Merge git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched
[linux-2.6] / fs / udf / inode.c
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map and udf_read_inode
23  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
24  *                block boundaries (which is not actually allowed)
25  *  12/20/98      added support for strategy 4096
26  *  03/07/99      rewrote udf_block_map (again)
27  *                New funcs, inode_bmap, udf_next_aext
28  *  04/19/99      Support for writing device EA's for major/minor #
29  */
30
31 #include "udfdecl.h"
32 #include <linux/mm.h>
33 #include <linux/smp_lock.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39
40 #include "udf_i.h"
41 #include "udf_sb.h"
42
43 MODULE_AUTHOR("Ben Fennema");
44 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
45 MODULE_LICENSE("GPL");
46
47 #define EXTENT_MERGE_SIZE 5
48
49 static mode_t udf_convert_permissions(struct fileEntry *);
50 static int udf_update_inode(struct inode *, int);
51 static void udf_fill_inode(struct inode *, struct buffer_head *);
52 static int udf_alloc_i_data(struct inode *inode, size_t size);
53 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
54                                         long *, int *);
55 static int8_t udf_insert_aext(struct inode *, struct extent_position,
56                               kernel_lb_addr, uint32_t);
57 static void udf_split_extents(struct inode *, int *, int, int,
58                               kernel_long_ad[EXTENT_MERGE_SIZE], int *);
59 static void udf_prealloc_extents(struct inode *, int, int,
60                                  kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_merge_extents(struct inode *,
62                               kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_update_extents(struct inode *,
64                                kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
65                                struct extent_position *);
66 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
67
68 /*
69  * udf_delete_inode
70  *
71  * PURPOSE
72  *      Clean-up before the specified inode is destroyed.
73  *
74  * DESCRIPTION
75  *      This routine is called when the kernel destroys an inode structure
76  *      ie. when iput() finds i_count == 0.
77  *
78  * HISTORY
79  *      July 1, 1997 - Andrew E. Mileski
80  *      Written, tested, and released.
81  *
82  *  Called at the last iput() if i_nlink is zero.
83  */
84 void udf_delete_inode(struct inode *inode)
85 {
86         truncate_inode_pages(&inode->i_data, 0);
87
88         if (is_bad_inode(inode))
89                 goto no_delete;
90
91         inode->i_size = 0;
92         udf_truncate(inode);
93         lock_kernel();
94
95         udf_update_inode(inode, IS_SYNC(inode));
96         udf_free_inode(inode);
97
98         unlock_kernel();
99         return;
100
101 no_delete:
102         clear_inode(inode);
103 }
104
105 /*
106  * If we are going to release inode from memory, we discard preallocation and
107  * truncate last inode extent to proper length. We could use drop_inode() but
108  * it's called under inode_lock and thus we cannot mark inode dirty there.  We
109  * use clear_inode() but we have to make sure to write inode as it's not written
110  * automatically.
111  */
112 void udf_clear_inode(struct inode *inode)
113 {
114         if (!(inode->i_sb->s_flags & MS_RDONLY)) {
115                 lock_kernel();
116                 /* Discard preallocation for directories, symlinks, etc. */
117                 udf_discard_prealloc(inode);
118                 udf_truncate_tail_extent(inode);
119                 unlock_kernel();
120                 write_inode_now(inode, 1);
121         }
122         kfree(UDF_I_DATA(inode));
123         UDF_I_DATA(inode) = NULL;
124 }
125
126 static int udf_writepage(struct page *page, struct writeback_control *wbc)
127 {
128         return block_write_full_page(page, udf_get_block, wbc);
129 }
130
131 static int udf_readpage(struct file *file, struct page *page)
132 {
133         return block_read_full_page(page, udf_get_block);
134 }
135
136 static int udf_write_begin(struct file *file, struct address_space *mapping,
137                         loff_t pos, unsigned len, unsigned flags,
138                         struct page **pagep, void **fsdata)
139 {
140         *pagep = NULL;
141         return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
142                                 udf_get_block);
143 }
144
145 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
146 {
147         return generic_block_bmap(mapping, block, udf_get_block);
148 }
149
150 const struct address_space_operations udf_aops = {
