503         strbuf_reset(&sb_contents);
1504         if (strbuf_read(&sb_contents, fd, 256) < 0) {
1505                 int save_errno = errno;
1506                 close(fd);
1507                 errno = save_errno;
1508                 goto out;
1509         }
1510         close(fd);
1511         strbuf_rtrim(&sb_contents);
1512         buf = sb_contents.buf;
1513         if (starts_with(buf, "ref:")) {
1514                 buf += 4;
1515                 while (isspace(*buf))
1516                         buf++;
1517
1518                 strbuf_reset(referent);
1519                 strbuf_addstr(referent, buf);
1520                 *type |= REF_ISSYMREF;
1521                 ret = 0;
1522                 goto out;
1523         }
1524
1525         /*
1526          * Please note that FETCH_HEAD has additional
1527          * data after the sha.
1528          */
1529         if (get_sha1_hex(buf, sha1) ||
1530             (buf[40] != '\0' && !isspace(buf[40]))) {
1531                 *type |= REF_ISBROKEN;
1532                 errno = EINVAL;
1533                 goto out;
1534         }
1535
1536         ret = 0;
1537
1538 out:
1539         save_errno = errno;
1540         strbuf_release(&sb_path);
1541         strbuf_release(&sb_contents);
1542         errno = save_errno;
1543         return ret;
1544 }
1545
1546 static void unlock_ref(struct ref_lock *lock)
1547 {
1548         /* Do not free lock->lk -- atexit() still looks at them */
1549         if (lock->lk)
1550                 rollback_lock_file(lock->lk);
1551         free(lock->ref_name);
1552         free(lock);
1553 }
1554
1555 /*
1556  * Lock refname, without following symrefs, and set *lock_p to point
1557  * at a newly-allocated lock object. Fill in lock->old_oid, referent,
1558  * and type similarly to read_raw_ref().
1559  *
1560  * The caller must verify that refname is a "safe" reference name (in
1561  * the sense of refname_is_safe()) before calling this function.
1562  *
1563  * If the reference doesn't already exist, verify that refname doesn't
1564  * have a D/F conflict with any existing references. extras and skip
1565  * are passed to verify_refname_available_dir() for this check.
1566  *
1567  * If mustexist is not set and the reference is not found or is
1568  * broken, lock the reference anyway but clear sha1.
1569  *
1570  * Return 0 on success. On failure, write an error message to err and
1571  * return TRANSACTION_NAME_CONFLICT or TRANSACTION_GENERIC_ERROR.
1572  *
1573  * Implementation note: This function is basically
1574  *
1575  *     lock reference
1576  *     read_raw_ref()
1577  *
1578  * but it includes a lot more code to
1579  * - Deal with possible races with other processes
1580  * - Avoid calling verify_refname_available_dir() when it can be
1581  *   avoided, namely if we were successfully able to read the ref
1582  * - Generate informative error messages in the case of failure
1583  */
1584 static int lock_raw_ref(struct files_ref_store *refs,
1585                         const char *refname, int mustexist,
1586                         const struct string_list *extras,
1587                         const struct string_list *skip,
1588                         struct ref_lock **lock_p,
1589                         struct strbuf *referent,
1590                         unsigned int *type,
1591                         struct strbuf *err)
1592 {
1593         struct ref_lock *lock;
1594         struct strbuf ref_file = STRBUF_INIT;
1595         int attempts_remaining = 3;
1596         int ret = TRANSACTION_GENERIC_ERROR;
1597
1598         assert(err);
1599         files_assert_main_repository(refs, "lock_raw_ref");
1600
1601         *type = 0;
1602
1603         /* First lock the file so it can't change out from under us. */
1604
1605         *lock_p = lock = xcalloc(1, sizeof(*lock));
1606
1607         lock->ref_name = xstrdup(refname);
1608         files_ref_path(refs, &ref_file, refname);
1609
1610 retry:
1611         switch (safe_create_leading_directories(ref_file.buf)) {
1612         case SCLD_OK:
1613                 break; /* success */
1614         case SCLD_EXISTS:
1615                 /*
1616                  * Suppose refname is "refs/foo/bar". We just failed
1617                  * to create the containing directory, "refs/foo",
1618                  * because there was a non-directory in the way. This
1619                  * indicates a D/F conflict, probably because of
1620                  * another reference such as "refs/foo". There is no
1621                  * reason to expect this error to be transitory.
1622                  */
1623                 if (refs_verify_refname_available(&refs->base, refname,
1624                                                   extras, skip, err)) {
1625                         if (mustexist) {
1626                                 /*
1627                                  * To the user the relevant error is
1628                                  * that the "mustexist" reference is
1629                                  * missing:
1630                                  */
1631                                 strbuf_reset(err);
1632                                 strbuf_addf(err, "unable to resolve reference '%s'",
1633                                             refname);
1634                         } else {
1635                                 /*
1636                                  * The error message set by
1637                                  * verify_refname_available_dir() is OK.
1638                                  */
1639                                 ret = TRANSACTION_NAME_CONFLICT;
1640                         }
1641                 } else {
1642                         /*
1643                          * The file that is in the way isn't a loose
1644                          * reference. Report it as a low-level
1645                          * failure.
1646                          */
1647                         strbuf_addf(err, "unable to create lock file %s.lock; "
1648                                     "non-directory in the way",
1649                                     ref_file.buf);
1650                 }
1651                 goto error_return;
1652         case SCLD_VANISHED:
1653                 /* Maybe another process was tidying up. Try again. */
1654                 if (--attempts_remaining > 0)
1655                         goto retry;
1656                 /* fall through */
1657         default:
1658                 strbuf_addf(err, "unable to create directory for %s",
1659                             ref_file.buf);
1660                 goto error_return;
1661         }
1662
1663         if (!lock->lk)
1664                 lock->lk = xcalloc(1, sizeof(struct lock_file));
1665
1666         if (hold_lock_file_for_update(lock->lk, ref_file.buf, LOCK_NO_DEREF) < 0) {
1667                 if (errno == ENOENT && --attempts_remaining > 0) {
1668                         /*
1669                          * Maybe somebody just deleted one of the
1670                          * directories leading to ref_file.  Try
1671                          * again:
1672                          */
1673                         goto retry;
1674                 } else {
1675                         unable_to_lock_message(ref_file.buf, errno, err);
1676                         goto error_return;
1677                 }
1678         }
1679
1680         /*
1681          * Now we hold the lock and can read the reference without
1682          * fear that its value will change.
1683          */
1684
1685         if (files_read_raw_ref(&refs->base, refname,
1686                                lock->old_oid.hash, referent, type)) {
1687                 if (errno == ENOENT) {
1688                         if (mustexist) {
1689                                 /* Garden variety missing reference. */
1690                                 strbuf_addf(err, "unable to resolve reference '%s'",
1691                                             refname);
1692                                 goto error_return;
1693                         } else {
1694                                 /*
1695                                  * Reference is missing, but that's OK. We
1696                                  * know that there is not a conflict with
1697                                  * another loose reference because
1698                                  * (supposing that we are trying to lock
1699                                  * reference "refs/foo/bar"):
1700                                  *
1701                                  * - We were successfully able to create
1702                                  *   the lockfile refs/foo/bar.lock, so we
1703                                  *   know there cannot be a loose reference
1704                                  *   named "refs/foo".
1705                                  *
1706                                  * - We got ENOENT and not EISDIR, so we
1707                                  *   know that there cannot be a loose
1708                                  *   reference named "refs/foo/bar/baz".
1709                                  */
1710                         }
1711                 } else if (errno == EISDIR) {
1712                         /*
1713                          * There is a directory in the way. It might have
1714                          * contained references that have been deleted. If
1715                          * we don't require that the reference already
1716                          * exists, try to remove the directory so that it
1717                          * doesn't cause trouble when we want to rename the
1718                          * lockfile into place later.
1719                          */
1720                         if (mustexist) {
1721                                 /* Garden variety missing reference. */
1722                                 strbuf_addf(err, "unable to resolve reference '%s'",
1723                                             refname);
1724                                 goto error_return;
1725                         } else if (remove_dir_recursively(&ref_file,
1726                                                           REMOVE_DIR_EMPTY_ONLY)) {
1727                                 if (refs_verify_refname_available(
1728                                                     &refs->base, refname,
1729                                                     extras, skip, err)) {
1730                                         /*
1731                                          * The error message set by
1732                                          * verify_refname_available() is OK.
1733                                          */
1734                                         ret = TRANSACTION_NAME_CONFLICT;
1735                                         goto error_return;
1736                                 } else {
1737                                         /*
1738                                          * We can't delete the directory,
1739                                          * but we also don't know of any
1740                                          * references that it should
1741                                          * contain.
1742                                          */
1743                                         strbuf_addf(err, "there is a non-empty directory '%s' "
1744                                                     "blocking reference '%s'",
1745                                                     ref_file.buf, refname);
1746                                         goto error_return;
1747                                 }
1748                         }
1749                 } else if (errno == EINVAL && (*type & REF_ISBROKEN)) {
1750                         strbuf_addf(err, "unable to resolve reference '%s': "
1751                                     "reference broken", refname);
1752                         goto error_return;
1753                 } else {
1754                         strbuf_addf(err, "unable to resolve reference '%s': %s",
1755                                     refname, strerror(errno));
1756                         goto error_return;
1757                 }
1758
1759                 /*
1760                  * If the ref did not exist and we are creating it,
1761                  * make sure there is no existing packed ref whose
1762                  * name begins with our refname, nor a packed ref
1763                  * whose name is a proper prefix of our refname.
1764                  */
1765                 if (verify_refname_available_dir(
1766                                     refname, extras, skip,
1767                                     get_packed_refs(refs),
1768                                     err)) {
1769                         goto error_return;
1770                 }
1771         }
1772
1773         ret = 0;
1774         goto out;
1775
1776 error_return:
1777         unlock_ref(lock);
1778         *lock_p = NULL;
1779
1780 out:
1781         strbuf_release(&ref_file);
1782         return ret;
1783 }
1784
1785 /*
1786  * Peel the entry (if possible) and return its new peel_status.  If
1787  * repeel is true, re-peel the entry even if there is an old peeled
1788  * value that is already stored in it.
1789  *
1790  * It is OK to call this function with a packed reference entry that
1791  * might be stale and might even refer to an object that has since
1792  * been garbage-collected.  In such a case, if the entry has
1793  * REF_KNOWS_PEELED then leave the status unchanged and return
1794  * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1795  */
1796 static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1797 {
1798         enum peel_status status;
1799
1800         if (entry->flag & REF_KNOWS_PEELED) {
1801                 if (repeel) {
1802                         entry->flag &= ~REF_KNOWS_PEELED;
1803                         oidclr(&entry->u.value.peeled);
1804                 } else {
1805                         return is_null_oid(&entry->u.value.peeled) ?
1806                                 PEEL_NON_TAG : PEEL_PEELED;
1807                 }
1808         }
1809         if (entry->flag & REF_ISBROKEN)
1810                 return PEEL_BROKEN;
1811         if (entry->flag & REF_ISSYMREF)
1812                 return PEEL_IS_SYMREF;
1813
1814         status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
1815         if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1816                 entry->flag |= REF_KNOWS_PEELED;
1817         return status;
1818 }
1819
1820 static int files_peel_ref(struct ref_store *ref_store,
1821                           const char *refname, unsigned char *sha1)
1822 {
1823         struct files_ref_store *refs =
1824                 files_downcast(ref_store, REF_STORE_READ | REF_STORE_ODB,
1825                                "peel_ref");
1826         int flag;
1827         unsigned char base[20];
1828
1829         if (current_ref_iter && current_ref_iter->refname == refname) {
1830                 struct object_id peeled;
1831
1832                 if (ref_iterator_peel(current_ref_iter, &peeled))
1833                         return -1;
1834                 hashcpy(sha1, peeled.hash);
1835                 return 0;
1836         }
1837
1838         if (refs_read_ref_full(ref_store, refname,
1839                                RESOLVE_REF_READING, base, &flag))
1840                 return -1;
1841
1842         /*
1843          * If the reference is packed, read its ref_entry from the
1844          * cache in the hope that we already know its peeled value.
1845          * We only try this optimization on packed references because
1846          * (a) forcing the filling of the loose reference cache could
1847          * be expensive and (b) loose references anyway usually do not
1848          * have REF_KNOWS_PEELED.
