Merge branch 'pw/clean-sequencer-state-upon-final-commit'
[git] / refs / packed-backend.c
1 #include "../cache.h"
2 #include "../config.h"
3 #include "../refs.h"
4 #include "refs-internal.h"
5 #include "packed-backend.h"
6 #include "../iterator.h"
7 #include "../lockfile.h"
8 #include "../chdir-notify.h"
9
10 enum mmap_strategy {
11         /*
12          * Don't use mmap() at all for reading `packed-refs`.
13          */
14         MMAP_NONE,
15
16         /*
17          * Can use mmap() for reading `packed-refs`, but the file must
18          * not remain mmapped. This is the usual option on Windows,
19          * where you cannot rename a new version of a file onto a file
20          * that is currently mmapped.
21          */
22         MMAP_TEMPORARY,
23
24         /*
25          * It is OK to leave the `packed-refs` file mmapped while
26          * arbitrary other code is running.
27          */
28         MMAP_OK
29 };
30
31 #if defined(NO_MMAP)
32 static enum mmap_strategy mmap_strategy = MMAP_NONE;
33 #elif defined(MMAP_PREVENTS_DELETE)
34 static enum mmap_strategy mmap_strategy = MMAP_TEMPORARY;
35 #else
36 static enum mmap_strategy mmap_strategy = MMAP_OK;
37 #endif
38
39 struct packed_ref_store;
40
41 /*
42  * A `snapshot` represents one snapshot of a `packed-refs` file.
43  *
44  * Normally, this will be a mmapped view of the contents of the
45  * `packed-refs` file at the time the snapshot was created. However,
46  * if the `packed-refs` file was not sorted, this might point at heap
47  * memory holding the contents of the `packed-refs` file with its
48  * records sorted by refname.
49  *
50  * `snapshot` instances are reference counted (via
51  * `acquire_snapshot()` and `release_snapshot()`). This is to prevent
52  * an instance from disappearing while an iterator is still iterating
53  * over it. Instances are garbage collected when their `referrers`
54  * count goes to zero.
55  *
56  * The most recent `snapshot`, if available, is referenced by the
57  * `packed_ref_store`. Its freshness is checked whenever
58  * `get_snapshot()` is called; if the existing snapshot is obsolete, a
59  * new snapshot is taken.
60  */
61 struct snapshot {
62         /*
63          * A back-pointer to the packed_ref_store with which this
64          * snapshot is associated:
65          */
66         struct packed_ref_store *refs;
67
68         /* Is the `packed-refs` file currently mmapped? */
69         int mmapped;
70
71         /*
72          * The contents of the `packed-refs` file:
73          *
74          * - buf -- a pointer to the start of the memory
75          * - start -- a pointer to the first byte of actual references
76          *   (i.e., after the header line, if one is present)
77          * - eof -- a pointer just past the end of the reference
78          *   contents
79          *
80          * If the `packed-refs` file was already sorted, `buf` points
81          * at the mmapped contents of the file. If not, it points at
82          * heap-allocated memory containing the contents, sorted. If
83          * there were no contents (e.g., because the file didn't
84          * exist), `buf`, `start`, and `eof` are all NULL.
85          */
86         char *buf, *start, *eof;
87
88         /*
89          * What is the peeled state of the `packed-refs` file that
90          * this snapshot represents? (This is usually determined from
91          * the file's header.)
92          */
93         enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled;
94
95         /*
96          * Count of references to this instance, including the pointer
97          * from `packed_ref_store::snapshot`, if any. The instance
98          * will not be freed as long as the reference count is
99          * nonzero.
100          */
101         unsigned int referrers;
102
103         /*
104          * The metadata of the `packed-refs` file from which this
105          * snapshot was created, used to tell if the file has been
106          * replaced since we read it.
107          */
108         struct stat_validity validity;
109 };
110
111 /*
112  * A `ref_store` representing references stored in a `packed-refs`
113  * file. It implements the `ref_store` interface, though it has some
114  * limitations:
115  *
116  * - It cannot store symbolic references.
117  *
118  * - It cannot store reflogs.
119  *
120  * - It does not support reference renaming (though it could).
121  *
122  * On the other hand, it can be locked outside of a reference
123  * transaction. In that case, it remains locked even after the
124  * transaction is done and the new `packed-refs` file is activated.
125  */
126 struct packed_ref_store {
127         struct ref_store base;
128
129         unsigned int store_flags;
130
131         /* The path of the "packed-refs" file: */
132         char *path;
133
134         /*
135          * A snapshot of the values read from the `packed-refs` file,
136          * if it might still be current; otherwise, NULL.
137          */
138         struct snapshot *snapshot;
139
140         /*
141          * Lock used for the "packed-refs" file. Note that this (and
142          * thus the enclosing `packed_ref_store`) must not be freed.
143          */
144         struct lock_file lock;
145
146         /*
147          * Temporary file used when rewriting new contents to the
148          * "packed-refs" file. Note that this (and thus the enclosing
149          * `packed_ref_store`) must not be freed.
150          */
151         struct tempfile *tempfile;
152 };
153
154 /*
155  * Increment the reference count of `*snapshot`.
156  */
157 static void acquire_snapshot(struct snapshot *snapshot)
158 {
159         snapshot->referrers++;
160 }
161
162 /*
163  * If the buffer in `snapshot` is active, then either munmap the
164  * memory and close the file, or free the memory. Then set the buffer
165  * pointers to NULL.
166  */
167 static void clear_snapshot_buffer(struct snapshot *snapshot)
168 {
169         if (snapshot->mmapped) {
170                 if (munmap(snapshot->buf, snapshot->eof - snapshot->buf))
171                         die_errno("error ummapping packed-refs file %s",
172                                   snapshot->refs->path);
173                 snapshot->mmapped = 0;
174         } else {
175                 free(snapshot->buf);
176         }
177         snapshot->buf = snapshot->start = snapshot->eof = NULL;
178 }
179
180 /*
181  * Decrease the reference count of `*snapshot`. If it goes to zero,
182  * free `*snapshot` and return true; otherwise return false.
183  */
184 static int release_snapshot(struct snapshot *snapshot)
185 {
186         if (!--snapshot->referrers) {
187                 stat_validity_clear(&snapshot->validity);
188                 clear_snapshot_buffer(snapshot);
189                 free(snapshot);
190                 return 1;
191         } else {
192                 return 0;
193         }
194 }
195
196 struct ref_store *packed_ref_store_create(const char *path,
197                                           unsigned int store_flags)
198 {
199         struct packed_ref_store *refs = xcalloc(1, sizeof(*refs));
200         struct ref_store *ref_store = (struct ref_store *)refs;
201
202         base_ref_store_init(ref_store, &refs_be_packed);
203         refs->store_flags = store_flags;
204
205         refs->path = xstrdup(path);
206         chdir_notify_reparent("packed-refs", &refs->path);
207
208         return ref_store;
209 }
210
211 /*
212  * Downcast `ref_store` to `packed_ref_store`. Die if `ref_store` is
213  * not a `packed_ref_store`. Also die if `packed_ref_store` doesn't
214  * support at least the flags specified in `required_flags`. `caller`
215  * is used in any necessary error messages.