151         .readpage       = udf_readpage,
152         .writepage      = udf_writepage,
153         .sync_page      = block_sync_page,
154         .write_begin            = udf_write_begin,
155         .write_end              = generic_write_end,
156         .bmap           = udf_bmap,
157 };
158
159 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
160 {
161         struct page *page;
162         char *kaddr;
163         struct writeback_control udf_wbc = {
164                 .sync_mode = WB_SYNC_NONE,
165                 .nr_to_write = 1,
166         };
167
168         /* from now on we have normal address_space methods */
169         inode->i_data.a_ops = &udf_aops;
170
171         if (!UDF_I_LENALLOC(inode)) {
172                 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
173                         UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
174                 else
175                         UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
176                 mark_inode_dirty(inode);
177                 return;
178         }
179
180         page = grab_cache_page(inode->i_mapping, 0);
181         BUG_ON(!PageLocked(page));
182
183         if (!PageUptodate(page)) {
184                 kaddr = kmap(page);
185                 memset(kaddr + UDF_I_LENALLOC(inode), 0x00,
186                        PAGE_CACHE_SIZE - UDF_I_LENALLOC(inode));
187                 memcpy(kaddr, UDF_I_DATA(inode) + UDF_I_LENEATTR(inode),
188                        UDF_I_LENALLOC(inode));
189                 flush_dcache_page(page);
190                 SetPageUptodate(page);
191                 kunmap(page);
192         }
193         memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0x00,
194                UDF_I_LENALLOC(inode));
195         UDF_I_LENALLOC(inode) = 0;
196         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
197                 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
198         else
199                 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
200
201         inode->i_data.a_ops->writepage(page, &udf_wbc);
202         page_cache_release(page);
203
204         mark_inode_dirty(inode);
205 }
206
207 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
208                                            int *err)
209 {
210         int newblock;
211         struct buffer_head *dbh = NULL;
212         kernel_lb_addr eloc;
213         uint32_t elen;
214         uint8_t alloctype;
215         struct extent_position epos;
216
217         struct udf_fileident_bh sfibh, dfibh;
218         loff_t f_pos = udf_ext0_offset(inode) >> 2;
219         int size = (udf_ext0_offset(inode) + inode->i_size) >> 2;
220         struct fileIdentDesc cfi, *sfi, *dfi;
221
222         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
223                 alloctype = ICBTAG_FLAG_AD_SHORT;
224         else
225                 alloctype = ICBTAG_FLAG_AD_LONG;
226
227         if (!inode->i_size) {
228                 UDF_I_ALLOCTYPE(inode) = alloctype;
229                 mark_inode_dirty(inode);
230                 return NULL;
231         }
232
233         /* alloc block, and copy data to it */
234         *block = udf_new_block(inode->i_sb, inode,
235                                UDF_I_LOCATION(inode).partitionReferenceNum,
236                                UDF_I_LOCATION(inode).logicalBlockNum, err);
237         if (!(*block))
238                 return NULL;
239         newblock = udf_get_pblock(inode->i_sb, *block,
240                                   UDF_I_LOCATION(inode).partitionReferenceNum, 0);
241         if (!newblock)
242                 return NULL;
243         dbh = udf_tgetblk(inode->i_sb, newblock);
244         if (!dbh)
245                 return NULL;
246         lock_buffer(dbh);
247         memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
248         set_buffer_uptodate(dbh);
249         unlock_buffer(dbh);
250         mark_buffer_dirty_inode(dbh, inode);
251
252         sfibh.soffset = sfibh.eoffset = (f_pos & ((inode->i_sb->s_blocksize - 1) >> 2)) << 2;
253         sfibh.sbh = sfibh.ebh = NULL;
254         dfibh.soffset = dfibh.eoffset = 0;
255         dfibh.sbh = dfibh.ebh = dbh;
256         while ((f_pos < size)) {
257                 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
258                 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, NULL, NULL, NULL);
259                 if (!sfi) {
260                         brelse(dbh);
261                         return NULL;
262                 }
263                 UDF_I_ALLOCTYPE(inode) = alloctype;
264                 sfi->descTag.tagLocation = cpu_to_le32(*block);
265                 dfibh.soffset = dfibh.eoffset;