1849          */
1850         if (flag & REF_ISPACKED) {
1851                 struct ref_entry *r = get_packed_ref(refs, refname);
1852                 if (r) {
1853                         if (peel_entry(r, 0))
1854                                 return -1;
1855                         hashcpy(sha1, r->u.value.peeled.hash);
1856                         return 0;
1857                 }
1858         }
1859
1860         return peel_object(base, sha1);
1861 }
1862
1863 struct files_ref_iterator {
1864         struct ref_iterator base;
1865
1866         struct packed_ref_cache *packed_ref_cache;
1867         struct ref_iterator *iter0;
1868         unsigned int flags;
1869 };
1870
1871 static int files_ref_iterator_advance(struct ref_iterator *ref_iterator)
1872 {
1873         struct files_ref_iterator *iter =
1874                 (struct files_ref_iterator *)ref_iterator;
1875         int ok;
1876
1877         while ((ok = ref_iterator_advance(iter->iter0)) == ITER_OK) {
1878                 if (iter->flags & DO_FOR_EACH_PER_WORKTREE_ONLY &&
1879                     ref_type(iter->iter0->refname) != REF_TYPE_PER_WORKTREE)
1880                         continue;
1881
1882                 if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
1883                     !ref_resolves_to_object(iter->iter0->refname,
1884                                             iter->iter0->oid,
1885                                             iter->iter0->flags))
1886                         continue;
1887
1888                 iter->base.refname = iter->iter0->refname;
1889                 iter->base.oid = iter->iter0->oid;
1890                 iter->base.flags = iter->iter0->flags;
1891                 return ITER_OK;
1892         }
1893
1894         iter->iter0 = NULL;
1895         if (ref_iterator_abort(ref_iterator) != ITER_DONE)
1896                 ok = ITER_ERROR;
1897
1898         return ok;
1899 }
1900
1901 static int files_ref_iterator_peel(struct ref_iterator *ref_iterator,
1902                                    struct object_id *peeled)
1903 {
1904         struct files_ref_iterator *iter =
1905                 (struct files_ref_iterator *)ref_iterator;
1906
1907         return ref_iterator_peel(iter->iter0, peeled);
1908 }
1909
1910 static int files_ref_iterator_abort(struct ref_iterator *ref_iterator)
1911 {
1912         struct files_ref_iterator *iter =
1913                 (struct files_ref_iterator *)ref_iterator;
1914         int ok = ITER_DONE;
1915
1916         if (iter->iter0)
1917                 ok = ref_iterator_abort(iter->iter0);
1918
1919         release_packed_ref_cache(iter->packed_ref_cache);
1920         base_ref_iterator_free(ref_iterator);
1921         return ok;
1922 }
1923
1924 static struct ref_iterator_vtable files_ref_iterator_vtable = {
1925         files_ref_iterator_advance,
1926         files_ref_iterator_peel,
1927         files_ref_iterator_abort
1928 };
1929
1930 static struct ref_iterator *files_ref_iterator_begin(
1931                 struct ref_store *ref_store,
1932                 const char *prefix, unsigned int flags)
1933 {
1934         struct files_ref_store *refs;
1935         struct ref_dir *loose_dir, *packed_dir;
1936         struct ref_iterator *loose_iter, *packed_iter;
1937         struct files_ref_iterator *iter;
1938         struct ref_iterator *ref_iterator;
1939
1940         if (ref_paranoia < 0)
1941                 ref_paranoia = git_env_bool("GIT_REF_PARANOIA", 0);
1942         if (ref_paranoia)
1943                 flags |= DO_FOR_EACH_INCLUDE_BROKEN;
1944
1945         refs = files_downcast(ref_store,
1946                               REF_STORE_READ | (ref_paranoia ? 0 : REF_STORE_ODB),
1947                               "ref_iterator_begin");
1948
1949         iter = xcalloc(1, sizeof(*iter));
1950         ref_iterator = &iter->base;
1951         base_ref_iterator_init(ref_iterator, &files_ref_iterator_vtable);
1952
1953         /*
1954          * We must make sure that all loose refs are read before
1955          * accessing the packed-refs file; this avoids a race
1956          * condition if loose refs are migrated to the packed-refs
1957          * file by a simultaneous process, but our in-memory view is
1958          * from before the migration. We ensure this as follows:
1959          * First, we call prime_ref_dir(), which pre-reads the loose
1960          * references for the subtree into the cache. (If they've
1961          * already been read, that's OK; we only need to guarantee
1962          * that they're read before the packed refs, not *how much*
1963          * before.) After that, we call get_packed_ref_cache(), which
1964          * internally checks whether the packed-ref cache is up to
1965          * date with what is on disk, and re-reads it if not.
1966          */
1967
1968         loose_dir = get_loose_refs(refs);
1969
1970         if (prefix && *prefix)
1971                 loose_dir = find_containing_dir(loose_dir, prefix, 0);
1972
1973         if (loose_dir) {
1974                 prime_ref_dir(loose_dir);
1975                 loose_iter = cache_ref_iterator_begin(loose_dir);
1976         } else {
1977                 /* There's nothing to iterate over. */
1978                 loose_iter = empty_ref_iterator_begin();
1979         }
1980
1981         iter->packed_ref_cache = get_packed_ref_cache(refs);
1982         acquire_packed_ref_cache(iter->packed_ref_cache);
1983         packed_dir = get_packed_ref_dir(iter->packed_ref_cache);
1984
1985         if (prefix && *prefix)
1986                 packed_dir = find_containing_dir(packed_dir, prefix, 0);
1987
1988         if (packed_dir) {
1989                 packed_iter = cache_ref_iterator_begin(packed_dir);
1990         } else {
1991                 /* There's nothing to iterate over. */
1992                 packed_iter = empty_ref_iterator_begin();
1993         }
1994
1995         iter->iter0 = overlay_ref_iterator_begin(loose_iter, packed_iter);
1996         iter->flags = flags;
1997
1998         return ref_iterator;
1999 }
2000
2001 /*
2002  * Verify that the reference locked by lock has the value old_sha1.
2003  * Fail if the reference doesn't exist and mustexist is set. Return 0
2004  * on success. On error, write an error message to err, set errno, and
2005  * return a negative value.
2006  */
2007 static int verify_lock(struct ref_store *ref_store, struct ref_lock *lock,
2008                        const unsigned char *old_sha1, int mustexist,
2009                        struct strbuf *err)
2010 {
2011         assert(err);
2012
2013         if (refs_read_ref_full(ref_store, lock->ref_name,
2014                                mustexist ? RESOLVE_REF_READING : 0,
2015                                lock->old_oid.hash, NULL)) {
2016                 if (old_sha1) {
2017                         int save_errno = errno;
2018                         strbuf_addf(err, "can't verify ref '%s'", lock->ref_name);
2019                         errno = save_errno;
2020                         return -1;
2021                 } else {
2022                         oidclr(&lock->old_oid);
2023                         return 0;
2024                 }
2025         }
2026         if (old_sha1 && hashcmp(lock->old_oid.hash, old_sha1)) {
2027                 strbuf_addf(err, "ref '%s' is at %s but expected %s",
2028                             lock->ref_name,
2029                             oid_to_hex(&lock->old_oid),
2030                             sha1_to_hex(old_sha1));
2031                 errno = EBUSY;
2032                 return -1;
2033         }
2034         return 0;
2035 }
2036
2037 static int remove_empty_directories(struct strbuf *path)
2038 {
2039         /*
2040          * we want to create a file but there is a directory there;
2041          * if that is an empty directory (or a directory that contains
2042          * only empty directories), remove them.
2043          */
2044         return remove_dir_recursively(path, REMOVE_DIR_EMPTY_ONLY);
2045 }
2046
2047 static int create_reflock(const char *path, void *cb)
2048 {
2049         struct lock_file *lk = cb;
2050
2051         return hold_lock_file_for_update(lk, path, LOCK_NO_DEREF) < 0 ? -1 : 0;
2052 }
2053
2054 /*
2055  * Locks a ref returning the lock on success and NULL on failure.
2056  * On failure errno is set to something meaningful.
2057  */
2058 static struct ref_lock *lock_ref_sha1_basic(struct files_ref_store *refs,
2059                                             const char *refname,
2060                                             const unsigned char *old_sha1,
2061                                             const struct string_list *extras,
2062                                             const struct string_list *skip,
2063                                             unsigned int flags, int *type,
2064                                             struct strbuf *err)
2065 {
2066         struct strbuf ref_file = STRBUF_INIT;
2067         struct ref_lock *lock;
2068         int last_errno = 0;
2069         int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
2070         int resolve_flags = RESOLVE_REF_NO_RECURSE;
2071         int resolved;
2072
2073         files_assert_main_repository(refs, "lock_ref_sha1_basic");
2074         assert(err);
2075
2076         lock = xcalloc(1, sizeof(struct ref_lock));
2077
2078         if (mustexist)
2079                 resolve_flags |= RESOLVE_REF_READING;
2080         if (flags & REF_DELETING)
2081                 resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
2082
2083         files_ref_path(refs, &ref_file, refname);
2084         resolved = !!refs_resolve_ref_unsafe(&refs->base,
2085                                              refname, resolve_flags,
2086                                              lock->old_oid.hash, type);
2087         if (!resolved && errno == EISDIR) {
2088                 /*
2089                  * we are trying to lock foo but we used to
2090                  * have foo/bar which now does not exist;
2091                  * it is normal for the empty directory 'foo'
2092                  * to remain.
2093                  */
2094                 if (remove_empty_directories(&ref_file)) {
2095                         last_errno = errno;
2096                         if (!refs_verify_refname_available(
2097                                             &refs->base,
2098                                             refname, extras, skip, err))
2099                                 strbuf_addf(err, "there are still refs under '%s'",
2100                                             refname);
2101                         goto error_return;
2102                 }
2103                 resolved = !!refs_resolve_ref_unsafe(&refs->base,
2104                                                      refname, resolve_flags,
2105                                                      lock->old_oid.hash, type);
2106         }
2107         if (!resolved) {
2108                 last_errno = errno;
2109                 if (last_errno != ENOTDIR ||
2110                     !refs_verify_refname_available(&refs->base, refname,
2111                                                    extras, skip, err))
2112                         strbuf_addf(err, "unable to resolve reference '%s': %s",
2113                                     refname, strerror(last_errno));
2114
2115                 goto error_return;
2116         }
2117
2118         /*
2119          * If the ref did not exist and we are creating it, make sure
2120          * there is no existing packed ref whose name begins with our
2121          * refname, nor a packed ref whose name is a proper prefix of
2122          * our refname.
2123          */
2124         if (is_null_oid(&lock->old_oid) &&
2125             verify_refname_available_dir(refname, extras, skip,
2126                                          get_packed_refs(refs),
2127                                          err)) {
2128                 last_errno = ENOTDIR;
2129                 goto error_return;
2130         }
2131
2132         lock->lk = xcalloc(1, sizeof(struct lock_file));
2133
2134         lock->ref_name = xstrdup(refname);
2135
2136         if (raceproof_create_file(ref_file.buf, create_reflock, lock->lk)) {
2137                 last_errno = errno;
2138                 unable_to_lock_message(ref_file.buf, errno, err);
2139                 goto error_return;
2140         }
2141
2142         if (verify_lock(&refs->base, lock, old_sha1, mustexist, err)) {
2143                 last_errno = errno;
2144                 goto error_return;
2145         }
2146         goto out;
2147
2148  error_return:
2149         unlock_ref(lock);
2150         lock = NULL;
2151
2152  out:
2153         strbuf_release(&ref_file);
2154         errno = last_errno;
2155         return lock;
2156 }
2157
2158 /*
2159  * Write an entry to the packed-refs file for the specified refname.
2160  * If peeled is non-NULL, write it as the entry's peeled value.
2161  */
2162 static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2163                                unsigned char *peeled)
2164 {
2165         fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2166         if (peeled)
2167                 fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2168 }
2169
2170 /*
2171  * An each_ref_entry_fn that writes the entry to a packed-refs file.
2172  */
2173 static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2174 {
2175         enum peel_status peel_status = peel_entry(entry, 0);
2176
2177         if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2178                 error("internal error: %s is not a valid packed reference!",
2179                       entry->name);
2180         write_packed_entry(cb_data, entry->name, entry->u.value.oid.hash,
2181                            peel_status == PEEL_PEELED ?
2182                            entry->u.value.peeled.hash : NULL);
2183         return 0;
2184 }
2185
2186 /*
2187  * Lock the packed-refs file for writing. Flags is passed to
2188  * hold_lock_file_for_update(). Return 0 on success. On errors, set
2189  * errno appropriately and return a nonzero value.
2190  */
2191 static int lock_packed_refs(struct files_ref_store *refs, int flags)
2192 {
2193         static int timeout_configured = 0;
2194         static int timeout_value = 1000;
2195         struct packed_ref_cache *packed_ref_cache;
2196
2197         files_assert_main_repository(refs, "lock_packed_refs");
2198
2199         if (!timeout_configured) {
2200                 git_config_get_int("core.packedrefstimeout", &timeout_value);
2201                 timeout_configured = 1;
2202         }
2203
2204         if (hold_lock_file_for_update_timeout(
2205                             &packlock, files_packed_refs_path(refs),
2206                             flags, timeout_value) < 0)
2207                 return -1;
2208         /*
2209          * Get the current packed-refs while holding the lock.  If the
2210          * packed-refs file has been modified since we last read it,
2211          * this will automatically invalidate the cache and re-read
2212          * the packed-refs file.