216  */
217 static struct packed_ref_store *packed_downcast(struct ref_store *ref_store,
218                                                 unsigned int required_flags,
219                                                 const char *caller)
220 {
221         struct packed_ref_store *refs;
222
223         if (ref_store->be != &refs_be_packed)
224                 BUG("ref_store is type \"%s\" not \"packed\" in %s",
225                     ref_store->be->name, caller);
226
227         refs = (struct packed_ref_store *)ref_store;
228
229         if ((refs->store_flags & required_flags) != required_flags)
230                 BUG("unallowed operation (%s), requires %x, has %x\n",
231                     caller, required_flags, refs->store_flags);
232
233         return refs;
234 }
235
236 static void clear_snapshot(struct packed_ref_store *refs)
237 {
238         if (refs->snapshot) {
239                 struct snapshot *snapshot = refs->snapshot;
240
241                 refs->snapshot = NULL;
242                 release_snapshot(snapshot);
243         }
244 }
245
246 static NORETURN void die_unterminated_line(const char *path,
247                                            const char *p, size_t len)
248 {
249         if (len < 80)
250                 die("unterminated line in %s: %.*s", path, (int)len, p);
251         else
252                 die("unterminated line in %s: %.75s...", path, p);
253 }
254
255 static NORETURN void die_invalid_line(const char *path,
256                                       const char *p, size_t len)
257 {
258         const char *eol = memchr(p, '\n', len);
259
260         if (!eol)
261                 die_unterminated_line(path, p, len);
262         else if (eol - p < 80)
263                 die("unexpected line in %s: %.*s", path, (int)(eol - p), p);
264         else
265                 die("unexpected line in %s: %.75s...", path, p);
266
267 }
268
269 struct snapshot_record {
270         const char *start;
271         size_t len;
272 };
273
274 static int cmp_packed_ref_records(const void *v1, const void *v2)
275 {
276         const struct snapshot_record *e1 = v1, *e2 = v2;
277         const char *r1 = e1->start + the_hash_algo->hexsz + 1;
278         const char *r2 = e2->start + the_hash_algo->hexsz + 1;
279
280         while (1) {
281                 if (*r1 == '\n')
282                         return *r2 == '\n' ? 0 : -1;
283                 if (*r1 != *r2) {
284                         if (*r2 == '\n')
285                                 return 1;
286                         else
287                                 return (unsigned char)*r1 < (unsigned char)*r2 ? -1 : +1;
288                 }
289                 r1++;
290                 r2++;
291         }
292 }
293
294 /*
295  * Compare a snapshot record at `rec` to the specified NUL-terminated
296  * refname.
297  */
298 static int cmp_record_to_refname(const char *rec, const char *refname)
299 {
300         const char *r1 = rec + the_hash_algo->hexsz + 1;
301         const char *r2 = refname;
302
303         while (1) {
304                 if (*r1 == '\n')
305                         return *r2 ? -1 : 0;
306                 if (!*r2)
307                         return 1;
308                 if (*r1 != *r2)
309                         return (unsigned char)*r1 < (unsigned char)*r2 ? -1 : +1;
310                 r1++;
311                 r2++;
312         }
313 }
314
315 /*
316  * `snapshot->buf` is not known to be sorted. Check whether it is, and
317  * if not, sort it into new memory and munmap/free the old storage.
318  */
319 static void sort_snapshot(struct snapshot *snapshot)
320 {
321         struct snapshot_record *records = NULL;
322         size_t alloc = 0, nr = 0;
323         int sorted = 1;
324         const char *pos, *eof, *eol;
325         size_t len, i;
326         char *new_buffer, *dst;
327
328         pos = snapshot->start;
329         eof = snapshot->eof;
330
331         if (pos == eof)
332                 return;
333
334         len = eof - pos;
335
336         /*
337          * Initialize records based on a crude estimate of the number
338          * of references in the file (we'll grow it below if needed):
339          */
340         ALLOC_GROW(records, len / 80 + 20, alloc);
341
342         while (pos < eof) {
343                 eol = memchr(pos, '\n', eof - pos);
344                 if (!eol)
345                         /* The safety check should prevent this. */
346                         BUG("unterminated line found in packed-refs");
347                 if (eol - pos < the_hash_algo->hexsz + 2)
348                         die_invalid_line(snapshot->refs->path,
349                                          pos, eof - pos);
350                 eol++;
351                 if (eol < eof && *eol == '^') {
352                         /*
353                          * Keep any peeled line together with its
354                          * reference:
355                          */
356                         const char *peeled_start = eol;
357
358                         eol = memchr(peeled_start, '\n', eof - peeled_start);
359                         if (!eol)
360                                 /* The safety check should prevent this. */
361                                 BUG("unterminated peeled line found in packed-refs");
362                         eol++;
363                 }
364
365                 ALLOC_GROW(records, nr + 1, alloc);
366                 records[nr].start = pos;
367                 records[nr].len = eol - pos;
368                 nr++;
369
370                 if (sorted &&
371                     nr > 1 &&
372                     cmp_packed_ref_records(&records[nr - 2],
373                                            &records[nr - 1]) >= 0)
374                         sorted = 0;
375
376                 pos = eol;
377         }
378
379         if (sorted)
380                 goto cleanup;
381
382         /* We need to sort the memory. First we sort the records array: */
383         QSORT(records, nr, cmp_packed_ref_records);
384
385         /*
386          * Allocate a new chunk of memory, and copy the old memory to
387          * the new in the order indicated by `records` (not bothering
388          * with the header line):
389          */
390         new_buffer = xmalloc(len);
391         for (dst = new_buffer, i = 0; i < nr; i++) {
392                 memcpy(dst, records[i].start, records[i].len);
393                 dst += records[i].len;
394         }
395
396         /*
397          * Now munmap the old buffer and use the sorted buffer in its
398          * place:
399          */
400         clear_snapshot_buffer(snapshot);
401         snapshot->buf = snapshot->start = new_buffer;
402         snapshot->eof = new_buffer + len;
403
404 cleanup:
405         free(records);
406 }
407
408 /*
409  * Return a pointer to the start of the record that contains the
410  * character `*p` (which must be within the buffer). If no other
411  * record start is found, return `buf`.
412  */
413 static const char *find_start_of_record(const char *buf, const char *p)
414 {
415         while (p > buf && (p[-1] != '\n' || p[0] == '^'))
416                 p--;
417         return p;
418 }
419
420 /*
421  * Return a pointer to the start of the record following the record
422  * that contains `*p`. If none is found before `end`, return `end`.
423  */
424 static const char *find_end_of_record(const char *p, const char *end)
425 {
426         while (++p < end && (p[-1] != '\n' || p[0] == '^'))
427                 ;
428         return p;
429 }
430
431 /*
432  * We want to be able to compare mmapped reference records quickly,
433  * without totally parsing them. We can do so because the records are
434  * LF-terminated, and the refname should start exactly (GIT_SHA1_HEXSZ
435  * + 1) bytes past the beginning of the record.
436  *
437  * But what if the `packed-refs` file contains garbage? We're willing
438  * to tolerate not detecting the problem, as long as we don't produce
439  * totally garbled output (we can't afford to check the integrity of
440  * the whole file during every Git invocation). But we do want to be
441  * sure that we never read past the end of the buffer in memory and
442  * perform an illegal memory access.