266                 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
267                 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
268                 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
269                                  sfi->fileIdent + le16_to_cpu(sfi->lengthOfImpUse))) {
270                         UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
271                         brelse(dbh);
272                         return NULL;
273                 }
274         }
275         mark_buffer_dirty_inode(dbh, inode);
276
277         memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0, UDF_I_LENALLOC(inode));
278         UDF_I_LENALLOC(inode) = 0;
279         eloc.logicalBlockNum = *block;
280         eloc.partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum;
281         elen = inode->i_size;
282         UDF_I_LENEXTENTS(inode) = elen;
283         epos.bh = NULL;
284         epos.block = UDF_I_LOCATION(inode);
285         epos.offset = udf_file_entry_alloc_offset(inode);
286         udf_add_aext(inode, &epos, eloc, elen, 0);
287         /* UniqueID stuff */
288
289         brelse(epos.bh);
290         mark_inode_dirty(inode);
291         return dbh;
292 }
293
294 static int udf_get_block(struct inode *inode, sector_t block,
295                          struct buffer_head *bh_result, int create)
296 {
297         int err, new;
298         struct buffer_head *bh;
299         unsigned long phys;
300
301         if (!create) {
302                 phys = udf_block_map(inode, block);
303                 if (phys)
304                         map_bh(bh_result, inode->i_sb, phys);
305                 return 0;
306         }
307
308         err = -EIO;
309         new = 0;
310         bh = NULL;
311
312         lock_kernel();
313
314         if (block < 0)
315                 goto abort_negative;
316
317         if (block == UDF_I_NEXT_ALLOC_BLOCK(inode) + 1) {
318                 UDF_I_NEXT_ALLOC_BLOCK(inode)++;
319                 UDF_I_NEXT_ALLOC_GOAL(inode)++;
320         }
321
322         err = 0;
323
324         bh = inode_getblk(inode, block, &err, &phys, &new);
325         BUG_ON(bh);
326         if (err)
327                 goto abort;
328         BUG_ON(!phys);
329
330         if (new)
331                 set_buffer_new(bh_result);
332         map_bh(bh_result, inode->i_sb, phys);
333
334 abort:
335         unlock_kernel();
336         return err;
337
338 abort_negative:
339         udf_warning(inode->i_sb, "udf_get_block", "block < 0");
340         goto abort;
341 }
342
343 static struct buffer_head *udf_getblk(struct inode *inode, long block,
344                                       int create, int *err)
345 {
346         struct buffer_head *bh;
347         struct buffer_head dummy;
348
349         dummy.b_state = 0;
350         dummy.b_blocknr = -1000;
351         *err = udf_get_block(inode, block, &dummy, create);
352         if (!*err && buffer_mapped(&dummy)) {
353                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
354                 if (buffer_new(&dummy)) {
355                         lock_buffer(bh);
356                         memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
357                         set_buffer_uptodate(bh);
358                         unlock_buffer(bh);
359                         mark_buffer_dirty_inode(bh, inode);
360                 }
361                 return bh;
362         }
363
364         return NULL;
365 }
366
367 /* Extend the file by 'blocks' blocks, return the number of extents added */
368 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
369                     kernel_long_ad * last_ext, sector_t blocks)
370 {
371         sector_t add;
372         int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
373         struct super_block *sb = inode->i_sb;
374         kernel_lb_addr prealloc_loc = {};
375         int prealloc_len = 0;
376
377         /* The previous extent is fake and we should not extend by anything
378          * - there's nothing to do... */
379         if (!blocks && fake)
380                 return 0;
381
382         /* Round the last extent up to a multiple of block size */
383         if (last_ext->extLength & (sb->s_blocksize - 1)) {
384                 last_ext->extLength =
385                         (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
386                         (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
387                           sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
388                 UDF_I_LENEXTENTS(inode) =
389                         (UDF_I_LENEXTENTS(inode) + sb->s_blocksize - 1) &