2213          */
2214         packed_ref_cache = get_packed_ref_cache(refs);
2215         packed_ref_cache->lock = &packlock;
2216         /* Increment the reference count to prevent it from being freed: */
2217         acquire_packed_ref_cache(packed_ref_cache);
2218         return 0;
2219 }
2220
2221 /*
2222  * Write the current version of the packed refs cache from memory to
2223  * disk. The packed-refs file must already be locked for writing (see
2224  * lock_packed_refs()). Return zero on success. On errors, set errno
2225  * and return a nonzero value
2226  */
2227 static int commit_packed_refs(struct files_ref_store *refs)
2228 {
2229         struct packed_ref_cache *packed_ref_cache =
2230                 get_packed_ref_cache(refs);
2231         int error = 0;
2232         int save_errno = 0;
2233         FILE *out;
2234
2235         files_assert_main_repository(refs, "commit_packed_refs");
2236
2237         if (!packed_ref_cache->lock)
2238                 die("internal error: packed-refs not locked");
2239
2240         out = fdopen_lock_file(packed_ref_cache->lock, "w");
2241         if (!out)
2242                 die_errno("unable to fdopen packed-refs descriptor");
2243
2244         fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2245         do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2246                                  0, write_packed_entry_fn, out);
2247
2248         if (commit_lock_file(packed_ref_cache->lock)) {
2249                 save_errno = errno;
2250                 error = -1;
2251         }
2252         packed_ref_cache->lock = NULL;
2253         release_packed_ref_cache(packed_ref_cache);
2254         errno = save_errno;
2255         return error;
2256 }
2257
2258 /*
2259  * Rollback the lockfile for the packed-refs file, and discard the
2260  * in-memory packed reference cache.  (The packed-refs file will be
2261  * read anew if it is needed again after this function is called.)
2262  */
2263 static void rollback_packed_refs(struct files_ref_store *refs)
2264 {
2265         struct packed_ref_cache *packed_ref_cache =
2266                 get_packed_ref_cache(refs);
2267
2268         files_assert_main_repository(refs, "rollback_packed_refs");
2269
2270         if (!packed_ref_cache->lock)
2271                 die("internal error: packed-refs not locked");
2272         rollback_lock_file(packed_ref_cache->lock);
2273         packed_ref_cache->lock = NULL;
2274         release_packed_ref_cache(packed_ref_cache);
2275         clear_packed_ref_cache(refs);
2276 }
2277
2278 struct ref_to_prune {
2279         struct ref_to_prune *next;
2280         unsigned char sha1[20];
2281         char name[FLEX_ARRAY];
2282 };
2283
2284 struct pack_refs_cb_data {
2285         unsigned int flags;
2286         struct ref_dir *packed_refs;
2287         struct ref_to_prune *ref_to_prune;
2288 };
2289
2290 /*
2291  * An each_ref_entry_fn that is run over loose references only.  If
2292  * the loose reference can be packed, add an entry in the packed ref
2293  * cache.  If the reference should be pruned, also add it to
2294  * ref_to_prune in the pack_refs_cb_data.
2295  */
2296 static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2297 {
2298         struct pack_refs_cb_data *cb = cb_data;
2299         enum peel_status peel_status;
2300         struct ref_entry *packed_entry;
2301         int is_tag_ref = starts_with(entry->name, "refs/tags/");
2302
2303         /* Do not pack per-worktree refs: */
2304         if (ref_type(entry->name) != REF_TYPE_NORMAL)
2305                 return 0;
2306
2307         /* ALWAYS pack tags */
2308         if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2309                 return 0;
2310
2311         /* Do not pack symbolic or broken refs: */
2312         if ((entry->flag & REF_ISSYMREF) || !entry_resolves_to_object(entry))
2313                 return 0;
2314
2315         /* Add a packed ref cache entry equivalent to the loose entry. */
2316         peel_status = peel_entry(entry, 1);
2317         if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2318                 die("internal error peeling reference %s (%s)",
2319                     entry->name, oid_to_hex(&entry->u.value.oid));
2320         packed_entry = find_ref(cb->packed_refs, entry->name);
2321         if (packed_entry) {
2322                 /* Overwrite existing packed entry with info from loose entry */
2323                 packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2324                 oidcpy(&packed_entry->u.value.oid, &entry->u.value.oid);
2325         } else {
2326                 packed_entry = create_ref_entry(entry->name, entry->u.value.oid.hash,
2327                                                 REF_ISPACKED | REF_KNOWS_PEELED, 0);
2328                 add_ref(cb->packed_refs, packed_entry);
2329         }
2330         oidcpy(&packed_entry->u.value.peeled, &entry->u.value.peeled);
2331
2332         /* Schedule the loose reference for pruning if requested. */
2333         if ((cb->flags & PACK_REFS_PRUNE)) {
2334                 struct ref_to_prune *n;
2335                 FLEX_ALLOC_STR(n, name, entry->name);
2336                 hashcpy(n->sha1, entry->u.value.oid.hash);
2337                 n->next = cb->ref_to_prune;
2338                 cb->ref_to_prune = n;
2339         }
2340         return 0;
2341 }
2342
2343 enum {
2344         REMOVE_EMPTY_PARENTS_REF = 0x01,
2345         REMOVE_EMPTY_PARENTS_REFLOG = 0x02
2346 };
2347
2348 /*
2349  * Remove empty parent directories associated with the specified
2350  * reference and/or its reflog, but spare [logs/]refs/ and immediate
2351  * subdirs. flags is a combination of REMOVE_EMPTY_PARENTS_REF and/or
2352  * REMOVE_EMPTY_PARENTS_REFLOG.
2353  */
2354 static void try_remove_empty_parents(struct files_ref_store *refs,
2355                                      const char *refname,
2356                                      unsigned int flags)
2357 {
2358         struct strbuf buf = STRBUF_INIT;
2359         struct strbuf sb = STRBUF_INIT;
2360         char *p, *q;
2361         int i;
2362
2363         strbuf_addstr(&buf, refname);
2364         p = buf.buf;
2365         for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2366                 while (*p && *p != '/')
2367                         p++;
2368                 /* tolerate duplicate slashes; see check_refname_format() */
2369                 while (*p == '/')
2370                         p++;
2371         }
2372         q = buf.buf + buf.len;
2373         while (flags & (REMOVE_EMPTY_PARENTS_REF | REMOVE_EMPTY_PARENTS_REFLOG)) {
2374                 while (q > p && *q != '/')
2375                         q--;
2376                 while (q > p && *(q-1) == '/')
2377                         q--;
2378                 if (q == p)
2379                         break;
2380                 strbuf_setlen(&buf, q - buf.buf);
2381
2382                 strbuf_reset(&sb);
2383                 files_ref_path(refs, &sb, buf.buf);
2384                 if ((flags & REMOVE_EMPTY_PARENTS_REF) && rmdir(sb.buf))
2385                         flags &= ~REMOVE_EMPTY_PARENTS_REF;
2386
2387                 strbuf_reset(&sb);
2388                 files_reflog_path(refs, &sb, buf.buf);
2389                 if ((flags & REMOVE_EMPTY_PARENTS_REFLOG) && rmdir(sb.buf))
2390                         flags &= ~REMOVE_EMPTY_PARENTS_REFLOG;
2391         }
2392         strbuf_release(&buf);
2393         strbuf_release(&sb);
2394 }
2395
2396 /* make sure nobody touched the ref, and unlink */
2397 static void prune_ref(struct files_ref_store *refs, struct ref_to_prune *r)
2398 {
2399         struct ref_transaction *transaction;
2400         struct strbuf err = STRBUF_INIT;
2401
2402         if (check_refname_format(r->name, 0))
2403                 return;
2404
2405         transaction = ref_store_transaction_begin(&refs->base, &err);
2406         if (!transaction ||
2407             ref_transaction_delete(transaction, r->name, r->sha1,
2408                                    REF_ISPRUNING | REF_NODEREF, NULL, &err) ||
2409             ref_transaction_commit(transaction, &err)) {
2410                 ref_transaction_free(transaction);
2411                 error("%s", err.buf);
2412                 strbuf_release(&err);
2413                 return;
2414         }
2415         ref_transaction_free(transaction);
2416         strbuf_release(&err);
2417 }
2418
2419 static void prune_refs(struct files_ref_store *refs, struct ref_to_prune *r)
2420 {
2421         while (r) {
2422                 prune_ref(refs, r);
2423                 r = r->next;
2424         }
2425 }
2426
2427 static int files_pack_refs(struct ref_store *ref_store, unsigned int flags)
2428 {
2429         struct files_ref_store *refs =
2430                 files_downcast(ref_store, REF_STORE_WRITE | REF_STORE_ODB,
2431                                "pack_refs");
2432         struct pack_refs_cb_data cbdata;
2433
2434         memset(&cbdata, 0, sizeof(cbdata));
2435         cbdata.flags = flags;
2436
2437         lock_packed_refs(refs, LOCK_DIE_ON_ERROR);
2438         cbdata.packed_refs = get_packed_refs(refs);
2439
2440         do_for_each_entry_in_dir(get_loose_refs(refs), 0,
2441                                  pack_if_possible_fn, &cbdata);
2442
2443         if (commit_packed_refs(refs))
2444                 die_errno("unable to overwrite old ref-pack file");
2445
2446         prune_refs(refs, cbdata.ref_to_prune);
2447         return 0;
2448 }
2449
2450 /*
2451  * Rewrite the packed-refs file, omitting any refs listed in
2452  * 'refnames'. On error, leave packed-refs unchanged, write an error
2453  * message to 'err', and return a nonzero value.
2454  *
2455  * The refs in 'refnames' needn't be sorted. `err` must not be NULL.
2456  */
2457 static int repack_without_refs(struct files_ref_store *refs,
2458                                struct string_list *refnames, struct strbuf *err)
2459 {
2460         struct ref_dir *packed;
2461         struct string_list_item *refname;
2462         int ret, needs_repacking = 0, removed = 0;
2463
2464         files_assert_main_repository(refs, "repack_without_refs");
2465         assert(err);
2466
2467         /* Look for a packed ref */
2468         for_each_string_list_item(refname, refnames) {
2469                 if (get_packed_ref(refs, refname->string)) {
2470                         needs_repacking = 1;
2471                         break;
2472                 }
2473         }
2474
2475         /* Avoid locking if we have nothing to do */
2476         if (!needs_repacking)
2477                 return 0; /* no refname exists in packed refs */
2478
2479         if (lock_packed_refs(refs, 0)) {
2480                 unable_to_lock_message(files_packed_refs_path(refs), errno, err);
2481                 return -1;
2482         }
2483         packed = get_packed_refs(refs);
2484
2485         /* Remove refnames from the cache */
2486         for_each_string_list_item(refname, refnames)
2487                 if (remove_entry(packed, refname->string) != -1)
2488                         removed = 1;
2489         if (!removed) {
2490                 /*
2491                  * All packed entries disappeared while we were
2492                  * acquiring the lock.
2493                  */
2494                 rollback_packed_refs(refs);
2495                 return 0;
2496         }
2497
2498         /* Write what remains */
2499         ret = commit_packed_refs(refs);
2500         if (ret)
2501                 strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2502                             strerror(errno));
2503         return ret;
2504 }
2505
2506 static int files_delete_refs(struct ref_store *ref_store,
2507                              struct string_list *refnames, unsigned int flags)
2508 {
2509         struct files_ref_store *refs =
2510                 files_downcast(ref_store, REF_STORE_WRITE, "delete_refs");
2511         struct strbuf err = STRBUF_INIT;
2512         int i, result = 0;
2513
2514         if (!refnames->nr)
2515                 return 0;
2516
2517         result = repack_without_refs(refs, refnames, &err);
2518         if (result) {
2519                 /*
2520                  * If we failed to rewrite the packed-refs file, then
2521                  * it is unsafe to try to remove loose refs, because
2522                  * doing so might expose an obsolete packed value for
2523                  * a reference that might even point at an object that
2524                  * has been garbage collected.
2525                  */
2526                 if (refnames->nr == 1)
2527                         error(_("could not delete reference %s: %s"),
2528                               refnames->items[0].string, err.buf);
2529                 else
2530                         error(_("could not delete references: %s"), err.buf);
2531
2532                 goto out;
2533         }
2534
2535         for (i = 0; i < refnames->nr; i++) {
2536                 const char *refname = refnames->items[i].string;
2537
2538                 if (refs_delete_ref(&refs->base, NULL, refname, NULL, flags))
2539                         result |= error(_("could not remove reference %s"), refname);
2540         }
2541
2542 out:
2543         strbuf_release(&err);
2544         return result;
2545 }
2546
2547 /*
2548  * People using contrib's git-new-workdir have .git/logs/refs ->
2549  * /some/other/path/.git/logs/refs, and that may live on another device.