443  *
444  * Guarantee that minimum level of safety by verifying that the last
445  * record in the file is LF-terminated, and that it has at least
446  * (GIT_SHA1_HEXSZ + 1) characters before the LF. Die if either of
447  * these checks fails.
448  */
449 static void verify_buffer_safe(struct snapshot *snapshot)
450 {
451         const char *start = snapshot->start;
452         const char *eof = snapshot->eof;
453         const char *last_line;
454
455         if (start == eof)
456                 return;
457
458         last_line = find_start_of_record(start, eof - 1);
459         if (*(eof - 1) != '\n' || eof - last_line < the_hash_algo->hexsz + 2)
460                 die_invalid_line(snapshot->refs->path,
461                                  last_line, eof - last_line);
462 }
463
464 #define SMALL_FILE_SIZE (32*1024)
465
466 /*
467  * Depending on `mmap_strategy`, either mmap or read the contents of
468  * the `packed-refs` file into the snapshot. Return 1 if the file
469  * existed and was read, or 0 if the file was absent or empty. Die on
470  * errors.
471  */
472 static int load_contents(struct snapshot *snapshot)
473 {
474         int fd;
475         struct stat st;
476         size_t size;
477         ssize_t bytes_read;
478
479         fd = open(snapshot->refs->path, O_RDONLY);
480         if (fd < 0) {
481                 if (errno == ENOENT) {
482                         /*
483                          * This is OK; it just means that no
484                          * "packed-refs" file has been written yet,
485                          * which is equivalent to it being empty,
486                          * which is its state when initialized with
487                          * zeros.
488                          */
489                         return 0;
490                 } else {
491                         die_errno("couldn't read %s", snapshot->refs->path);
492                 }
493         }
494
495         stat_validity_update(&snapshot->validity, fd);
496
497         if (fstat(fd, &st) < 0)
498                 die_errno("couldn't stat %s", snapshot->refs->path);
499         size = xsize_t(st.st_size);
500
501         if (!size) {
502                 close(fd);
503                 return 0;
504         } else if (mmap_strategy == MMAP_NONE || size <= SMALL_FILE_SIZE) {
505                 snapshot->buf = xmalloc(size);
506                 bytes_read = read_in_full(fd, snapshot->buf, size);
507                 if (bytes_read < 0 || bytes_read != size)
508                         die_errno("couldn't read %s", snapshot->refs->path);
509                 snapshot->mmapped = 0;
510         } else {
511                 snapshot->buf = xmmap(NULL, size, PROT_READ, MAP_PRIVATE, fd, 0);
512                 snapshot->mmapped = 1;
513         }
514         close(fd);
515
516         snapshot->start = snapshot->buf;
517         snapshot->eof = snapshot->buf + size;
518
519         return 1;
520 }
521
522 /*
523  * Find the place in `snapshot->buf` where the start of the record for
524  * `refname` starts. If `mustexist` is true and the reference doesn't
525  * exist, then return NULL. If `mustexist` is false and the reference
526  * doesn't exist, then return the point where that reference would be
527  * inserted, or `snapshot->eof` (which might be NULL) if it would be
528  * inserted at the end of the file. In the latter mode, `refname`
529  * doesn't have to be a proper reference name; for example, one could
530  * search for "refs/replace/" to find the start of any replace
531  * references.
532  *
533  * The record is sought using a binary search, so `snapshot->buf` must
534  * be sorted.
535  */
536 static const char *find_reference_location(struct snapshot *snapshot,
537                                            const char *refname, int mustexist)
538 {
539         /*
540          * This is not *quite* a garden-variety binary search, because
541          * the data we're searching is made up of records, and we
542          * always need to find the beginning of a record to do a
543          * comparison. A "record" here is one line for the reference
544          * itself and zero or one peel lines that start with '^'. Our
545          * loop invariant is described in the next two comments.
546          */
547
548         /*
549          * A pointer to the character at the start of a record whose
550          * preceding records all have reference names that come
551          * *before* `refname`.
552          */
553         const char *lo = snapshot->start;
554
555         /*
556          * A pointer to a the first character of a record whose
557          * reference name comes *after* `refname`.
558          */
559         const char *hi = snapshot->eof;
560
561         while (lo != hi) {
562                 const char *mid, *rec;
563                 int cmp;
564
565                 mid = lo + (hi - lo) / 2;
566                 rec = find_start_of_record(lo, mid);
567                 cmp = cmp_record_to_refname(rec, refname);
568                 if (cmp < 0) {
569                         lo = find_end_of_record(mid, hi);
570                 } else if (cmp > 0) {
571                         hi = rec;
572                 } else {
573                         return rec;
574                 }
575         }
576
577         if (mustexist)
578                 return NULL;
579         else
580                 return lo;
581 }
582
583 /*
584  * Create a newly-allocated `snapshot` of the `packed-refs` file in
585  * its current state and return it. The return value will already have
586  * its reference count incremented.
587  *
588  * A comment line of the form "# pack-refs with: " may contain zero or
589  * more traits. We interpret the traits as follows:
590  *
591  *   Neither `peeled` nor `fully-peeled`:
592  *
593  *      Probably no references are peeled. But if the file contains a
594  *      peeled value for a reference, we will use it.
595  *
596  *   `peeled`:
597  *
598  *      References under "refs/tags/", if they *can* be peeled, *are*
599  *      peeled in this file. References outside of "refs/tags/" are
600  *      probably not peeled even if they could have been, but if we find
601  *      a peeled value for such a reference we will use it.
602  *
603  *   `fully-peeled`:
604  *
605  *      All references in the file that can be peeled are peeled.
606  *      Inversely (and this is more important), any references in the
607  *      file for which no peeled value is recorded is not peelable. This
608  *      trait should typically be written alongside "peeled" for
609  *      compatibility with older clients, but we do not require it
610  *      (i.e., "peeled" is a no-op if "fully-peeled" is set).
611  *
612  *   `sorted`:
613  *
614  *      The references in this file are known to be sorted by refname.
