9 const char *tree_type = "tree";
11 static int read_one_entry(const unsigned char *sha1, const char *base, int baselen, const char *pathname, unsigned mode, int stage)
15 struct cache_entry *ce;
18 return READ_TREE_RECURSIVE;
20 len = strlen(pathname);
21 size = cache_entry_size(baselen + len);
22 ce = xcalloc(1, size);
24 ce->ce_mode = create_ce_mode(mode);
25 ce->ce_flags = create_ce_flags(baselen + len, stage);
26 memcpy(ce->name, base, baselen);
27 memcpy(ce->name + baselen, pathname, len+1);
28 hashcpy(ce->sha1, sha1);
29 return add_cache_entry(ce, ADD_CACHE_OK_TO_ADD|ADD_CACHE_SKIP_DFCHECK);
32 static int match_tree_entry(const char *base, int baselen, const char *path, unsigned int mode, const char **paths)
39 pathlen = strlen(path);
40 while ((match = *paths++) != NULL) {
41 int matchlen = strlen(match);
43 if (baselen >= matchlen) {
44 /* If it doesn't match, move along... */
45 if (strncmp(base, match, matchlen))
47 /* The base is a subdirectory of a path which was specified. */
51 /* Does the base match? */
52 if (strncmp(base, match, baselen))
58 if (pathlen > matchlen)
61 if (matchlen > pathlen) {
62 if (match[pathlen] != '/')
68 if (strncmp(path, match, pathlen))
76 int read_tree_recursive(struct tree *tree,
77 const char *base, int baselen,
78 int stage, const char **match,
81 struct tree_desc desc;
82 struct name_entry entry;
87 desc.buf = tree->buffer;
88 desc.size = tree->size;
90 while (tree_entry(&desc, &entry)) {
91 if (!match_tree_entry(base, baselen, entry.path, entry.mode, match))
94 switch (fn(entry.sha1, base, baselen, entry.path, entry.mode, stage)) {
97 case READ_TREE_RECURSIVE:
102 if (S_ISDIR(entry.mode)) {
106 newbase = xmalloc(baselen + 1 + entry.pathlen);
107 memcpy(newbase, base, baselen);
108 memcpy(newbase + baselen, entry.path, entry.pathlen);
109 newbase[baselen + entry.pathlen] = '/';
110 retval = read_tree_recursive(lookup_tree(entry.sha1),
112 baselen + entry.pathlen + 1,
123 int read_tree(struct tree *tree, int stage, const char **match)
125 return read_tree_recursive(tree, "", 0, stage, match, read_one_entry);
128 struct tree *lookup_tree(const unsigned char *sha1)
130 struct object *obj = lookup_object(sha1);
132 struct tree *ret = alloc_tree_node();
133 created_object(sha1, &ret->object);
134 ret->object.type = OBJ_TREE;
138 obj->type = OBJ_TREE;
139 if (obj->type != OBJ_TREE) {
140 error("Object %s is a %s, not a tree",
141 sha1_to_hex(sha1), typename(obj->type));
144 return (struct tree *) obj;
147 static void track_tree_refs(struct tree *item)
150 struct object_refs *refs;
151 struct tree_desc desc;
152 struct name_entry entry;
154 /* Count how many entries there are.. */
155 desc.buf = item->buffer;
156 desc.size = item->size;
159 update_tree_entry(&desc);
162 /* Allocate object refs and walk it again.. */
164 refs = alloc_object_refs(n_refs);
165 desc.buf = item->buffer;
166 desc.size = item->size;
167 while (tree_entry(&desc, &entry)) {
170 if (S_ISDIR(entry.mode))
171 obj = &lookup_tree(entry.sha1)->object;
173 obj = &lookup_blob(entry.sha1)->object;
174 refs->ref[i++] = obj;
176 set_object_refs(&item->object, refs);
179 int parse_tree_buffer(struct tree *item, void *buffer, unsigned long size)
181 if (item->object.parsed)
183 item->object.parsed = 1;
184 item->buffer = buffer;
187 if (track_object_refs)
188 track_tree_refs(item);
192 int parse_tree(struct tree *item)
198 if (item->object.parsed)
200 buffer = read_sha1_file(item->object.sha1, type, &size);
202 return error("Could not read %s",
203 sha1_to_hex(item->object.sha1));
204 if (strcmp(type, tree_type)) {
206 return error("Object %s not a tree",
207 sha1_to_hex(item->object.sha1));
209 return parse_tree_buffer(item, buffer, size);
212 struct tree *parse_tree_indirect(const unsigned char *sha1)
214 struct object *obj = parse_object(sha1);
218 if (obj->type == OBJ_TREE)
219 return (struct tree *) obj;
220 else if (obj->type == OBJ_COMMIT)
221 obj = &(((struct commit *) obj)->tree->object);
222 else if (obj->type == OBJ_TAG)
223 obj = ((struct tag *) obj)->tagged;
227 parse_object(obj->sha1);