2550  *
2551  * IOW, to avoid cross device rename errors, the temporary renamed log must
2552  * live into logs/refs.
2553  */
2554 #define TMP_RENAMED_LOG  "refs/.tmp-renamed-log"
2555
2556 struct rename_cb {
2557         const char *tmp_renamed_log;
2558         int true_errno;
2559 };
2560
2561 static int rename_tmp_log_callback(const char *path, void *cb_data)
2562 {
2563         struct rename_cb *cb = cb_data;
2564
2565         if (rename(cb->tmp_renamed_log, path)) {
2566                 /*
2567                  * rename(a, b) when b is an existing directory ought
2568                  * to result in ISDIR, but Solaris 5.8 gives ENOTDIR.
2569                  * Sheesh. Record the true errno for error reporting,
2570                  * but report EISDIR to raceproof_create_file() so
2571                  * that it knows to retry.
2572                  */
2573                 cb->true_errno = errno;
2574                 if (errno == ENOTDIR)
2575                         errno = EISDIR;
2576                 return -1;
2577         } else {
2578                 return 0;
2579         }
2580 }
2581
2582 static int rename_tmp_log(struct files_ref_store *refs, const char *newrefname)
2583 {
2584         struct strbuf path = STRBUF_INIT;
2585         struct strbuf tmp = STRBUF_INIT;
2586         struct rename_cb cb;
2587         int ret;
2588
2589         files_reflog_path(refs, &path, newrefname);
2590         files_reflog_path(refs, &tmp, TMP_RENAMED_LOG);
2591         cb.tmp_renamed_log = tmp.buf;
2592         ret = raceproof_create_file(path.buf, rename_tmp_log_callback, &cb);
2593         if (ret) {
2594                 if (errno == EISDIR)
2595                         error("directory not empty: %s", path.buf);
2596                 else
2597                         error("unable to move logfile %s to %s: %s",
2598                               tmp.buf, path.buf,
2599                               strerror(cb.true_errno));
2600         }
2601
2602         strbuf_release(&path);
2603         strbuf_release(&tmp);
2604         return ret;
2605 }
2606
2607 static int write_ref_to_lockfile(struct ref_lock *lock,
2608                                  const unsigned char *sha1, struct strbuf *err);
2609 static int commit_ref_update(struct files_ref_store *refs,
2610                              struct ref_lock *lock,
2611                              const unsigned char *sha1, const char *logmsg,
2612                              struct strbuf *err);
2613
2614 static int files_rename_ref(struct ref_store *ref_store,
2615                             const char *oldrefname, const char *newrefname,
2616                             const char *logmsg)
2617 {
2618         struct files_ref_store *refs =
2619                 files_downcast(ref_store, REF_STORE_WRITE, "rename_ref");
2620         unsigned char sha1[20], orig_sha1[20];
2621         int flag = 0, logmoved = 0;
2622         struct ref_lock *lock;
2623         struct stat loginfo;
2624         struct strbuf sb_oldref = STRBUF_INIT;
2625         struct strbuf sb_newref = STRBUF_INIT;
2626         struct strbuf tmp_renamed_log = STRBUF_INIT;
2627         int log, ret;
2628         struct strbuf err = STRBUF_INIT;
2629
2630         files_reflog_path(refs, &sb_oldref, oldrefname);
2631         files_reflog_path(refs, &sb_newref, newrefname);
2632         files_reflog_path(refs, &tmp_renamed_log, TMP_RENAMED_LOG);
2633
2634         log = !lstat(sb_oldref.buf, &loginfo);
2635         if (log && S_ISLNK(loginfo.st_mode)) {
2636                 ret = error("reflog for %s is a symlink", oldrefname);
2637                 goto out;
2638         }
2639
2640         if (!refs_resolve_ref_unsafe(&refs->base, oldrefname,
2641                                      RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2642                                 orig_sha1, &flag)) {
2643                 ret = error("refname %s not found", oldrefname);
2644                 goto out;
2645         }
2646
2647         if (flag & REF_ISSYMREF) {
2648                 ret = error("refname %s is a symbolic ref, renaming it is not supported",
2649                             oldrefname);
2650                 goto out;
2651         }
2652         if (!refs_rename_ref_available(&refs->base, oldrefname, newrefname)) {
2653                 ret = 1;
2654                 goto out;
2655         }
2656
2657         if (log && rename(sb_oldref.buf, tmp_renamed_log.buf)) {
2658                 ret = error("unable to move logfile logs/%s to logs/"TMP_RENAMED_LOG": %s",
2659                             oldrefname, strerror(errno));
2660                 goto out;
2661         }
2662
2663         if (refs_delete_ref(&refs->base, logmsg, oldrefname,
2664                             orig_sha1, REF_NODEREF)) {
2665                 error("unable to delete old %s", oldrefname);
2666                 goto rollback;
2667         }
2668
2669         /*
2670          * Since we are doing a shallow lookup, sha1 is not the
2671          * correct value to pass to delete_ref as old_sha1. But that
2672          * doesn't matter, because an old_sha1 check wouldn't add to
2673          * the safety anyway; we want to delete the reference whatever
2674          * its current value.
2675          */
2676         if (!refs_read_ref_full(&refs->base, newrefname,
2677                                 RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2678                                 sha1, NULL) &&
2679             refs_delete_ref(&refs->base, NULL, newrefname,
2680                             NULL, REF_NODEREF)) {
2681                 if (errno == EISDIR) {
2682                         struct strbuf path = STRBUF_INIT;
2683                         int result;
2684
2685                         files_ref_path(refs, &path, newrefname);
2686                         result = remove_empty_directories(&path);
2687                         strbuf_release(&path);
2688
2689                         if (result) {
2690                                 error("Directory not empty: %s", newrefname);
2691                                 goto rollback;
2692                         }
2693                 } else {
2694                         error("unable to delete existing %s", newrefname);
2695                         goto rollback;
2696                 }
2697         }
2698
2699         if (log && rename_tmp_log(refs, newrefname))
2700                 goto rollback;
2701
2702         logmoved = log;
2703
2704         lock = lock_ref_sha1_basic(refs, newrefname, NULL, NULL, NULL,
2705                                    REF_NODEREF, NULL, &err);
2706         if (!lock) {
2707                 error("unable to rename '%s' to '%s': %s", oldrefname, newrefname, err.buf);
2708                 strbuf_release(&err);
2709                 goto rollback;
2710         }
2711         hashcpy(lock->old_oid.hash, orig_sha1);
2712
2713         if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2714             commit_ref_update(refs, lock, orig_sha1, logmsg, &err)) {
2715                 error("unable to write current sha1 into %s: %s", newrefname, err.buf);
2716                 strbuf_release(&err);
2717                 goto rollback;
2718         }
2719
2720         ret = 0;
2721         goto out;
2722
2723  rollback:
2724         lock = lock_ref_sha1_basic(refs, oldrefname, NULL, NULL, NULL,
2725                                    REF_NODEREF, NULL, &err);
2726         if (!lock) {
2727                 error("unable to lock %s for rollback: %s", oldrefname, err.buf);
2728                 strbuf_release(&err);
2729                 goto rollbacklog;
2730         }
2731
2732         flag = log_all_ref_updates;
2733         log_all_ref_updates = LOG_REFS_NONE;
2734         if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2735             commit_ref_update(refs, lock, orig_sha1, NULL, &err)) {
2736                 error("unable to write current sha1 into %s: %s", oldrefname, err.buf);
2737                 strbuf_release(&err);
2738         }
2739         log_all_ref_updates = flag;
2740
2741  rollbacklog:
2742         if (logmoved && rename(sb_newref.buf, sb_oldref.buf))
2743                 error("unable to restore logfile %s from %s: %s",
2744                         oldrefname, newrefname, strerror(errno));
2745         if (!logmoved && log &&
2746             rename(tmp_renamed_log.buf, sb_oldref.buf))
2747                 error("unable to restore logfile %s from logs/"TMP_RENAMED_LOG": %s",
2748                         oldrefname, strerror(errno));
2749         ret = 1;
2750  out:
2751         strbuf_release(&sb_newref);
2752         strbuf_release(&sb_oldref);
2753         strbuf_release(&tmp_renamed_log);
2754
2755         return ret;
2756 }
2757
2758 static int close_ref(struct ref_lock *lock)
2759 {
2760         if (close_lock_file(lock->lk))
2761                 return -1;
2762         return 0;
2763 }
2764
2765 static int commit_ref(struct ref_lock *lock)
2766 {
2767         char *path = get_locked_file_path(lock->lk);
2768         struct stat st;
2769
2770         if (!lstat(path, &st) && S_ISDIR(st.st_mode)) {
2771                 /*
2772                  * There is a directory at the path we want to rename
2773                  * the lockfile to. Hopefully it is empty; try to
2774                  * delete it.
2775                  */
2776                 size_t len = strlen(path);
2777                 struct strbuf sb_path = STRBUF_INIT;
2778
2779                 strbuf_attach(&sb_path, path, len, len);
2780
2781                 /*
2782                  * If this fails, commit_lock_file() will also fail
2783                  * and will report the problem.
2784                  */
2785                 remove_empty_directories(&sb_path);
2786                 strbuf_release(&sb_path);
2787         } else {
2788                 free(path);
2789         }
2790
2791         if (commit_lock_file(lock->lk))
2792                 return -1;
2793         return 0;
2794 }
2795
2796 static int open_or_create_logfile(const char *path, void *cb)
2797 {
2798         int *fd = cb;
2799
2800         *fd = open(path, O_APPEND | O_WRONLY | O_CREAT, 0666);
2801         return (*fd < 0) ? -1 : 0;
2802 }
2803
2804 /*
2805  * Create a reflog for a ref. If force_create = 0, only create the
2806  * reflog for certain refs (those for which should_autocreate_reflog
2807  * returns non-zero). Otherwise, create it regardless of the reference
2808  * name. If the logfile already existed or was created, return 0 and
2809  * set *logfd to the file descriptor opened for appending to the file.
2810  * If no logfile exists and we decided not to create one, return 0 and
2811  * set *logfd to -1. On failure, fill in *err, set *logfd to -1, and
2812  * return -1.
2813  */
2814 static int log_ref_setup(struct files_ref_store *refs,
2815                          const char *refname, int force_create,
2816                          int *logfd, struct strbuf *err)
2817 {
2818         struct strbuf logfile_sb = STRBUF_INIT;
2819         char *logfile;
2820
2821         files_reflog_path(refs, &logfile_sb, refname);
2822         logfile = strbuf_detach(&logfile_sb, NULL);
2823
2824         if (force_create || should_autocreate_reflog(refname)) {
2825                 if (raceproof_create_file(logfile, open_or_create_logfile, logfd)) {
2826                         if (errno == ENOENT)
2827                                 strbuf_addf(err, "unable to create directory for '%s': "
2828                                             "%s", logfile, strerror(errno));
2829                         else if (errno == EISDIR)
2830                                 strbuf_addf(err, "there are still logs under '%s'",
2831                                             logfile);
2832                         else
2833                                 strbuf_addf(err, "unable to append to '%s': %s",
2834                                             logfile, strerror(errno));
2835
2836                         goto error;
2837                 }
2838         } else {
2839                 *logfd = open(logfile, O_APPEND | O_WRONLY, 0666);
2840                 if (*logfd < 0) {
2841                         if (errno == ENOENT || errno == EISDIR) {
2842                                 /*
2843                                  * The logfile doesn't already exist,
2844                                  * but that is not an error; it only
2845                                  * means that we won't write log
2846                                  * entries to it.