615  */
616 static struct snapshot *create_snapshot(struct packed_ref_store *refs)
617 {
618         struct snapshot *snapshot = xcalloc(1, sizeof(*snapshot));
619         int sorted = 0;
620
621         snapshot->refs = refs;
622         acquire_snapshot(snapshot);
623         snapshot->peeled = PEELED_NONE;
624
625         if (!load_contents(snapshot))
626                 return snapshot;
627
628         /* If the file has a header line, process it: */
629         if (snapshot->buf < snapshot->eof && *snapshot->buf == '#') {
630                 char *tmp, *p, *eol;
631                 struct string_list traits = STRING_LIST_INIT_NODUP;
632
633                 eol = memchr(snapshot->buf, '\n',
634                              snapshot->eof - snapshot->buf);
635                 if (!eol)
636                         die_unterminated_line(refs->path,
637                                               snapshot->buf,
638                                               snapshot->eof - snapshot->buf);
639
640                 tmp = xmemdupz(snapshot->buf, eol - snapshot->buf);
641
642                 if (!skip_prefix(tmp, "# pack-refs with:", (const char **)&p))
643                         die_invalid_line(refs->path,
644                                          snapshot->buf,
645                                          snapshot->eof - snapshot->buf);
646
647                 string_list_split_in_place(&traits, p, ' ', -1);
648
649                 if (unsorted_string_list_has_string(&traits, "fully-peeled"))
650                         snapshot->peeled = PEELED_FULLY;
651                 else if (unsorted_string_list_has_string(&traits, "peeled"))
652                         snapshot->peeled = PEELED_TAGS;
653
654                 sorted = unsorted_string_list_has_string(&traits, "sorted");
655
656                 /* perhaps other traits later as well */
657
658                 /* The "+ 1" is for the LF character. */
659                 snapshot->start = eol + 1;
660
661                 string_list_clear(&traits, 0);
662                 free(tmp);
663         }
664
665         verify_buffer_safe(snapshot);
666
667         if (!sorted) {
668                 sort_snapshot(snapshot);
669
670                 /*
671                  * Reordering the records might have moved a short one
672                  * to the end of the buffer, so verify the buffer's
673                  * safety again:
674                  */
675                 verify_buffer_safe(snapshot);
676         }
677
678         if (mmap_strategy != MMAP_OK && snapshot->mmapped) {
679                 /*
680                  * We don't want to leave the file mmapped, so we are
681                  * forced to make a copy now:
682                  */
683                 size_t size = snapshot->eof - snapshot->start;
684                 char *buf_copy = xmalloc(size);
685
686                 memcpy(buf_copy, snapshot->start, size);
687                 clear_snapshot_buffer(snapshot);
688                 snapshot->buf = snapshot->start = buf_copy;
689                 snapshot->eof = buf_copy + size;
690         }
691
692         return snapshot;
693 }
694
695 /*
696  * Check that `refs->snapshot` (if present) still reflects the
697  * contents of the `packed-refs` file. If not, clear the snapshot.
698  */
699 static void validate_snapshot(struct packed_ref_store *refs)
700 {
701         if (refs->snapshot &&
702             !stat_validity_check(&refs->snapshot->validity, refs->path))
703                 clear_snapshot(refs);
704 }
705
706 /*
707  * Get the `snapshot` for the specified packed_ref_store, creating and
708  * populating it if it hasn't been read before or if the file has been
709  * changed (according to its `validity` field) since it was last read.
710  * On the other hand, if we hold the lock, then assume that the file
711  * hasn't been changed out from under us, so skip the extra `stat()`
712  * call in `stat_validity_check()`. This function does *not* increase
713  * the snapshot's reference count on behalf of the caller.
714  */
715 static struct snapshot *get_snapshot(struct packed_ref_store *refs)
716 {
717         if (!is_lock_file_locked(&refs->lock))
718                 validate_snapshot(refs);
719
720         if (!refs->snapshot)
721                 refs->snapshot = create_snapshot(refs);
722
723         return refs->snapshot;
724 }
725
726 static int packed_read_raw_ref(struct ref_store *ref_store,
727                                const char *refname, struct object_id *oid,
728                                struct strbuf *referent, unsigned int *type)
729 {
730         struct packed_ref_store *refs =
731                 packed_downcast(ref_store, REF_STORE_READ, "read_raw_ref");
732         struct snapshot *snapshot = get_snapshot(refs);
733         const char *rec;
734
735         *type = 0;
736
737         rec = find_reference_location(snapshot, refname, 1);
738
739         if (!rec) {
740                 /* refname is not a packed reference. */
741                 errno = ENOENT;
742                 return -1;
743         }
744
745         if (get_oid_hex(rec, oid))
746                 die_invalid_line(refs->path, rec, snapshot->eof - rec);
747
748         *type = REF_ISPACKED;
749         return 0;
750 }
751
752 /*
753  * This value is set in `base.flags` if the peeled value of the
754  * current reference is known. In that case, `peeled` contains the
755  * correct peeled value for the reference, which might be `null_oid`
756  * if the reference is not a tag or if it is broken.
757  */
758 #define REF_KNOWS_PEELED 0x40
759
760 /*
761  * An iterator over a snapshot of a `packed-refs` file.
762  */
763 struct packed_ref_iterator {
764         struct ref_iterator base;
765
766         struct snapshot *snapshot;
767
768         /* The current position in the snapshot's buffer: */
769         const char *pos;
770
771         /* The end of the part of the buffer that will be iterated over: */
772         const char *eof;
773
774         /* Scratch space for current values: */
775         struct object_id oid, peeled;
776         struct strbuf refname_buf;
777
778         unsigned int flags;
779 };
780
781 /*
782  * Move the iterator to the next record in the snapshot, without
783  * respect for whether the record is actually required by the current
784  * iteration. Adjust the fields in `iter` and return `ITER_OK` or
785  * `ITER_DONE`. This function does not free the iterator in the case
786  * of `ITER_DONE`.
787  */
788 static int next_record(struct packed_ref_iterator *iter)
789 {
790         const char *p = iter->pos, *eol;
791
792         strbuf_reset(&iter->refname_buf);
793
794         if (iter->pos == iter->eof)
795                 return ITER_DONE;
796
797         iter->base.flags = REF_ISPACKED;
798
799         if (iter->eof - p < the_hash_algo->hexsz + 2 ||
800             parse_oid_hex(p, &iter->oid, &p) ||
801             !isspace(*p++))
802                 die_invalid_line(iter->snapshot->refs->path,
803                                  iter->pos, iter->eof - iter->pos);
804
805         eol = memchr(p, '\n', iter->eof - p);
806         if (!eol)
807                 die_unterminated_line(iter->snapshot->refs->path,
808                                       iter->pos, iter->eof - iter->pos);
809
810         strbuf_add(&iter->refname_buf, p, eol - p);
811         iter->base.refname = iter->refname_buf.buf;
812
813         if (check_refname_format(iter->base.refname, REFNAME_ALLOW_ONELEVEL)) {
814                 if (!refname_is_safe(iter->base.refname))
815                         die("packed refname is dangerous: %s",
816                             iter->base.refname);
817                 oidclr(&iter->oid);
818                 iter->base.flags |= REF_BAD_NAME | REF_ISBROKEN;
819         }
820         if (iter->snapshot->peeled == PEELED_FULLY ||
821             (iter->snapshot->peeled == PEELED_TAGS &&
822              starts_with(iter->base.refname, "refs/tags/")))
823                 iter->base.flags |= REF_KNOWS_PEELED;
824
825         iter->pos = eol + 1;
826
827         if (iter->pos < iter->eof && *iter->pos == '^') {
828                 p = iter->pos + 1;
829                 if (iter->eof - p < the_hash_algo->hexsz + 1 ||
830                     parse_oid_hex(p, &iter->peeled, &p) ||
831                     *p++ != '\n')
832                         die_invalid_line(iter->snapshot->refs->path,