390                         ~(sb->s_blocksize - 1);
391         }
392
393         /* Last extent are just preallocated blocks? */
394         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_ALLOCATED) {
395                 /* Save the extent so that we can reattach it to the end */
396                 prealloc_loc = last_ext->extLocation;
397                 prealloc_len = last_ext->extLength;
398                 /* Mark the extent as a hole */
399                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
400                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
401                 last_ext->extLocation.logicalBlockNum = 0;
402                 last_ext->extLocation.partitionReferenceNum = 0;
403         }
404
405         /* Can we merge with the previous extent? */
406         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_NOT_ALLOCATED) {
407                 add = ((1 << 30) - sb->s_blocksize - (last_ext->extLength &
408                                                       UDF_EXTENT_LENGTH_MASK)) >> sb->s_blocksize_bits;
409                 if (add > blocks)
410                         add = blocks;
411                 blocks -= add;
412                 last_ext->extLength += add << sb->s_blocksize_bits;
413         }
414
415         if (fake) {
416                 udf_add_aext(inode, last_pos, last_ext->extLocation,
417                              last_ext->extLength, 1);
418                 count++;
419         } else {
420                 udf_write_aext(inode, last_pos, last_ext->extLocation, last_ext->extLength, 1);
421         }
422
423         /* Managed to do everything necessary? */
424         if (!blocks)
425                 goto out;
426
427         /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
428         last_ext->extLocation.logicalBlockNum = 0;
429         last_ext->extLocation.partitionReferenceNum = 0;
430         add = (1 << (30-sb->s_blocksize_bits)) - 1;
431         last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | (add << sb->s_blocksize_bits);
432
433         /* Create enough extents to cover the whole hole */
434         while (blocks > add) {
435                 blocks -= add;
436                 if (udf_add_aext(inode, last_pos, last_ext->extLocation,
437                                  last_ext->extLength, 1) == -1)
438                         return -1;
439                 count++;
440         }
441         if (blocks) {
442                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
443                         (blocks << sb->s_blocksize_bits);
444                 if (udf_add_aext(inode, last_pos, last_ext->extLocation,
445                                  last_ext->extLength, 1) == -1)
446                         return -1;
447                 count++;
448         }
449
450 out:
451         /* Do we have some preallocated blocks saved? */
452         if (prealloc_len) {
453                 if (udf_add_aext(inode, last_pos, prealloc_loc, prealloc_len, 1) == -1)
454                         return -1;
455                 last_ext->extLocation = prealloc_loc;
456                 last_ext->extLength = prealloc_len;
457                 count++;
458         }
459
460         /* last_pos should point to the last written extent... */
461         if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
462                 last_pos->offset -= sizeof(short_ad);
463         else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
464                 last_pos->offset -= sizeof(long_ad);
465         else
466                 return -1;
467
468         return count;
469 }
470
471 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
472                                         int *err, long *phys, int *new)
473 {
474         static sector_t last_block;
475         struct buffer_head *result = NULL;
476         kernel_long_ad laarr[EXTENT_MERGE_SIZE];
477         struct extent_position prev_epos, cur_epos, next_epos;
478         int count = 0, startnum = 0, endnum = 0;
479         uint32_t elen = 0, tmpelen;
480         kernel_lb_addr eloc, tmpeloc;
481         int c = 1;
482         loff_t lbcount = 0, b_off = 0;
483         uint32_t newblocknum, newblock;
484         sector_t offset = 0;
485         int8_t etype;
486         int goal = 0, pgoal = UDF_I_LOCATION(inode).logicalBlockNum;
487         int lastblock = 0;
488
489         prev_epos.offset = udf_file_entry_alloc_offset(inode);
490         prev_epos.block = UDF_I_LOCATION(inode);
491         prev_epos.bh = NULL;
492         cur_epos = next_epos = prev_epos;
493         b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
494
495         /* find the extent which contains the block we are looking for.