2847                                  */
2848                                 ;
2849                         } else {
2850                                 strbuf_addf(err, "unable to append to '%s': %s",
2851                                             logfile, strerror(errno));
2852                                 goto error;
2853                         }
2854                 }
2855         }
2856
2857         if (*logfd >= 0)
2858                 adjust_shared_perm(logfile);
2859
2860         free(logfile);
2861         return 0;
2862
2863 error:
2864         free(logfile);
2865         return -1;
2866 }
2867
2868 static int files_create_reflog(struct ref_store *ref_store,
2869                                const char *refname, int force_create,
2870                                struct strbuf *err)
2871 {
2872         struct files_ref_store *refs =
2873                 files_downcast(ref_store, REF_STORE_WRITE, "create_reflog");
2874         int fd;
2875
2876         if (log_ref_setup(refs, refname, force_create, &fd, err))
2877                 return -1;
2878
2879         if (fd >= 0)
2880                 close(fd);
2881
2882         return 0;
2883 }
2884
2885 static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
2886                             const unsigned char *new_sha1,
2887                             const char *committer, const char *msg)
2888 {
2889         int msglen, written;
2890         unsigned maxlen, len;
2891         char *logrec;
2892
2893         msglen = msg ? strlen(msg) : 0;
2894         maxlen = strlen(committer) + msglen + 100;
2895         logrec = xmalloc(maxlen);
2896         len = xsnprintf(logrec, maxlen, "%s %s %s\n",
2897                         sha1_to_hex(old_sha1),
2898                         sha1_to_hex(new_sha1),
2899                         committer);
2900         if (msglen)
2901                 len += copy_reflog_msg(logrec + len - 1, msg) - 1;
2902
2903         written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
2904         free(logrec);
2905         if (written != len)
2906                 return -1;
2907
2908         return 0;
2909 }
2910
2911 static int files_log_ref_write(struct files_ref_store *refs,
2912                                const char *refname, const unsigned char *old_sha1,
2913                                const unsigned char *new_sha1, const char *msg,
2914                                int flags, struct strbuf *err)
2915 {
2916         int logfd, result;
2917
2918         if (log_all_ref_updates == LOG_REFS_UNSET)
2919                 log_all_ref_updates = is_bare_repository() ? LOG_REFS_NONE : LOG_REFS_NORMAL;
2920
2921         result = log_ref_setup(refs, refname,
2922                                flags & REF_FORCE_CREATE_REFLOG,
2923                                &logfd, err);
2924
2925         if (result)
2926                 return result;
2927
2928         if (logfd < 0)
2929                 return 0;
2930         result = log_ref_write_fd(logfd, old_sha1, new_sha1,
2931                                   git_committer_info(0), msg);
2932         if (result) {
2933                 struct strbuf sb = STRBUF_INIT;
2934                 int save_errno = errno;
2935
2936                 files_reflog_path(refs, &sb, refname);
2937                 strbuf_addf(err, "unable to append to '%s': %s",
2938                             sb.buf, strerror(save_errno));
2939                 strbuf_release(&sb);
2940                 close(logfd);
2941                 return -1;
2942         }
2943         if (close(logfd)) {
2944                 struct strbuf sb = STRBUF_INIT;
2945                 int save_errno = errno;
2946
2947                 files_reflog_path(refs, &sb, refname);
2948                 strbuf_addf(err, "unable to append to '%s': %s",
2949                             sb.buf, strerror(save_errno));
2950                 strbuf_release(&sb);
2951                 return -1;
2952         }
2953         return 0;
2954 }
2955
2956 /*
2957  * Write sha1 into the open lockfile, then close the lockfile. On
2958  * errors, rollback the lockfile, fill in *err and
2959  * return -1.
2960  */
2961 static int write_ref_to_lockfile(struct ref_lock *lock,
2962                                  const unsigned char *sha1, struct strbuf *err)
2963 {
2964         static char term = '\n';
2965         struct object *o;
2966         int fd;
2967
2968         o = parse_object(sha1);
2969         if (!o) {
2970                 strbuf_addf(err,
2971                             "trying to write ref '%s' with nonexistent object %s",
2972                             lock->ref_name, sha1_to_hex(sha1));
2973                 unlock_ref(lock);
2974                 return -1;
2975         }
2976         if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
2977                 strbuf_addf(err,
2978                             "trying to write non-commit object %s to branch '%s'",
2979                             sha1_to_hex(sha1), lock->ref_name);
2980                 unlock_ref(lock);
2981                 return -1;
2982         }
2983         fd = get_lock_file_fd(lock->lk);
2984         if (write_in_full(fd, sha1_to_hex(sha1), 40) != 40 ||
2985             write_in_full(fd, &term, 1) != 1 ||
2986             close_ref(lock) < 0) {
2987                 strbuf_addf(err,
2988                             "couldn't write '%s'", get_lock_file_path(lock->lk));
2989                 unlock_ref(lock);
2990                 return -1;
2991         }
2992         return 0;
2993 }
2994
2995 /*
2996  * Commit a change to a loose reference that has already been written
2997  * to the loose reference lockfile. Also update the reflogs if
2998  * necessary, using the specified lockmsg (which can be NULL).
2999  */
3000 static int commit_ref_update(struct files_ref_store *refs,
3001                              struct ref_lock *lock,
3002                              const unsigned char *sha1, const char *logmsg,
3003                              struct strbuf *err)
3004 {
3005         files_assert_main_repository(refs, "commit_ref_update");
3006
3007         clear_loose_ref_cache(refs);
3008         if (files_log_ref_write(refs, lock->ref_name,
3009                                 lock->old_oid.hash, sha1,
3010                                 logmsg, 0, err)) {
3011                 char *old_msg = strbuf_detach(err, NULL);
3012                 strbuf_addf(err, "cannot update the ref '%s': %s",
3013                             lock->ref_name, old_msg);
3014                 free(old_msg);
3015                 unlock_ref(lock);
3016                 return -1;
3017         }
3018
3019         if (strcmp(lock->ref_name, "HEAD") != 0) {
3020                 /*
3021                  * Special hack: If a branch is updated directly and HEAD
3022                  * points to it (may happen on the remote side of a push
3023                  * for example) then logically the HEAD reflog should be
3024                  * updated too.
3025                  * A generic solution implies reverse symref information,
3026                  * but finding all symrefs pointing to the given branch
3027                  * would be rather costly for this rare event (the direct
3028                  * update of a branch) to be worth it.  So let's cheat and
3029                  * check with HEAD only which should cover 99% of all usage
3030                  * scenarios (even 100% of the default ones).
3031                  */
3032                 unsigned char head_sha1[20];
3033                 int head_flag;
3034                 const char *head_ref;
3035
3036                 head_ref = refs_resolve_ref_unsafe(&refs->base, "HEAD",
3037                                                    RESOLVE_REF_READING,
3038                                                    head_sha1, &head_flag);
3039                 if (head_ref && (head_flag & REF_ISSYMREF) &&
3040                     !strcmp(head_ref, lock->ref_name)) {
3041                         struct strbuf log_err = STRBUF_INIT;
3042                         if (files_log_ref_write(refs, "HEAD",
3043                                                 lock->old_oid.hash, sha1,
3044                                                 logmsg, 0, &log_err)) {
3045                                 error("%s", log_err.buf);
3046                                 strbuf_release(&log_err);
3047                         }
3048                 }
3049         }
3050
3051         if (commit_ref(lock)) {
3052                 strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3053                 unlock_ref(lock);
3054                 return -1;
3055         }
3056
3057         unlock_ref(lock);
3058         return 0;
3059 }
3060
3061 static int create_ref_symlink(struct ref_lock *lock, const char *target)
3062 {
3063         int ret = -1;
3064 #ifndef NO_SYMLINK_HEAD
3065         char *ref_path = get_locked_file_path(lock->lk);
3066         unlink(ref_path);
3067         ret = symlink(target, ref_path);
3068         free(ref_path);
3069
3070         if (ret)
3071                 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
3072 #endif
3073         return ret;
3074 }
3075
3076 static void update_symref_reflog(struct files_ref_store *refs,
3077                                  struct ref_lock *lock, const char *refname,
3078                                  const char *target, const char *logmsg)
3079 {
3080         struct strbuf err = STRBUF_INIT;
3081         unsigned char new_sha1[20];
3082         if (logmsg &&
3083             !refs_read_ref_full(&refs->base, target,
3084                                 RESOLVE_REF_READING, new_sha1, NULL) &&
3085             files_log_ref_write(refs, refname, lock->old_oid.hash,
3086                                 new_sha1, logmsg, 0, &err)) {
3087                 error("%s", err.buf);
3088                 strbuf_release(&err);
3089         }
3090 }
3091
3092 static int create_symref_locked(struct files_ref_store *refs,
3093                                 struct ref_lock *lock, const char *refname,
3094                                 const char *target, const char *logmsg)
3095 {
3096         if (prefer_symlink_refs && !create_ref_symlink(lock, target)) {
3097                 update_symref_reflog(refs, lock, refname, target, logmsg);
3098                 return 0;
3099         }
3100
3101         if (!fdopen_lock_file(lock->lk, "w"))
3102                 return error("unable to fdopen %s: %s",
3103                              lock->lk->tempfile.filename.buf, strerror(errno));
3104
3105         update_symref_reflog(refs, lock, refname, target, logmsg);
3106
3107         /* no error check; commit_ref will check ferror */
3108         fprintf(lock->lk->tempfile.fp, "ref: %s\n", target);
3109         if (commit_ref(lock) < 0)
3110                 return error("unable to write symref for %s: %s", refname,
3111                              strerror(errno));
3112         return 0;
3113 }
3114
3115 static int files_create_symref(struct ref_store *ref_store,
3116                                const char *refname, const char *target,
3117                                const char *logmsg)
3118 {
3119         struct files_ref_store *refs =
3120                 files_downcast(ref_store, REF_STORE_WRITE, "create_symref");
3121         struct strbuf err = STRBUF_INIT;
3122         struct ref_lock *lock;
3123         int ret;
3124
3125         lock = lock_ref_sha1_basic(refs, refname, NULL,
3126                                    NULL, NULL, REF_NODEREF, NULL,
3127                                    &err);
3128         if (!lock) {
3129                 error("%s", err.buf);
3130                 strbuf_release(&err);
3131                 return -1;
3132         }
3133
3134         ret = create_symref_locked(refs, lock, refname, target, logmsg);
3135         unlock_ref(lock);
3136         return ret;
3137 }
3138
3139 int set_worktree_head_symref(const char *gitdir, const char *target, const char *logmsg)
3140 {
3141         /*
3142          * FIXME: this obviously will not work well for future refs
3143          * backends. This function needs to die.
3144          */
3145         struct files_ref_store *refs =
3146                 files_downcast(get_main_ref_store(),
3147                                REF_STORE_WRITE,
3148                                "set_head_symref");
3149
3150         static struct lock_file head_lock;
3151         struct ref_lock *lock;
3152         struct strbuf head_path = STRBUF_INIT;
3153         const char *head_rel;
3154         int ret;
3155
3156         strbuf_addf(&head_path, "%s/HEAD", absolute_path(gitdir));
3157         if (hold_lock_file_for_update(&head_lock, head_path.buf,
3158                                       LOCK_NO_DEREF) < 0) {
3159                 struct strbuf err = STRBUF_INIT;
3160                 unable_to_lock_message(head_path.buf, errno, &err);
3161                 error("%s", err.buf);
3162                 strbuf_release(&err);
3163                 strbuf_release(&head_path);
3164                 return -1;
3165         }
3166
3167         /* head_rel will be "HEAD" for the main tree, "worktrees/wt/HEAD" for
3168            linked trees */
3169         head_rel = remove_leading_path(head_path.buf,
3170                                        absolute_path(get_git_common_dir()));
3171         /* to make use of create_symref_locked(), initialize ref_lock */
3172         lock = xcalloc(1, sizeof(struct ref_lock));
3173         lock->lk = &head_lock;
3174         lock->ref_name = xstrdup(head_rel);
3175
3176         ret = create_symref_locked(refs, lock, head_rel, target, logmsg);
3177
3178         unlock_ref(lock); /* will free lock */
3179         strbuf_release(&head_path);
3180         return ret;
3181 }
3182
3183 static int files_reflog_exists(struct ref_store *ref_store,
3184                                const char *refname)
3185 {
3186         struct files_ref_store *refs =
3187                 files_downcast(ref_store, REF_STORE_READ, "reflog_exists");
3188         struct strbuf sb = STRBUF_INIT;
3189         struct stat st;
3190         int ret;
3191
3192         files_reflog_path(refs, &sb, refname);
3193         ret = !lstat(sb.buf, &st) && S_ISREG(st.st_mode);
3194         strbuf_release(&sb);
3195         return ret;
3196 }
3197
3198 static int files_delete_reflog(struct ref_store *ref_store,
3199                                const char *refname)
3200 {
3201         struct files_ref_store *refs =
3202                 files_downcast(ref_store, REF_STORE_WRITE, "delete_reflog");
3203         struct strbuf sb = STRBUF_INIT;
3204         int ret;
3205
3206         files_reflog_path(refs, &sb, refname);
3207         ret = remove_path(sb.buf);
3208         strbuf_release(&sb);
3209         return ret;
3210 }
3211
3212 static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3213 {
3214         struct object_id ooid, noid;
3215         char *email_end, *message;
3216         unsigned long timestamp;
3217         int tz;
3218         const char *p = sb->buf;
3219
3220         /* old SP new SP name <email> SP time TAB msg LF */
3221         if (!sb->len || sb->buf[sb->len - 1] != '\n' ||
3222             parse_oid_hex(p, &ooid, &p) || *p++ != ' ' ||
3223             parse_oid_hex(p, &noid, &p) || *p++ != ' ' ||
3224             !(email_end = strchr(p, '>')) ||
3225             email_end[1] != ' ' ||
3226             !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3227             !message || message[0] != ' ' ||
3228             (message[1] != '+' && message[1] != '-') ||
3229             !isdigit(message[2]) || !isdigit(message[3]) ||
3230             !isdigit(message[4]) || !isdigit(message[5]))
3231                 return 0; /* corrupt? */
3232         email_end[1] = '\0';
3233         tz = strtol(message + 1, NULL, 10);
3234         if (message[6] != '\t')
3235                 message += 6;
3236         else
3237                 message += 7;
3238         return fn(&ooid, &noid, p, timestamp, tz, message, cb_data);
3239 }
3240
3241 static char *find_beginning_of_line(char *bob, char *scan)
3242 {
3243         while (bob < scan && *(--scan) != '\n')
3244                 ; /* keep scanning backwards */
3245         /*
3246          * Return either beginning of the buffer, or LF at the end of
3247          * the previous line.