833                                          iter->pos, iter->eof - iter->pos);
834                 iter->pos = p;
835
836                 /*
837                  * Regardless of what the file header said, we
838                  * definitely know the value of *this* reference. But
839                  * we suppress it if the reference is broken:
840                  */
841                 if ((iter->base.flags & REF_ISBROKEN)) {
842                         oidclr(&iter->peeled);
843                         iter->base.flags &= ~REF_KNOWS_PEELED;
844                 } else {
845                         iter->base.flags |= REF_KNOWS_PEELED;
846                 }
847         } else {
848                 oidclr(&iter->peeled);
849         }
850
851         return ITER_OK;
852 }
853
854 static int packed_ref_iterator_advance(struct ref_iterator *ref_iterator)
855 {
856         struct packed_ref_iterator *iter =
857                 (struct packed_ref_iterator *)ref_iterator;
858         int ok;
859
860         while ((ok = next_record(iter)) == ITER_OK) {
861                 if (iter->flags & DO_FOR_EACH_PER_WORKTREE_ONLY &&
862                     ref_type(iter->base.refname) != REF_TYPE_PER_WORKTREE)
863                         continue;
864
865                 if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
866                     !ref_resolves_to_object(iter->base.refname, &iter->oid,
867                                             iter->flags))
868                         continue;
869
870                 return ITER_OK;
871         }
872
873         if (ref_iterator_abort(ref_iterator) != ITER_DONE)
874                 ok = ITER_ERROR;
875
876         return ok;
877 }
878
879 static int packed_ref_iterator_peel(struct ref_iterator *ref_iterator,
880                                    struct object_id *peeled)
881 {
882         struct packed_ref_iterator *iter =
883                 (struct packed_ref_iterator *)ref_iterator;
884
885         if ((iter->base.flags & REF_KNOWS_PEELED)) {
886                 oidcpy(peeled, &iter->peeled);
887                 return is_null_oid(&iter->peeled) ? -1 : 0;
888         } else if ((iter->base.flags & (REF_ISBROKEN | REF_ISSYMREF))) {
889                 return -1;
890         } else {
891                 return !!peel_object(&iter->oid, peeled);
892         }
893 }
894
895 static int packed_ref_iterator_abort(struct ref_iterator *ref_iterator)
896 {
897         struct packed_ref_iterator *iter =
898                 (struct packed_ref_iterator *)ref_iterator;
899         int ok = ITER_DONE;
900
901         strbuf_release(&iter->refname_buf);
902         release_snapshot(iter->snapshot);
903         base_ref_iterator_free(ref_iterator);
904         return ok;
905 }
906
907 static struct ref_iterator_vtable packed_ref_iterator_vtable = {
908         packed_ref_iterator_advance,
909         packed_ref_iterator_peel,
910         packed_ref_iterator_abort
911 };
912
913 static struct ref_iterator *packed_ref_iterator_begin(
914                 struct ref_store *ref_store,
915                 const char *prefix, unsigned int flags)
916 {
917         struct packed_ref_store *refs;
918         struct snapshot *snapshot;
919         const char *start;
920         struct packed_ref_iterator *iter;
921         struct ref_iterator *ref_iterator;
922         unsigned int required_flags = REF_STORE_READ;
923
924         if (!(flags & DO_FOR_EACH_INCLUDE_BROKEN))
925                 required_flags |= REF_STORE_ODB;
926         refs = packed_downcast(ref_store, required_flags, "ref_iterator_begin");
927
928         /*
929          * Note that `get_snapshot()` internally checks whether the
930          * snapshot is up to date with what is on disk, and re-reads
931          * it if not.
932          */
933         snapshot = get_snapshot(refs);
934
935         if (prefix && *prefix)
936                 start = find_reference_location(snapshot, prefix, 0);
937         else
938                 start = snapshot->start;
939
940         if (start == snapshot->eof)
941                 return empty_ref_iterator_begin();
942
943         iter = xcalloc(1, sizeof(*iter));
944         ref_iterator = &iter->base;
945         base_ref_iterator_init(ref_iterator, &packed_ref_iterator_vtable, 1);
946
947         iter->snapshot = snapshot;
948         acquire_snapshot(snapshot);
949
950         iter->pos = start;
951         iter->eof = snapshot->eof;
952         strbuf_init(&iter->refname_buf, 0);
953
954         iter->base.oid = &iter->oid;
955
956         iter->flags = flags;
957
958         if (prefix && *prefix)
959                 /* Stop iteration after we've gone *past* prefix: */
960                 ref_iterator = prefix_ref_iterator_begin(ref_iterator, prefix, 0);
961
962         return ref_iterator;
963 }
964
965 /*
966  * Write an entry to the packed-refs file for the specified refname.
967  * If peeled is non-NULL, write it as the entry's peeled value. On
968  * error, return a nonzero value and leave errno set at the value left
969  * by the failing call to `fprintf()`.
970  */
971 static int write_packed_entry(FILE *fh, const char *refname,
972                               const struct object_id *oid,
973                               const struct object_id *peeled)
974 {
975         if (fprintf(fh, "%s %s\n", oid_to_hex(oid), refname) < 0 ||
976             (peeled && fprintf(fh, "^%s\n", oid_to_hex(peeled)) < 0))
977                 return -1;
978
979         return 0;
980 }
981
982 int packed_refs_lock(struct ref_store *ref_store, int flags, struct strbuf *err)
983 {
984         struct packed_ref_store *refs =
985                 packed_downcast(ref_store, REF_STORE_WRITE | REF_STORE_MAIN,
986                                 "packed_refs_lock");
987         static int timeout_configured = 0;
988         static int timeout_value = 1000;
989
990         if (!timeout_configured) {
991                 git_config_get_int("core.packedrefstimeout", &timeout_value);
992                 timeout_configured = 1;
993         }
994
995         /*
996          * Note that we close the lockfile immediately because we
997          * don't write new content to it, but rather to a separate
998          * tempfile.
999          */
1000         if (hold_lock_file_for_update_timeout(
1001                             &refs->lock,
1002                             refs->path,
1003                             flags, timeout_value) < 0) {
1004                 unable_to_lock_message(refs->path, errno, err);
1005                 return -1;
1006         }
1007
1008         if (close_lock_file_gently(&refs->lock)) {
1009                 strbuf_addf(err, "unable to close %s: %s", refs->path, strerror(errno));
1010                 rollback_lock_file(&refs->lock);
1011                 return -1;
1012         }
1013
1014         /*
1015          * Now that we hold the `packed-refs` lock, make sure that our
1016          * snapshot matches the current version of the file. Normally
1017          * `get_snapshot()` does that for us, but that function
1018          * assumes that when the file is locked, any existing snapshot
1019          * is still valid. We've just locked the file, but it might
1020          * have changed the moment *before* we locked it.
1021          */
1022         validate_snapshot(refs);
1023
1024         /*
1025          * Now make sure that the packed-refs file as it exists in the
1026          * locked state is loaded into the snapshot:
1027          */
1028         get_snapshot(refs);
1029         return 0;
1030 }
1031
1032 void packed_refs_unlock(struct ref_store *ref_store)
1033 {
1034         struct packed_ref_store *refs = packed_downcast(
1035                         ref_store,
1036                         REF_STORE_READ | REF_STORE_WRITE,
1037                         "packed_refs_unlock");
1038
1039         if (!is_lock_file_locked(&refs->lock))
1040                 BUG("packed_refs_unlock() called when not locked");
1041         rollback_lock_file(&refs->lock);
1042 }
1043
1044 int packed_refs_is_locked(struct ref_store *ref_store)
1045 {
1046         struct packed_ref_store *refs = packed_downcast(
1047                         ref_store,
1048                         REF_STORE_READ | REF_STORE_WRITE,
1049                         "packed_refs_is_locked");
1050
1051         return is_lock_file_locked(&refs->lock);
1052 }
1053
1054 /*
1055  * The packed-refs header line that we write out. Perhaps other traits
1056  * will be added later.