496            alternate between laarr[0] and laarr[1] for locations of the
497            current extent, and the previous extent */
498         do {
499                 if (prev_epos.bh != cur_epos.bh) {
500                         brelse(prev_epos.bh);
501                         get_bh(cur_epos.bh);
502                         prev_epos.bh = cur_epos.bh;
503                 }
504                 if (cur_epos.bh != next_epos.bh) {
505                         brelse(cur_epos.bh);
506                         get_bh(next_epos.bh);
507                         cur_epos.bh = next_epos.bh;
508                 }
509
510                 lbcount += elen;
511
512                 prev_epos.block = cur_epos.block;
513                 cur_epos.block = next_epos.block;
514
515                 prev_epos.offset = cur_epos.offset;
516                 cur_epos.offset = next_epos.offset;
517
518                 if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1)) == -1)
519                         break;
520
521                 c = !c;
522
523                 laarr[c].extLength = (etype << 30) | elen;
524                 laarr[c].extLocation = eloc;
525
526                 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
527                         pgoal = eloc.logicalBlockNum +
528                                 ((elen + inode->i_sb->s_blocksize - 1) >>
529                                  inode->i_sb->s_blocksize_bits);
530
531                 count++;
532         } while (lbcount + elen <= b_off);
533
534         b_off -= lbcount;
535         offset = b_off >> inode->i_sb->s_blocksize_bits;
536         /*
537          * Move prev_epos and cur_epos into indirect extent if we are at
538          * the pointer to it
539          */
540         udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
541         udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
542
543         /* if the extent is allocated and recorded, return the block
544            if the extent is not a multiple of the blocksize, round up */
545
546         if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
547                 if (elen & (inode->i_sb->s_blocksize - 1)) {
548                         elen = EXT_RECORDED_ALLOCATED |
549                                 ((elen + inode->i_sb->s_blocksize - 1) &
550                                  ~(inode->i_sb->s_blocksize - 1));
551                         etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1);
552                 }
553                 brelse(prev_epos.bh);
554                 brelse(cur_epos.bh);
555                 brelse(next_epos.bh);
556                 newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset);
557                 *phys = newblock;
558                 return NULL;
559         }
560
561         last_block = block;
562         /* Are we beyond EOF? */
563         if (etype == -1) {
564                 int ret;
565
566                 if (count) {
567                         if (c)
568                                 laarr[0] = laarr[1];
569                         startnum = 1;
570                 } else {
571                         /* Create a fake extent when there's not one */
572                         memset(&laarr[0].extLocation, 0x00, sizeof(kernel_lb_addr));
573                         laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
574                         /* Will udf_extend_file() create real extent from a fake one? */
575                         startnum = (offset > 0);
576                 }
577                 /* Create extents for the hole between EOF and offset */
578                 ret = udf_extend_file(inode, &prev_epos, laarr, offset);
579                 if (ret == -1) {
580                         brelse(prev_epos.bh);
581                         brelse(cur_epos.bh);
582                         brelse(next_epos.bh);
583                         /* We don't really know the error here so we just make
584                          * something up */
585                         *err = -ENOSPC;
586                         return NULL;
587                 }
588                 c = 0;
589                 offset = 0;
590                 count += ret;
591                 /* We are not covered by a preallocated extent? */
592                 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != EXT_NOT_RECORDED_ALLOCATED) {
593                         /* Is there any real extent? - otherwise we overwrite
594                          * the fake one... */
595                         if (count)
596                                 c = !c;
597                         laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
598                                 inode->i_sb->s_blocksize;
599                         memset(&laarr[c].extLocation, 0x00, sizeof(kernel_lb_addr));
600                         count++;
601                         endnum++;
602                 }
603                 endnum = c + 1;
604                 lastblock = 1;
605         } else {
606                 endnum = startnum = ((count > 2) ? 2 : count);
607
608                 /* if the current extent is in position 0, swap it with the previous */
609                 if (!c && count != 1) {
610                         laarr[2] = laarr[0];
611                         laarr[0] = laarr[1];
612                         laarr[1] = laarr[2];
613                         c = 1;
614                 }
615
616                 /* if the current block is located in an extent, read the next extent */
617                 if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0)) != -1) {
618                         laarr[c + 1].extLength = (etype << 30) | elen;
619                         laarr[c + 1].extLocation = eloc;
620                         count++;
621                         startnum++;
622                         endnum++;
623                 } else {
624                         lastblock = 1;
625                 }
626         }
627
628         /* if the current extent is not recorded but allocated, get the
629          * block in the extent corresponding to the requested block */
630         if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
631                 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
632         } else { /* otherwise, allocate a new block */
633                 if (UDF_I_NEXT_ALLOC_BLOCK(inode) == block)
634                         goal = UDF_I_NEXT_ALLOC_GOAL(inode);
635
636                 if (!goal) {
637                         if (!(goal = pgoal))
638                                 goal = UDF_I_LOCATION(inode).logicalBlockNum + 1;
639                 }
640
641                 if (!(newblocknum = udf_new_block(inode->i_sb, inode,
642                                                   UDF_I_LOCATION(inode).partitionReferenceNum,
643                                                   goal, err))) {
644                         brelse(prev_epos.bh);
645                         *err = -ENOSPC;
646                         return NULL;
647                 }
648                 UDF_I_LENEXTENTS(inode) += inode->i_sb->s_blocksize;
649         }
650
651         /* if the extent the requsted block is located in contains multiple blocks,