3248          */
3249         return scan;
3250 }
3251
3252 static int files_for_each_reflog_ent_reverse(struct ref_store *ref_store,
3253                                              const char *refname,
3254                                              each_reflog_ent_fn fn,
3255                                              void *cb_data)
3256 {
3257         struct files_ref_store *refs =
3258                 files_downcast(ref_store, REF_STORE_READ,
3259                                "for_each_reflog_ent_reverse");
3260         struct strbuf sb = STRBUF_INIT;
3261         FILE *logfp;
3262         long pos;
3263         int ret = 0, at_tail = 1;
3264
3265         files_reflog_path(refs, &sb, refname);
3266         logfp = fopen(sb.buf, "r");
3267         strbuf_release(&sb);
3268         if (!logfp)
3269                 return -1;
3270
3271         /* Jump to the end */
3272         if (fseek(logfp, 0, SEEK_END) < 0)
3273                 return error("cannot seek back reflog for %s: %s",
3274                              refname, strerror(errno));
3275         pos = ftell(logfp);
3276         while (!ret && 0 < pos) {
3277                 int cnt;
3278                 size_t nread;
3279                 char buf[BUFSIZ];
3280                 char *endp, *scanp;
3281
3282                 /* Fill next block from the end */
3283                 cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3284                 if (fseek(logfp, pos - cnt, SEEK_SET))
3285                         return error("cannot seek back reflog for %s: %s",
3286                                      refname, strerror(errno));
3287                 nread = fread(buf, cnt, 1, logfp);
3288                 if (nread != 1)
3289                         return error("cannot read %d bytes from reflog for %s: %s",
3290                                      cnt, refname, strerror(errno));
3291                 pos -= cnt;
3292
3293                 scanp = endp = buf + cnt;
3294                 if (at_tail && scanp[-1] == '\n')
3295                         /* Looking at the final LF at the end of the file */
3296                         scanp--;
3297                 at_tail = 0;
3298
3299                 while (buf < scanp) {
3300                         /*
3301                          * terminating LF of the previous line, or the beginning
3302                          * of the buffer.
3303                          */
3304                         char *bp;
3305
3306                         bp = find_beginning_of_line(buf, scanp);
3307
3308                         if (*bp == '\n') {
3309                                 /*
3310                                  * The newline is the end of the previous line,
3311                                  * so we know we have complete line starting
3312                                  * at (bp + 1). Prefix it onto any prior data
3313                                  * we collected for the line and process it.
3314                                  */
3315                                 strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3316                                 scanp = bp;
3317                                 endp = bp + 1;
3318                                 ret = show_one_reflog_ent(&sb, fn, cb_data);
3319                                 strbuf_reset(&sb);
3320                                 if (ret)
3321                                         break;
3322                         } else if (!pos) {
3323                                 /*
3324                                  * We are at the start of the buffer, and the
3325                                  * start of the file; there is no previous
3326                                  * line, and we have everything for this one.
3327                                  * Process it, and we can end the loop.
3328                                  */
3329                                 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3330                                 ret = show_one_reflog_ent(&sb, fn, cb_data);
3331                                 strbuf_reset(&sb);
3332                                 break;
3333                         }
3334
3335                         if (bp == buf) {
3336                                 /*
3337                                  * We are at the start of the buffer, and there
3338                                  * is more file to read backwards. Which means
3339                                  * we are in the middle of a line. Note that we
3340                                  * may get here even if *bp was a newline; that
3341                                  * just means we are at the exact end of the
3342                                  * previous line, rather than some spot in the
3343                                  * middle.
3344                                  *
3345                                  * Save away what we have to be combined with
3346                                  * the data from the next read.
3347                                  */
3348                                 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3349                                 break;
3350                         }
3351                 }
3352
3353         }
3354         if (!ret && sb.len)
3355                 die("BUG: reverse reflog parser had leftover data");
3356
3357         fclose(logfp);
3358         strbuf_release(&sb);
3359         return ret;
3360 }
3361
3362 static int files_for_each_reflog_ent(struct ref_store *ref_store,
3363                                      const char *refname,
3364                                      each_reflog_ent_fn fn, void *cb_data)
3365 {
3366         struct files_ref_store *refs =
3367                 files_downcast(ref_store, REF_STORE_READ,
3368                                "for_each_reflog_ent");
3369         FILE *logfp;
3370         struct strbuf sb = STRBUF_INIT;
3371         int ret = 0;
3372
3373         files_reflog_path(refs, &sb, refname);
3374         logfp = fopen(sb.buf, "r");
3375         strbuf_release(&sb);
3376         if (!logfp)
3377                 return -1;
3378
3379         while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3380                 ret = show_one_reflog_ent(&sb, fn, cb_data);
3381         fclose(logfp);
3382         strbuf_release(&sb);
3383         return ret;
3384 }
3385
3386 struct files_reflog_iterator {
3387         struct ref_iterator base;
3388
3389         struct ref_store *ref_store;
3390         struct dir_iterator *dir_iterator;
3391         struct object_id oid;
3392 };
3393
3394 static int files_reflog_iterator_advance(struct ref_iterator *ref_iterator)
3395 {
3396         struct files_reflog_iterator *iter =
3397                 (struct files_reflog_iterator *)ref_iterator;
3398         struct dir_iterator *diter = iter->dir_iterator;
3399         int ok;
3400
3401         while ((ok = dir_iterator_advance(diter)) == ITER_OK) {
3402                 int flags;
3403
3404                 if (!S_ISREG(diter->st.st_mode))
3405                         continue;
3406                 if (diter->basename[0] == '.')
3407                         continue;
3408                 if (ends_with(diter->basename, ".lock"))
3409                         continue;
3410
3411                 if (refs_read_ref_full(iter->ref_store,
3412                                        diter->relative_path, 0,
3413                                        iter->oid.hash, &flags)) {
3414                         error("bad ref for %s", diter->path.buf);
3415                         continue;
3416                 }
3417
3418                 iter->base.refname = diter->relative_path;
3419                 iter->base.oid = &iter->oid;
3420                 iter->base.flags = flags;
3421                 return ITER_OK;
3422         }
3423
3424         iter->dir_iterator = NULL;
3425         if (ref_iterator_abort(ref_iterator) == ITER_ERROR)
3426                 ok = ITER_ERROR;
3427         return ok;
3428 }
3429
3430 static int files_reflog_iterator_peel(struct ref_iterator *ref_iterator,
3431                                    struct object_id *peeled)
3432 {
3433         die("BUG: ref_iterator_peel() called for reflog_iterator");
3434 }
3435
3436 static int files_reflog_iterator_abort(struct ref_iterator *ref_iterator)
3437 {
3438         struct files_reflog_iterator *iter =
3439                 (struct files_reflog_iterator *)ref_iterator;
3440         int ok = ITER_DONE;
3441
3442         if (iter->dir_iterator)
3443                 ok = dir_iterator_abort(iter->dir_iterator);
3444
3445         base_ref_iterator_free(ref_iterator);
3446         return ok;
3447 }
3448
3449 static struct ref_iterator_vtable files_reflog_iterator_vtable = {
3450         files_reflog_iterator_advance,
3451         files_reflog_iterator_peel,
3452         files_reflog_iterator_abort
3453 };
3454
3455 static struct ref_iterator *files_reflog_iterator_begin(struct ref_store *ref_store)
3456 {
3457         struct files_ref_store *refs =
3458                 files_downcast(ref_store, REF_STORE_READ,
3459                                "reflog_iterator_begin");
3460         struct files_reflog_iterator *iter = xcalloc(1, sizeof(*iter));
3461         struct ref_iterator *ref_iterator = &iter->base;
3462         struct strbuf sb = STRBUF_INIT;
3463
3464         base_ref_iterator_init(ref_iterator, &files_reflog_iterator_vtable);
3465         files_reflog_path(refs, &sb, NULL);
3466         iter->dir_iterator = dir_iterator_begin(sb.buf);
3467         iter->ref_store = ref_store;
3468         strbuf_release(&sb);
3469         return ref_iterator;
3470 }
3471
3472 static int ref_update_reject_duplicates(struct string_list *refnames,
3473                                         struct strbuf *err)
3474 {
3475         int i, n = refnames->nr;
3476
3477         assert(err);
3478
3479         for (i = 1; i < n; i++)
3480                 if (!strcmp(refnames->items[i - 1].string, refnames->items[i].string)) {
3481                         strbuf_addf(err,
3482                                     "multiple updates for ref '%s' not allowed.",
3483                                     refnames->items[i].string);
3484                         return 1;
3485                 }
3486         return 0;
3487 }
3488
3489 /*
3490  * If update is a direct update of head_ref (the reference pointed to
3491  * by HEAD), then add an extra REF_LOG_ONLY update for HEAD.
3492  */
3493 static int split_head_update(struct ref_update *update,
3494                              struct ref_transaction *transaction,
3495                              const char *head_ref,
3496                              struct string_list *affected_refnames,
3497                              struct strbuf *err)
3498 {
3499         struct string_list_item *item;
3500         struct ref_update *new_update;
3501
3502         if ((update->flags & REF_LOG_ONLY) ||
3503             (update->flags & REF_ISPRUNING) ||
3504             (update->flags & REF_UPDATE_VIA_HEAD))
3505                 return 0;
3506
3507         if (strcmp(update->refname, head_ref))
3508                 return 0;
3509
3510         /*
3511          * First make sure that HEAD is not already in the
3512          * transaction. This insertion is O(N) in the transaction
3513          * size, but it happens at most once per transaction.
3514          */
3515         item = string_list_insert(affected_refnames, "HEAD");
3516         if (item->util) {
3517                 /* An entry already existed */
3518                 strbuf_addf(err,
3519                             "multiple updates for 'HEAD' (including one "
3520                             "via its referent '%s') are not allowed",
3521                             update->refname);
3522                 return TRANSACTION_NAME_CONFLICT;
3523         }
3524
3525         new_update = ref_transaction_add_update(
3526                         transaction, "HEAD",
3527                         update->flags | REF_LOG_ONLY | REF_NODEREF,
3528                         update->new_sha1, update->old_sha1,
3529                         update->msg);
3530
3531         item->util = new_update;
3532
3533         return 0;
3534 }
3535
3536 /*
3537  * update is for a symref that points at referent and doesn't have
3538  * REF_NODEREF set. Split it into two updates:
3539  * - The original update, but with REF_LOG_ONLY and REF_NODEREF set
3540  * - A new, separate update for the referent reference
3541  * Note that the new update will itself be subject to splitting when
3542  * the iteration gets to it.
3543  */
3544 static int split_symref_update(struct files_ref_store *refs,
3545                                struct ref_update *update,
3546                                const char *referent,
3547                                struct ref_transaction *transaction,
3548                                struct string_list *affected_refnames,
3549                                struct strbuf *err)
3550 {
3551         struct string_list_item *item;
3552         struct ref_update *new_update;
3553         unsigned int new_flags;
3554
3555         /*
3556          * First make sure that referent is not already in the
3557          * transaction. This insertion is O(N) in the transaction
3558          * size, but it happens at most once per symref in a
3559          * transaction.
3560          */
3561         item = string_list_insert(affected_refnames, referent);
3562         if (item->util) {
3563                 /* An entry already existed */
3564                 strbuf_addf(err,
3565                             "multiple updates for '%s' (including one "
3566                             "via symref '%s') are not allowed",
3567                             referent, update->refname);
3568                 return TRANSACTION_NAME_CONFLICT;
3569         }
3570
3571         new_flags = update->flags;
3572         if (!strcmp(update->refname, "HEAD")) {
3573                 /*
3574                  * Record that the new update came via HEAD, so that
3575                  * when we process it, split_head_update() doesn't try
3576                  * to add another reflog update for HEAD. Note that
3577                  * this bit will be propagated if the new_update
3578                  * itself needs to be split.
3579                  */
3580                 new_flags |= REF_UPDATE_VIA_HEAD;
3581         }
3582
3583         new_update = ref_transaction_add_update(
3584                         transaction, referent, new_flags,
3585                         update->new_sha1, update->old_sha1,
3586                         update->msg);
3587
3588         new_update->parent_update = update;
3589
3590         /*
3591          * Change the symbolic ref update to log only. Also, it
3592          * doesn't need to check its old SHA-1 value, as that will be
3593          * done when new_update is processed.
3594          */
3595         update->flags |= REF_LOG_ONLY | REF_NODEREF;
3596         update->flags &= ~REF_HAVE_OLD;
3597
3598         item->util = new_update;
3599
3600         return 0;
3601 }
3602
3603 /*
3604  * Return the refname under which update was originally requested.