1057  *
1058  * Note that earlier versions of Git used to parse these traits by
1059  * looking for " trait " in the line. For this reason, the space after
1060  * the colon and the trailing space are required.
1061  */
1062 static const char PACKED_REFS_HEADER[] =
1063         "# pack-refs with: peeled fully-peeled sorted \n";
1064
1065 static int packed_init_db(struct ref_store *ref_store, struct strbuf *err)
1066 {
1067         /* Nothing to do. */
1068         return 0;
1069 }
1070
1071 /*
1072  * Write the packed refs from the current snapshot to the packed-refs
1073  * tempfile, incorporating any changes from `updates`. `updates` must
1074  * be a sorted string list whose keys are the refnames and whose util
1075  * values are `struct ref_update *`. On error, rollback the tempfile,
1076  * write an error message to `err`, and return a nonzero value.
1077  *
1078  * The packfile must be locked before calling this function and will
1079  * remain locked when it is done.
1080  */
1081 static int write_with_updates(struct packed_ref_store *refs,
1082                               struct string_list *updates,
1083                               struct strbuf *err)
1084 {
1085         struct ref_iterator *iter = NULL;
1086         size_t i;
1087         int ok;
1088         FILE *out;
1089         struct strbuf sb = STRBUF_INIT;
1090         char *packed_refs_path;
1091
1092         if (!is_lock_file_locked(&refs->lock))
1093                 BUG("write_with_updates() called while unlocked");
1094
1095         /*
1096          * If packed-refs is a symlink, we want to overwrite the
1097          * symlinked-to file, not the symlink itself. Also, put the
1098          * staging file next to it:
1099          */
1100         packed_refs_path = get_locked_file_path(&refs->lock);
1101         strbuf_addf(&sb, "%s.new", packed_refs_path);
1102         free(packed_refs_path);
1103         refs->tempfile = create_tempfile(sb.buf);
1104         if (!refs->tempfile) {
1105                 strbuf_addf(err, "unable to create file %s: %s",
1106                             sb.buf, strerror(errno));
1107                 strbuf_release(&sb);
1108                 return -1;
1109         }
1110         strbuf_release(&sb);
1111
1112         out = fdopen_tempfile(refs->tempfile, "w");
1113         if (!out) {
1114                 strbuf_addf(err, "unable to fdopen packed-refs tempfile: %s",
1115                             strerror(errno));
1116                 goto error;
1117         }
1118
1119         if (fprintf(out, "%s", PACKED_REFS_HEADER) < 0)
1120                 goto write_error;
1121
1122         /*
1123          * We iterate in parallel through the current list of refs and
1124          * the list of updates, processing an entry from at least one
1125          * of the lists each time through the loop. When the current
1126          * list of refs is exhausted, set iter to NULL. When the list
1127          * of updates is exhausted, leave i set to updates->nr.
1128          */
1129         iter = packed_ref_iterator_begin(&refs->base, "",
1130                                          DO_FOR_EACH_INCLUDE_BROKEN);
1131         if ((ok = ref_iterator_advance(iter)) != ITER_OK)
1132                 iter = NULL;
1133
1134         i = 0;
1135
1136         while (iter || i < updates->nr) {
1137                 struct ref_update *update = NULL;
1138                 int cmp;
1139
1140                 if (i >= updates->nr) {
1141                         cmp = -1;
1142                 } else {
1143                         update = updates->items[i].util;
1144
1145                         if (!iter)
1146                                 cmp = +1;
1147                         else
1148                                 cmp = strcmp(iter->refname, update->refname);
1149                 }
1150
1151                 if (!cmp) {
1152                         /*
1153                          * There is both an old value and an update
1154                          * for this reference. Check the old value if
1155                          * necessary:
1156                          */
1157                         if ((update->flags & REF_HAVE_OLD)) {
1158                                 if (is_null_oid(&update->old_oid)) {
1159                                         strbuf_addf(err, "cannot update ref '%s': "
1160                                                     "reference already exists",
1161                                                     update->refname);
1162                                         goto error;
1163                                 } else if (!oideq(&update->old_oid, iter->oid)) {
1164                                         strbuf_addf(err, "cannot update ref '%s': "
1165                                                     "is at %s but expected %s",
1166                                                     update->refname,
1167                                                     oid_to_hex(iter->oid),
1168                                                     oid_to_hex(&update->old_oid));
1169                                         goto error;
1170                                 }
1171                         }
1172
1173                         /* Now figure out what to use for the new value: */
1174                         if ((update->flags & REF_HAVE_NEW)) {
1175                                 /*
1176                                  * The update takes precedence. Skip
1177                                  * the iterator over the unneeded
1178                                  * value.
1179                                  */
1180                                 if ((ok = ref_iterator_advance(iter)) != ITER_OK)
1181                                         iter = NULL;
1182                                 cmp = +1;
1183                         } else {
1184                                 /*
1185                                  * The update doesn't actually want to
1186                                  * change anything. We're done with it.
1187                                  */
1188                                 i++;
1189                                 cmp = -1;
1190                         }
1191                 } else if (cmp > 0) {
1192                         /*
1193                          * There is no old value but there is an
1194                          * update for this reference. Make sure that
1195                          * the update didn't expect an existing value:
1196                          */
1197                         if ((update->flags & REF_HAVE_OLD) &&
1198                             !is_null_oid(&update->old_oid)) {
1199                                 strbuf_addf(err, "cannot update ref '%s': "
1200                                             "reference is missing but expected %s",
1201                                             update->refname,
1202                                             oid_to_hex(&update->old_oid));
1203                                 goto error;
1204                         }
1205                 }
1206
1207                 if (cmp < 0) {
1208                         /* Pass the old reference through. */
1209
1210                         struct object_id peeled;
1211                         int peel_error = ref_iterator_peel(iter, &peeled);
1212
1213                         if (write_packed_entry(out, iter->refname,
1214                                                iter->oid,
1215                                                peel_error ? NULL : &peeled))
1216                                 goto write_error;
1217
1218                         if ((ok = ref_iterator_advance(iter)) != ITER_OK)
1219                                 iter = NULL;
1220                 } else if (is_null_oid(&update->new_oid)) {
1221                         /*
1222                          * The update wants to delete the reference,
1223                          * and the reference either didn't exist or we
1224                          * have already skipped it. So we're done with
1225                          * the update (and don't have to write
1226                          * anything).