652          * split the extent into at most three extents. blocks prior to requested
653          * block, requested block, and blocks after requested block */
654         udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
655
656 #ifdef UDF_PREALLOCATE
657         /* preallocate blocks */
658         udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
659 #endif
660
661         /* merge any continuous blocks in laarr */
662         udf_merge_extents(inode, laarr, &endnum);
663
664         /* write back the new extents, inserting new extents if the new number
665          * of extents is greater than the old number, and deleting extents if
666          * the new number of extents is less than the old number */
667         udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
668
669         brelse(prev_epos.bh);
670
671         if (!(newblock = udf_get_pblock(inode->i_sb, newblocknum,
672                                         UDF_I_LOCATION(inode).partitionReferenceNum, 0))) {
673                 return NULL;
674         }
675         *phys = newblock;
676         *err = 0;
677         *new = 1;
678         UDF_I_NEXT_ALLOC_BLOCK(inode) = block;
679         UDF_I_NEXT_ALLOC_GOAL(inode) = newblocknum;
680         inode->i_ctime = current_fs_time(inode->i_sb);
681
682         if (IS_SYNC(inode))
683                 udf_sync_inode(inode);
684         else
685                 mark_inode_dirty(inode);
686
687         return result;
688 }
689
690 static void udf_split_extents(struct inode *inode, int *c, int offset,
691                               int newblocknum,
692                               kernel_long_ad laarr[EXTENT_MERGE_SIZE],
693                               int *endnum)
694 {
695         if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
696             (laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
697                 int curr = *c;
698                 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
699                             inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits;
700                 int8_t etype = (laarr[curr].extLength >> 30);
701
702                 if (blen == 1) {
703                         ;
704                 } else if (!offset || blen == offset + 1) {
705                         laarr[curr + 2] = laarr[curr + 1];
706                         laarr[curr + 1] = laarr[curr];
707                 } else {
708                         laarr[curr + 3] = laarr[curr + 1];
709                         laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
710                 }
711
712                 if (offset) {
713                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
714                                 udf_free_blocks(inode->i_sb, inode, laarr[curr].extLocation, 0, offset);
715                                 laarr[curr].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
716                                         (offset << inode->i_sb->s_blocksize_bits);
717                                 laarr[curr].extLocation.logicalBlockNum = 0;
718                                 laarr[curr].extLocation.partitionReferenceNum = 0;
719                         } else {
720                                 laarr[curr].extLength = (etype << 30) |
721                                         (offset << inode->i_sb->s_blocksize_bits);
722                         }
723                         curr++;
724                         (*c)++;
725                         (*endnum)++;
726                 }
727
728                 laarr[curr].extLocation.logicalBlockNum = newblocknum;
729                 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
730                         laarr[curr].extLocation.partitionReferenceNum =
731                                 UDF_I_LOCATION(inode).partitionReferenceNum;
732                 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
733                         inode->i_sb->s_blocksize;
734                 curr++;
735
736                 if (blen != offset + 1) {
737                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
738                                 laarr[curr].extLocation.logicalBlockNum += (offset + 1);
739                         laarr[curr].extLength = (etype << 30) |
740                                 ((blen - (offset + 1)) << inode->i_sb->s_blocksize_bits);
741                         curr++;
742                         (*endnum)++;
743                 }
744         }
745 }
746
747 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
748                                  kernel_long_ad laarr[EXTENT_MERGE_SIZE],
749                                  int *endnum)
750 {
751         int start, length = 0, currlength = 0, i;
752
753         if (*endnum >= (c + 1)) {
754                 if (!lastblock)
755                         return;
756                 else
757                         start = c;
758         } else {
759                 if ((laarr[c + 1].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
760                         start = c + 1;
761                         length = currlength = (((laarr[c + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
762                                                 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
763                 } else {
764                         start = c;
765                 }
766         }
767
768         for (i = start + 1; i <= *endnum; i++) {
769                 if (i == *endnum) {
770                         if (lastblock)
771                                 length += UDF_DEFAULT_PREALLOC_BLOCKS;
772                 } else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
773                         length += (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
774                                     inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
775                 } else {
776                         break;
777                 }
778         }
779
780         if (length) {
781                 int next = laarr[start].extLocation.logicalBlockNum +
782                         (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
783                           inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
784                 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
785                                                    laarr[start].extLocation.partitionReferenceNum,
786                                                    next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? length :
787                                                           UDF_DEFAULT_PREALLOC_BLOCKS) - currlength);
788                 if (numalloc)   {
789                         if (start == (c + 1)) {
790                                 laarr[start].extLength +=
791                                         (numalloc << inode->i_sb->s_blocksize_bits);
792                         } else {
793                                 memmove(&laarr[c + 2], &laarr[c + 1],
794                                         sizeof(long_ad) * (*endnum - (c + 1)));
795                                 (*endnum)++;
796                                 laarr[c + 1].extLocation.logicalBlockNum = next;