3605  */
3606 static const char *original_update_refname(struct ref_update *update)
3607 {
3608         while (update->parent_update)
3609                 update = update->parent_update;
3610
3611         return update->refname;
3612 }
3613
3614 /*
3615  * Check whether the REF_HAVE_OLD and old_oid values stored in update
3616  * are consistent with oid, which is the reference's current value. If
3617  * everything is OK, return 0; otherwise, write an error message to
3618  * err and return -1.
3619  */
3620 static int check_old_oid(struct ref_update *update, struct object_id *oid,
3621                          struct strbuf *err)
3622 {
3623         if (!(update->flags & REF_HAVE_OLD) ||
3624                    !hashcmp(oid->hash, update->old_sha1))
3625                 return 0;
3626
3627         if (is_null_sha1(update->old_sha1))
3628                 strbuf_addf(err, "cannot lock ref '%s': "
3629                             "reference already exists",
3630                             original_update_refname(update));
3631         else if (is_null_oid(oid))
3632                 strbuf_addf(err, "cannot lock ref '%s': "
3633                             "reference is missing but expected %s",
3634                             original_update_refname(update),
3635                             sha1_to_hex(update->old_sha1));
3636         else
3637                 strbuf_addf(err, "cannot lock ref '%s': "
3638                             "is at %s but expected %s",
3639                             original_update_refname(update),
3640                             oid_to_hex(oid),
3641                             sha1_to_hex(update->old_sha1));
3642
3643         return -1;
3644 }
3645
3646 /*
3647  * Prepare for carrying out update:
3648  * - Lock the reference referred to by update.
3649  * - Read the reference under lock.
3650  * - Check that its old SHA-1 value (if specified) is correct, and in
3651  *   any case record it in update->lock->old_oid for later use when
3652  *   writing the reflog.
3653  * - If it is a symref update without REF_NODEREF, split it up into a
3654  *   REF_LOG_ONLY update of the symref and add a separate update for
3655  *   the referent to transaction.
3656  * - If it is an update of head_ref, add a corresponding REF_LOG_ONLY
3657  *   update of HEAD.
3658  */
3659 static int lock_ref_for_update(struct files_ref_store *refs,
3660                                struct ref_update *update,
3661                                struct ref_transaction *transaction,
3662                                const char *head_ref,
3663                                struct string_list *affected_refnames,
3664                                struct strbuf *err)
3665 {
3666         struct strbuf referent = STRBUF_INIT;
3667         int mustexist = (update->flags & REF_HAVE_OLD) &&
3668                 !is_null_sha1(update->old_sha1);
3669         int ret;
3670         struct ref_lock *lock;
3671
3672         files_assert_main_repository(refs, "lock_ref_for_update");
3673
3674         if ((update->flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1))
3675                 update->flags |= REF_DELETING;
3676
3677         if (head_ref) {
3678                 ret = split_head_update(update, transaction, head_ref,
3679                                         affected_refnames, err);
3680                 if (ret)
3681                         return ret;
3682         }
3683
3684         ret = lock_raw_ref(refs, update->refname, mustexist,
3685                            affected_refnames, NULL,
3686                            &lock, &referent,
3687                            &update->type, err);
3688         if (ret) {
3689                 char *reason;
3690
3691                 reason = strbuf_detach(err, NULL);
3692                 strbuf_addf(err, "cannot lock ref '%s': %s",
3693                             original_update_refname(update), reason);
3694                 free(reason);
3695                 return ret;
3696         }
3697
3698         update->backend_data = lock;
3699
3700         if (update->type & REF_ISSYMREF) {
3701                 if (update->flags & REF_NODEREF) {
3702                         /*
3703                          * We won't be reading the referent as part of
3704                          * the transaction, so we have to read it here
3705                          * to record and possibly check old_sha1:
3706                          */
3707                         if (refs_read_ref_full(&refs->base,
3708                                                referent.buf, 0,
3709                                                lock->old_oid.hash, NULL)) {
3710                                 if (update->flags & REF_HAVE_OLD) {
3711                                         strbuf_addf(err, "cannot lock ref '%s': "
3712                                                     "error reading reference",
3713                                                     original_update_refname(update));
3714                                         return -1;
3715                                 }
3716                         } else if (check_old_oid(update, &lock->old_oid, err)) {
3717                                 return TRANSACTION_GENERIC_ERROR;
3718                         }
3719                 } else {
3720                         /*
3721                          * Create a new update for the reference this
3722                          * symref is pointing at. Also, we will record
3723                          * and verify old_sha1 for this update as part
3724                          * of processing the split-off update, so we
3725                          * don't have to do it here.
3726                          */
3727                         ret = split_symref_update(refs, update,
3728                                                   referent.buf, transaction,
3729                                                   affected_refnames, err);
3730                         if (ret)
3731                                 return ret;
3732                 }
3733         } else {
3734                 struct ref_update *parent_update;
3735
3736                 if (check_old_oid(update, &lock->old_oid, err))
3737                         return TRANSACTION_GENERIC_ERROR;
3738
3739                 /*
3740                  * If this update is happening indirectly because of a
3741                  * symref update, record the old SHA-1 in the parent
3742                  * update:
3743                  */
3744                 for (parent_update = update->parent_update;
3745                      parent_update;
3746                      parent_update = parent_update->parent_update) {
3747                         struct ref_lock *parent_lock = parent_update->backend_data;
3748                         oidcpy(&parent_lock->old_oid, &lock->old_oid);
3749                 }
3750         }
3751
3752         if ((update->flags & REF_HAVE_NEW) &&
3753             !(update->flags & REF_DELETING) &&
3754             !(update->flags & REF_LOG_ONLY)) {
3755                 if (!(update->type & REF_ISSYMREF) &&
3756                     !hashcmp(lock->old_oid.hash, update->new_sha1)) {
3757                         /*
3758                          * The reference already has the desired
3759                          * value, so we don't need to write it.
3760                          */
3761                 } else if (write_ref_to_lockfile(lock, update->new_sha1,
3762                                                  err)) {
3763                         char *write_err = strbuf_detach(err, NULL);
3764
3765                         /*
3766                          * The lock was freed upon failure of
3767                          * write_ref_to_lockfile():
3768                          */
3769                         update->backend_data = NULL;
3770                         strbuf_addf(err,
3771                                     "cannot update ref '%s': %s",
3772                                     update->refname, write_err);
3773                         free(write_err);
3774                         return TRANSACTION_GENERIC_ERROR;
3775                 } else {
3776                         update->flags |= REF_NEEDS_COMMIT;
3777                 }
3778         }
3779         if (!(update->flags & REF_NEEDS_COMMIT)) {
3780                 /*
3781                  * We didn't call write_ref_to_lockfile(), so
3782                  * the lockfile is still open. Close it to
3783                  * free up the file descriptor:
3784                  */
3785                 if (close_ref(lock)) {
3786                         strbuf_addf(err, "couldn't close '%s.lock'",
3787                                     update->refname);
3788                         return TRANSACTION_GENERIC_ERROR;
3789                 }
3790         }
3791         return 0;
3792 }
3793
3794 static int files_transaction_commit(struct ref_store *ref_store,
3795                                     struct ref_transaction *transaction,
3796                                     struct strbuf *err)
3797 {
3798         struct files_ref_store *refs =
3799                 files_downcast(ref_store, REF_STORE_WRITE,
3800                                "ref_transaction_commit");
3801         int ret = 0, i;
3802         struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3803         struct string_list_item *ref_to_delete;
3804         struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3805         char *head_ref = NULL;
3806         int head_type;
3807         struct object_id head_oid;
3808         struct strbuf sb = STRBUF_INIT;
3809
3810         assert(err);
3811
3812         if (transaction->state != REF_TRANSACTION_OPEN)
3813                 die("BUG: commit called for transaction that is not open");
3814
3815         if (!transaction->nr) {
3816                 transaction->state = REF_TRANSACTION_CLOSED;
3817                 return 0;
3818         }
3819
3820         /*
3821          * Fail if a refname appears more than once in the
3822          * transaction. (If we end up splitting up any updates using
3823          * split_symref_update() or split_head_update(), those
3824          * functions will check that the new updates don't have the
3825          * same refname as any existing ones.)
3826          */
3827         for (i = 0; i < transaction->nr; i++) {
3828                 struct ref_update *update = transaction->updates[i];
3829                 struct string_list_item *item =
3830                         string_list_append(&affected_refnames, update->refname);
3831
3832                 /*
3833                  * We store a pointer to update in item->util, but at
3834                  * the moment we never use the value of this field
3835                  * except to check whether it is non-NULL.
3836                  */
3837                 item->util = update;
3838         }
3839         string_list_sort(&affected_refnames);
3840         if (ref_update_reject_duplicates(&affected_refnames, err)) {
3841                 ret = TRANSACTION_GENERIC_ERROR;
3842                 goto cleanup;
3843         }
3844
3845         /*
3846          * Special hack: If a branch is updated directly and HEAD
3847          * points to it (may happen on the remote side of a push
3848          * for example) then logically the HEAD reflog should be
3849          * updated too.
3850          *
3851          * A generic solution would require reverse symref lookups,
3852          * but finding all symrefs pointing to a given branch would be
3853          * rather costly for this rare event (the direct update of a
3854          * branch) to be worth it. So let's cheat and check with HEAD
3855          * only, which should cover 99% of all usage scenarios (even
3856          * 100% of the default ones).
3857          *
3858          * So if HEAD is a symbolic reference, then record the name of
3859          * the reference that it points to. If we see an update of
3860          * head_ref within the transaction, then split_head_update()
3861          * arranges for the reflog of HEAD to be updated, too.
3862          */
3863         head_ref = refs_resolve_refdup(ref_store, "HEAD",
3864                                        RESOLVE_REF_NO_RECURSE,
3865                                        head_oid.hash, &head_type);
3866
3867         if (head_ref && !(head_type & REF_ISSYMREF)) {
3868                 free(head_ref);
3869                 head_ref = NULL;
3870         }
3871
3872         /*
3873          * Acquire all locks, verify old values if provided, check
3874          * that new values are valid, and write new values to the
3875          * lockfiles, ready to be activated. Only keep one lockfile
3876          * open at a time to avoid running out of file descriptors.
3877          */
3878         for (i = 0; i < transaction->nr; i++) {
3879                 struct ref_update *update = transaction->updates[i];
3880
3881                 ret = lock_ref_for_update(refs, update, transaction,
3882                                           head_ref, &affected_refnames, err);
3883                 if (ret)
3884                         goto cleanup;
3885         }
3886
3887         /* Perform updates first so live commits remain referenced */
3888         for (i = 0; i < transaction->nr; i++) {
3889                 struct ref_update *update = transaction->updates[i];
3890                 struct ref_lock *lock = update->backend_data;
3891
3892                 if (update->flags & REF_NEEDS_COMMIT ||
3893                     update->flags & REF_LOG_ONLY) {
3894                         if (files_log_ref_write(refs,
3895                                                 lock->ref_name,
3896                                                 lock->old_oid.hash,
3897                                                 update->new_sha1,
3898                                                 update->msg, update->flags,
3899                                                 err)) {
3900                                 char *old_msg = strbuf_detach(err, NULL);
3901
3902                                 strbuf_addf(err, "cannot update the ref '%s': %s",
3903                                             lock->ref_name, old_msg);
3904                                 free(old_msg);
3905                                 unlock_ref(lock);
3906                                 update->backend_data = NULL;
3907                                 ret = TRANSACTION_GENERIC_ERROR;
3908                                 goto cleanup;
3909                         }
3910                 }
3911                 if (update->flags & REF_NEEDS_COMMIT) {
3912                         clear_loose_ref_cache(refs);
3913                         if (commit_ref(lock)) {
3914                                 strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3915                                 unlock_ref(lock);
3916                                 update->backend_data = NULL;
3917                                 ret = TRANSACTION_GENERIC_ERROR;
3918                                 goto cleanup;
3919                         }
3920                 }
3921         }
3922         /* Perform deletes now that updates are safely completed */
3923         for (i = 0; i < transaction->nr; i++) {
3924                 struct ref_update *update = transaction->updates[i];
3925                 struct ref_lock *lock = update->backend_data;
3926
3927                 if (update->flags & REF_DELETING &&
3928                     !(update->flags & REF_LOG_ONLY)) {
3929                         if (!(update->type & REF_ISPACKED) ||
3930                             update->type & REF_ISSYMREF) {
3931                                 /* It is a loose reference. */
3932                                 strbuf_reset(&sb);
3933                                 files_ref_path(refs, &sb, lock->ref_name);
3934                                 if (unlink_or_msg(sb.buf, err)) {
3935                                         ret = TRANSACTION_GENERIC_ERROR;
3936                                         goto cleanup;
3937                                 }
3938                                 update->flags |= REF_DELETED_LOOSE;
3939                         }
3940
3941                         if (!(update->flags & REF_ISPRUNING))
3942                                 string_list_append(&refs_to_delete,
3943                                                    lock->ref_name);
3944                 }
3945         }
3946
3947         if (repack_without_refs(refs, &refs_to_delete, err)) {
3948                 ret = TRANSACTION_GENERIC_ERROR;
3949                 goto cleanup;
3950         }
3951
3952         /* Delete the reflogs of any references that were deleted: */
3953         for_each_string_list_item(ref_to_delete, &refs_to_delete) {
3954                 strbuf_reset(&sb);
3955                 files_reflog_path(refs, &sb, ref_to_delete->string);
3956                 if (!unlink_or_warn(sb.buf))
3957                         try_remove_empty_parents(refs, ref_to_delete->string,
3958                                                  REMOVE_EMPTY_PARENTS_REFLOG);
3959         }
3960
3961         clear_loose_ref_cache(refs);
3962
3963 cleanup:
3964         strbuf_release(&sb);
3965         transaction->state = REF_TRANSACTION_CLOSED;
3966
3967         for (i = 0; i < transaction->nr; i++) {
3968                 struct ref_update *update = transaction->updates[i];
3969                 struct ref_lock *lock = update->backend_data;
3970
3971                 if (lock)
3972                         unlock_ref(lock);
3973
3974                 if (update->flags & REF_DELETED_LOOSE) {
3975                         /*
3976                          * The loose reference was deleted. Delete any
3977                          * empty parent directories. (Note that this
3978                          * can only work because we have already
3979                          * removed the lockfile.)