1227                          */
1228                         i++;
1229                 } else {
1230                         struct object_id peeled;
1231                         int peel_error = peel_object(&update->new_oid,
1232                                                      &peeled);
1233
1234                         if (write_packed_entry(out, update->refname,
1235                                                &update->new_oid,
1236                                                peel_error ? NULL : &peeled))
1237                                 goto write_error;
1238
1239                         i++;
1240                 }
1241         }
1242
1243         if (ok != ITER_DONE) {
1244                 strbuf_addstr(err, "unable to write packed-refs file: "
1245                               "error iterating over old contents");
1246                 goto error;
1247         }
1248
1249         if (close_tempfile_gently(refs->tempfile)) {
1250                 strbuf_addf(err, "error closing file %s: %s",
1251                             get_tempfile_path(refs->tempfile),
1252                             strerror(errno));
1253                 strbuf_release(&sb);
1254                 delete_tempfile(&refs->tempfile);
1255                 return -1;
1256         }
1257
1258         return 0;
1259
1260 write_error:
1261         strbuf_addf(err, "error writing to %s: %s",
1262                     get_tempfile_path(refs->tempfile), strerror(errno));
1263
1264 error:
1265         if (iter)
1266                 ref_iterator_abort(iter);
1267
1268         delete_tempfile(&refs->tempfile);
1269         return -1;
1270 }
1271
1272 int is_packed_transaction_needed(struct ref_store *ref_store,
1273                                  struct ref_transaction *transaction)
1274 {
1275         struct packed_ref_store *refs = packed_downcast(
1276                         ref_store,
1277                         REF_STORE_READ,
1278                         "is_packed_transaction_needed");
1279         struct strbuf referent = STRBUF_INIT;
1280         size_t i;
1281         int ret;
1282
1283         if (!is_lock_file_locked(&refs->lock))
1284                 BUG("is_packed_transaction_needed() called while unlocked");
1285
1286         /*
1287          * We're only going to bother returning false for the common,
1288          * trivial case that references are only being deleted, their
1289          * old values are not being checked, and the old `packed-refs`
1290          * file doesn't contain any of those reference(s). This gives
1291          * false positives for some other cases that could
1292          * theoretically be optimized away:
1293          *
1294          * 1. It could be that the old value is being verified without
1295          *    setting a new value. In this case, we could verify the
1296          *    old value here and skip the update if it agrees. If it
1297          *    disagrees, we could either let the update go through
1298          *    (the actual commit would re-detect and report the
1299          *    problem), or come up with a way of reporting such an
1300          *    error to *our* caller.
1301          *
1302          * 2. It could be that a new value is being set, but that it
1303          *    is identical to the current packed value of the
1304          *    reference.
1305          *
1306          * Neither of these cases will come up in the current code,
1307          * because the only caller of this function passes to it a
1308          * transaction that only includes `delete` updates with no
1309          * `old_id`. Even if that ever changes, false positives only
1310          * cause an optimization to be missed; they do not affect
1311          * correctness.
1312          */
1313
1314         /*
1315          * Start with the cheap checks that don't require old
1316          * reference values to be read:
1317          */
1318         for (i = 0; i < transaction->nr; i++) {
1319                 struct ref_update *update = transaction->updates[i];
1320
1321                 if (update->flags & REF_HAVE_OLD)
1322                         /* Have to check the old value -> needed. */
1323                         return 1;
1324
1325                 if ((update->flags & REF_HAVE_NEW) && !is_null_oid(&update->new_oid))
1326                         /* Have to set a new value -> needed. */
1327                         return 1;
1328         }
1329
1330         /*
1331          * The transaction isn't checking any old values nor is it
1332          * setting any nonzero new values, so it still might be able
1333          * to be skipped. Now do the more expensive check: the update
1334          * is needed if any of the updates is a delete, and the old
1335          * `packed-refs` file contains a value for that reference.
1336          */
1337         ret = 0;
1338         for (i = 0; i < transaction->nr; i++) {
1339                 struct ref_update *update = transaction->updates[i];
1340                 unsigned int type;
1341                 struct object_id oid;
1342
1343                 if (!(update->flags & REF_HAVE_NEW))
1344                         /*
1345                          * This reference isn't being deleted -> not
1346                          * needed.
1347                          */
1348                         continue;
1349
1350                 if (!refs_read_raw_ref(ref_store, update->refname,
1351                                        &oid, &referent, &type) ||
1352                     errno != ENOENT) {
1353                         /*
1354                          * We have to actually delete that reference
1355                          * -> this transaction is needed.
1356                          */
1357                         ret = 1;
1358                         break;
1359                 }
1360         }
1361
1362         strbuf_release(&referent);
1363         return ret;
1364 }
1365
1366 struct packed_transaction_backend_data {
1367         /* True iff the transaction owns the packed-refs lock. */
1368         int own_lock;
1369
1370         struct string_list updates;
1371 };
1372
1373 static void packed_transaction_cleanup(struct packed_ref_store *refs,
1374                                        struct ref_transaction *transaction)
1375 {
1376         struct packed_transaction_backend_data *data = transaction->backend_data;
1377
1378         if (data) {
1379                 string_list_clear(&data->updates, 0);
1380
1381                 if (is_tempfile_active(refs->tempfile))
1382                         delete_tempfile(&refs->tempfile);
1383
1384                 if (data->own_lock && is_lock_file_locked(&refs->lock)) {
1385                         packed_refs_unlock(&refs->base);
1386                         data->own_lock = 0;
1387                 }
1388
1389                 free(data);
1390                 transaction->backend_data = NULL;
1391         }
1392
1393         transaction->state = REF_TRANSACTION_CLOSED;
1394 }
1395
1396 static int packed_transaction_prepare(struct ref_store *ref_store,
1397                                       struct ref_transaction *transaction,
1398                                       struct strbuf *err)
1399 {
1400         struct packed_ref_store *refs = packed_downcast(
1401                         ref_store,
1402                         REF_STORE_READ | REF_STORE_WRITE | REF_STORE_ODB,
1403                         "ref_transaction_prepare");
1404         struct packed_transaction_backend_data *data;
1405         size_t i;
1406         int ret = TRANSACTION_GENERIC_ERROR;
1407
1408         /*
1409          * Note that we *don't* skip transactions with zero updates,
1410          * because such a transaction might be executed for the side
1411          * effect of ensuring that all of the references are peeled or
1412          * ensuring that the `packed-refs` file is sorted. If the
1413          * caller wants to optimize away empty transactions, it should
1414          * do so itself.