3980                          */
3981                         try_remove_empty_parents(refs, update->refname,
3982                                                  REMOVE_EMPTY_PARENTS_REF);
3983                 }
3984         }
3985
3986         string_list_clear(&refs_to_delete, 0);
3987         free(head_ref);
3988         string_list_clear(&affected_refnames, 0);
3989
3990         return ret;
3991 }
3992
3993 static int ref_present(const char *refname,
3994                        const struct object_id *oid, int flags, void *cb_data)
3995 {
3996         struct string_list *affected_refnames = cb_data;
3997
3998         return string_list_has_string(affected_refnames, refname);
3999 }
4000
4001 static int files_initial_transaction_commit(struct ref_store *ref_store,
4002                                             struct ref_transaction *transaction,
4003                                             struct strbuf *err)
4004 {
4005         struct files_ref_store *refs =
4006                 files_downcast(ref_store, REF_STORE_WRITE,
4007                                "initial_ref_transaction_commit");
4008         int ret = 0, i;
4009         struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
4010
4011         assert(err);
4012
4013         if (transaction->state != REF_TRANSACTION_OPEN)
4014                 die("BUG: commit called for transaction that is not open");
4015
4016         /* Fail if a refname appears more than once in the transaction: */
4017         for (i = 0; i < transaction->nr; i++)
4018                 string_list_append(&affected_refnames,
4019                                    transaction->updates[i]->refname);
4020         string_list_sort(&affected_refnames);
4021         if (ref_update_reject_duplicates(&affected_refnames, err)) {
4022                 ret = TRANSACTION_GENERIC_ERROR;
4023                 goto cleanup;
4024         }
4025
4026         /*
4027          * It's really undefined to call this function in an active
4028          * repository or when there are existing references: we are
4029          * only locking and changing packed-refs, so (1) any
4030          * simultaneous processes might try to change a reference at
4031          * the same time we do, and (2) any existing loose versions of
4032          * the references that we are setting would have precedence
4033          * over our values. But some remote helpers create the remote
4034          * "HEAD" and "master" branches before calling this function,
4035          * so here we really only check that none of the references
4036          * that we are creating already exists.
4037          */
4038         if (refs_for_each_rawref(&refs->base, ref_present,
4039                                  &affected_refnames))
4040                 die("BUG: initial ref transaction called with existing refs");
4041
4042         for (i = 0; i < transaction->nr; i++) {
4043                 struct ref_update *update = transaction->updates[i];
4044
4045                 if ((update->flags & REF_HAVE_OLD) &&
4046                     !is_null_sha1(update->old_sha1))
4047                         die("BUG: initial ref transaction with old_sha1 set");
4048                 if (refs_verify_refname_available(&refs->base, update->refname,
4049                                                   &affected_refnames, NULL,
4050                                                   err)) {
4051                         ret = TRANSACTION_NAME_CONFLICT;
4052                         goto cleanup;
4053                 }
4054         }
4055
4056         if (lock_packed_refs(refs, 0)) {
4057                 strbuf_addf(err, "unable to lock packed-refs file: %s",
4058                             strerror(errno));
4059                 ret = TRANSACTION_GENERIC_ERROR;
4060                 goto cleanup;
4061         }
4062
4063         for (i = 0; i < transaction->nr; i++) {
4064                 struct ref_update *update = transaction->updates[i];
4065
4066                 if ((update->flags & REF_HAVE_NEW) &&
4067                     !is_null_sha1(update->new_sha1))
4068                         add_packed_ref(refs, update->refname, update->new_sha1);
4069         }
4070
4071         if (commit_packed_refs(refs)) {
4072                 strbuf_addf(err, "unable to commit packed-refs file: %s",
4073                             strerror(errno));
4074                 ret = TRANSACTION_GENERIC_ERROR;
4075                 goto cleanup;
4076         }
4077
4078 cleanup:
4079         transaction->state = REF_TRANSACTION_CLOSED;
4080         string_list_clear(&affected_refnames, 0);
4081         return ret;
4082 }
4083
4084 struct expire_reflog_cb {
4085         unsigned int flags;
4086         reflog_expiry_should_prune_fn *should_prune_fn;
4087         void *policy_cb;
4088         FILE *newlog;
4089         struct object_id last_kept_oid;
4090 };
4091
4092 static int expire_reflog_ent(struct object_id *ooid, struct object_id *noid,
4093                              const char *email, unsigned long timestamp, int tz,
4094                              const char *message, void *cb_data)
4095 {
4096         struct expire_reflog_cb *cb = cb_data;
4097         struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
4098
4099         if (cb->flags & EXPIRE_REFLOGS_REWRITE)
4100                 ooid = &cb->last_kept_oid;
4101
4102         if ((*cb->should_prune_fn)(ooid->hash, noid->hash, email, timestamp, tz,
4103                                    message, policy_cb)) {
4104                 if (!cb->newlog)
4105                         printf("would prune %s", message);
4106                 else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4107                         printf("prune %s", message);
4108         } else {
4109                 if (cb->newlog) {
4110                         fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
4111                                 oid_to_hex(ooid), oid_to_hex(noid),
4112                                 email, timestamp, tz, message);
4113                         oidcpy(&cb->last_kept_oid, noid);
4114                 }
4115                 if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4116                         printf("keep %s", message);
4117         }
4118         return 0;
4119 }
4120
4121 static int files_reflog_expire(struct ref_store *ref_store,
4122                                const char *refname, const unsigned char *sha1,
4123                                unsigned int flags,
4124                                reflog_expiry_prepare_fn prepare_fn,
4125                                reflog_expiry_should_prune_fn should_prune_fn,
4126                                reflog_expiry_cleanup_fn cleanup_fn,
4127                                void *policy_cb_data)
4128 {
4129         struct files_ref_store *refs =
4130                 files_downcast(ref_store, REF_STORE_WRITE, "reflog_expire");
4131         static struct lock_file reflog_lock;
4132         struct expire_reflog_cb cb;
4133         struct ref_lock *lock;
4134         struct strbuf log_file_sb = STRBUF_INIT;
4135         char *log_file;
4136         int status = 0;
4137         int type;
4138         struct strbuf err = STRBUF_INIT;
4139
4140         memset(&cb, 0, sizeof(cb));
4141         cb.flags = flags;
4142         cb.policy_cb = policy_cb_data;
4143         cb.should_prune_fn = should_prune_fn;
4144
4145         /*
4146          * The reflog file is locked by holding the lock on the
4147          * reference itself, plus we might need to update the
4148          * reference if --updateref was specified:
4149          */
4150         lock = lock_ref_sha1_basic(refs, refname, sha1,
4151                                    NULL, NULL, REF_NODEREF,
4152                                    &type, &err);
4153         if (!lock) {
4154                 error("cannot lock ref '%s': %s", refname, err.buf);
4155                 strbuf_release(&err);
4156                 return -1;
4157         }
4158         if (!refs_reflog_exists(ref_store, refname)) {
4159                 unlock_ref(lock);
4160                 return 0;
4161         }
4162
4163         files_reflog_path(refs, &log_file_sb, refname);
4164         log_file = strbuf_detach(&log_file_sb, NULL);
4165         if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4166                 /*
4167                  * Even though holding $GIT_DIR/logs/$reflog.lock has
4168                  * no locking implications, we use the lock_file
4169                  * machinery here anyway because it does a lot of the
4170                  * work we need, including cleaning up if the program
4171                  * exits unexpectedly.
4172                  */
4173                 if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
4174                         struct strbuf err = STRBUF_INIT;
4175                         unable_to_lock_message(log_file, errno, &err);
4176                         error("%s", err.buf);
4177                         strbuf_release(&err);
4178                         goto failure;
4179                 }
4180                 cb.newlog = fdopen_lock_file(&reflog_lock, "w");
4181                 if (!cb.newlog) {
4182                         error("cannot fdopen %s (%s)",
4183                               get_lock_file_path(&reflog_lock), strerror(errno));
4184                         goto failure;
4185                 }
4186         }
4187
4188         (*prepare_fn)(refname, sha1, cb.policy_cb);
4189         refs_for_each_reflog_ent(ref_store, refname, expire_reflog_ent, &cb);
4190         (*cleanup_fn)(cb.policy_cb);
4191
4192         if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4193                 /*
4194                  * It doesn't make sense to adjust a reference pointed
4195                  * to by a symbolic ref based on expiring entries in
4196                  * the symbolic reference's reflog. Nor can we update
4197                  * a reference if there are no remaining reflog
4198                  * entries.
4199                  */
4200                 int update = (flags & EXPIRE_REFLOGS_UPDATE_REF) &&
4201                         !(type & REF_ISSYMREF) &&
4202                         !is_null_oid(&cb.last_kept_oid);
4203
4204                 if (close_lock_file(&reflog_lock)) {
4205                         status |= error("couldn't write %s: %s", log_file,
4206                                         strerror(errno));
4207                 } else if (update &&
4208                            (write_in_full(get_lock_file_fd(lock->lk),
4209                                 oid_to_hex(&cb.last_kept_oid), GIT_SHA1_HEXSZ) != GIT_SHA1_HEXSZ ||
4210                             write_str_in_full(get_lock_file_fd(lock->lk), "\n") != 1 ||
4211                             close_ref(lock) < 0)) {
4212                         status |= error("couldn't write %s",
4213                                         get_lock_file_path(lock->lk));
4214                         rollback_lock_file(&reflog_lock);
4215                 } else if (commit_lock_file(&reflog_lock)) {
4216                         status |= error("unable to write reflog '%s' (%s)",
4217                                         log_file, strerror(errno));
4218                 } else if (update && commit_ref(lock)) {
4219                         status |= error("couldn't set %s", lock->ref_name);
4220                 }
4221         }
4222         free(log_file);
4223         unlock_ref(lock);
4224         return status;
4225
4226  failure:
4227         rollback_lock_file(&reflog_lock);
4228         free(log_file);
4229         unlock_ref(lock);
4230         return -1;
4231 }
4232
4233 static int files_init_db(struct ref_store *ref_store, struct strbuf *err)
4234 {
4235         struct files_ref_store *refs =
4236                 files_downcast(ref_store, REF_STORE_WRITE, "init_db");
4237         struct strbuf sb = STRBUF_INIT;
4238
4239         /*
4240          * Create .git/refs/{heads,tags}
4241          */
4242         files_ref_path(refs, &sb, "refs/heads");
4243         safe_create_dir(sb.buf, 1);
4244
4245         strbuf_reset(&sb);
4246         files_ref_path(refs, &sb, "refs/tags");
4247         safe_create_dir(sb.buf, 1);
4248
4249         strbuf_release(&sb);
4250         return 0;
4251 }
4252
4253 struct ref_storage_be refs_be_files = {
4254         NULL,
4255         "files",
4256         files_ref_store_create,
4257         files_init_db,
4258         files_transaction_commit,
4259         files_initial_transaction_commit,
4260
4261         files_pack_refs,
4262         files_peel_ref,
4263         files_create_symref,
4264         files_delete_refs,
4265         files_rename_ref,
4266
4267         files_ref_iterator_begin,
4268         files_read_raw_ref,
4269
4270         files_reflog_iterator_begin,
4271         files_for_each_reflog_ent,
4272         files_for_each_reflog_ent_reverse,
4273         files_reflog_exists,
4274         files_create_reflog,
4275         files_delete_reflog,
4276         files_reflog_expire
4277 };