1415          */
1416
1417         data = xcalloc(1, sizeof(*data));
1418         string_list_init(&data->updates, 0);
1419
1420         transaction->backend_data = data;
1421
1422         /*
1423          * Stick the updates in a string list by refname so that we
1424          * can sort them:
1425          */
1426         for (i = 0; i < transaction->nr; i++) {
1427                 struct ref_update *update = transaction->updates[i];
1428                 struct string_list_item *item =
1429                         string_list_append(&data->updates, update->refname);
1430
1431                 /* Store a pointer to update in item->util: */
1432                 item->util = update;
1433         }
1434         string_list_sort(&data->updates);
1435
1436         if (ref_update_reject_duplicates(&data->updates, err))
1437                 goto failure;
1438
1439         if (!is_lock_file_locked(&refs->lock)) {
1440                 if (packed_refs_lock(ref_store, 0, err))
1441                         goto failure;
1442                 data->own_lock = 1;
1443         }
1444
1445         if (write_with_updates(refs, &data->updates, err))
1446                 goto failure;
1447
1448         transaction->state = REF_TRANSACTION_PREPARED;
1449         return 0;
1450
1451 failure:
1452         packed_transaction_cleanup(refs, transaction);
1453         return ret;
1454 }
1455
1456 static int packed_transaction_abort(struct ref_store *ref_store,
1457                                     struct ref_transaction *transaction,
1458                                     struct strbuf *err)
1459 {
1460         struct packed_ref_store *refs = packed_downcast(
1461                         ref_store,
1462                         REF_STORE_READ | REF_STORE_WRITE | REF_STORE_ODB,
1463                         "ref_transaction_abort");
1464
1465         packed_transaction_cleanup(refs, transaction);
1466         return 0;
1467 }
1468
1469 static int packed_transaction_finish(struct ref_store *ref_store,
1470                                      struct ref_transaction *transaction,
1471                                      struct strbuf *err)
1472 {
1473         struct packed_ref_store *refs = packed_downcast(
1474                         ref_store,
1475                         REF_STORE_READ | REF_STORE_WRITE | REF_STORE_ODB,
1476                         "ref_transaction_finish");
1477         int ret = TRANSACTION_GENERIC_ERROR;
1478         char *packed_refs_path;
1479
1480         clear_snapshot(refs);
1481
1482         packed_refs_path = get_locked_file_path(&refs->lock);
1483         if (rename_tempfile(&refs->tempfile, packed_refs_path)) {
1484                 strbuf_addf(err, "error replacing %s: %s",
1485                             refs->path, strerror(errno));
1486                 goto cleanup;
1487         }
1488
1489         ret = 0;
1490
1491 cleanup:
1492         free(packed_refs_path);
1493         packed_transaction_cleanup(refs, transaction);
1494         return ret;
1495 }
1496
1497 static int packed_initial_transaction_commit(struct ref_store *ref_store,
1498                                             struct ref_transaction *transaction,
1499                                             struct strbuf *err)
1500 {
1501         return ref_transaction_commit(transaction, err);
1502 }
1503
1504 static int packed_delete_refs(struct ref_store *ref_store, const char *msg,
1505                              struct string_list *refnames, unsigned int flags)
1506 {
1507         struct packed_ref_store *refs =
1508                 packed_downcast(ref_store, REF_STORE_WRITE, "delete_refs");
1509         struct strbuf err = STRBUF_INIT;
1510         struct ref_transaction *transaction;
1511         struct string_list_item *item;
1512         int ret;
1513
1514         (void)refs; /* We need the check above, but don't use the variable */
1515
1516         if (!refnames->nr)
1517                 return 0;
1518
1519         /*
1520          * Since we don't check the references' old_oids, the
1521          * individual updates can't fail, so we can pack all of the
1522          * updates into a single transaction.
1523          */
1524
1525         transaction = ref_store_transaction_begin(ref_store, &err);
1526         if (!transaction)
1527                 return -1;
1528
1529         for_each_string_list_item(item, refnames) {
1530                 if (ref_transaction_delete(transaction, item->string, NULL,
1531                                            flags, msg, &err)) {
1532                         warning(_("could not delete reference %s: %s"),
1533                                 item->string, err.buf);
1534                         strbuf_reset(&err);
1535                 }
1536         }
1537
1538         ret = ref_transaction_commit(transaction, &err);
1539
1540         if (ret) {
1541                 if (refnames->nr == 1)
1542                         error(_("could not delete reference %s: %s"),
1543                               refnames->items[0].string, err.buf);
1544                 else
1545                         error(_("could not delete references: %s"), err.buf);
1546         }
1547
1548         ref_transaction_free(transaction);
1549         strbuf_release(&err);
1550         return ret;
1551 }
1552
1553 static int packed_pack_refs(struct ref_store *ref_store, unsigned int flags)
1554 {
1555         /*
1556          * Packed refs are already packed. It might be that loose refs
1557          * are packed *into* a packed refs store, but that is done by
1558          * updating the packed references via a transaction.
1559          */
1560         return 0;
1561 }
1562
1563 static int packed_create_symref(struct ref_store *ref_store,
1564                                const char *refname, const char *target,
1565                                const char *logmsg)
1566 {
1567         BUG("packed reference store does not support symrefs");
1568 }
1569
1570 static int packed_rename_ref(struct ref_store *ref_store,
1571                             const char *oldrefname, const char *newrefname,
1572                             const char *logmsg)
1573 {
1574         BUG("packed reference store does not support renaming references");
1575 }
1576
1577 static int packed_copy_ref(struct ref_store *ref_store,
1578                            const char *oldrefname, const char *newrefname,
1579                            const char *logmsg)
1580 {
1581         BUG("packed reference store does not support copying references");
1582 }
1583
1584 static struct ref_iterator *packed_reflog_iterator_begin(struct ref_store *ref_store)
1585 {
1586         return empty_ref_iterator_begin();
1587 }
1588
1589 static int packed_for_each_reflog_ent(struct ref_store *ref_store,
1590                                       const char *refname,
1591                                       each_reflog_ent_fn fn, void *cb_data)
1592 {
1593         return 0;
1594 }
1595
1596 static int packed_for_each_reflog_ent_reverse(struct ref_store *ref_store,
1597                                               const char *refname,
1598                                               each_reflog_ent_fn fn,
1599                                               void *cb_data)
1600 {
1601         return 0;
1602 }
1603
1604 static int packed_reflog_exists(struct ref_store *ref_store,
1605                                const char *refname)
1606 {
1607         return 0;
1608 }
1609
1610 static int packed_create_reflog(struct ref_store *ref_store,
1611                                const char *refname, int force_create,
1612                                struct strbuf *err)
1613 {
1614         BUG("packed reference store does not support reflogs");
1615 }
1616
1617 static int packed_delete_reflog(struct ref_store *ref_store,
1618                                const char *refname)
1619 {
1620         return 0;
1621 }
1622
1623 static int packed_reflog_expire(struct ref_store *ref_store,
1624                                 const char *refname, const struct object_id *oid,
1625                                 unsigned int flags,
1626                                 reflog_expiry_prepare_fn prepare_fn,
1627                                 reflog_expiry_should_prune_fn should_prune_fn,
1628                                 reflog_expiry_cleanup_fn cleanup_fn,
1629                                 void *policy_cb_data)
1630 {
1631         return 0;
1632 }
1633
1634 struct ref_storage_be refs_be_packed = {
1635         NULL,
1636         "packed",
1637         packed_ref_store_create,
1638         packed_init_db,
1639         packed_transaction_prepare,
1640         packed_transaction_finish,
1641         packed_transaction_abort,
1642         packed_initial_transaction_commit,
1643
1644         packed_pack_refs,
1645         packed_create_symref,
1646         packed_delete_refs,
1647         packed_rename_ref,
1648         packed_copy_ref,
1649
1650         packed_ref_iterator_begin,
1651         packed_read_raw_ref,
1652
1653         packed_reflog_iterator_begin,
1654         packed_for_each_reflog_ent,
1655         packed_for_each_reflog_ent_reverse,
1656         packed_reflog_exists,
1657         packed_create_reflog,
1658         packed_delete_reflog,
1659         packed_reflog_expire
1660 };