797                                 laarr[c + 1].extLocation.partitionReferenceNum =
798                                         laarr[c].extLocation.partitionReferenceNum;
799                                 laarr[c + 1].extLength = EXT_NOT_RECORDED_ALLOCATED |
800                                         (numalloc << inode->i_sb->s_blocksize_bits);
801                                 start = c + 1;
802                         }
803
804                         for (i = start + 1; numalloc && i < *endnum; i++) {
805                                 int elen = ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
806                                             inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits;
807
808                                 if (elen > numalloc) {
809                                         laarr[i].extLength -=
810                                                 (numalloc << inode->i_sb->s_blocksize_bits);
811                                         numalloc = 0;
812                                 } else {
813                                         numalloc -= elen;
814                                         if (*endnum > (i + 1))
815                                                 memmove(&laarr[i], &laarr[i + 1],
816                                                         sizeof(long_ad) * (*endnum - (i + 1)));
817                                         i--;
818                                         (*endnum)--;
819                                 }
820                         }
821                         UDF_I_LENEXTENTS(inode) += numalloc << inode->i_sb->s_blocksize_bits;
822                 }
823         }
824 }
825
826 static void udf_merge_extents(struct inode *inode,
827                               kernel_long_ad laarr[EXTENT_MERGE_SIZE],
828                               int *endnum)
829 {
830         int i;
831
832         for (i = 0; i < (*endnum - 1); i++) {
833                 if ((laarr[i].extLength >> 30) == (laarr[i + 1].extLength >> 30)) {
834                         if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
835                             ((laarr[i + 1].extLocation.logicalBlockNum - laarr[i].extLocation.logicalBlockNum) ==
836                              (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
837                                inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits))) {
838                                 if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
839                                      (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
840                                      inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
841                                         laarr[i + 1].extLength = (laarr[i + 1].extLength -
842                                                                   (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
843                                                                   UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1);
844                                         laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) +
845                                                 (UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize;
846                                         laarr[i + 1].extLocation.logicalBlockNum =
847                                                 laarr[i].extLocation.logicalBlockNum +
848                                                 ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) >>
849                                                  inode->i_sb->s_blocksize_bits);
850                                 } else {
851                                         laarr[i].extLength = laarr[i + 1].extLength +
852                                                 (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
853                                                   inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1));
854                                         if (*endnum > (i + 2))
855                                                 memmove(&laarr[i + 1], &laarr[i + 2],
856                                                         sizeof(long_ad) * (*endnum - (i + 2)));
857                                         i--;
858                                         (*endnum)--;
859                                 }
860                         }
861                 } else if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
862                            ((laarr[i + 1].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
863                         udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0,
864                                         ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
865                                          inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
866                         laarr[i].extLocation.logicalBlockNum = 0;
867                         laarr[i].extLocation.partitionReferenceNum = 0;
868
869                         if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
870                              (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
871                              inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
872                                 laarr[i + 1].extLength = (laarr[i + 1].extLength -
873                                                           (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
874                                                           UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1);
875                                 laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) +
876                                         (UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize;
877                         } else {
878                                 laarr[i].extLength = laarr[i + 1].extLength +
879                                         (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
880                                           inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1));
881                                 if (*endnum > (i + 2))
882                                         memmove(&laarr[i + 1], &laarr[i + 2],
883                                                 sizeof(long_ad) * (*endnum - (i + 2)));
884                                 i--;
885                                 (*endnum)--;
886                         }
887                 } else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
888                         udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0,
889                                         ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
890                                          inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
891                         laarr[i].extLocation.logicalBlockNum = 0;
892                         laarr[i].extLocation.partitionReferenceNum = 0;
893                         laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) |
894                                 EXT_NOT_RECORDED_NOT_ALLOCATED;
895                 }
896         }
897 }
898
899 static void udf_update_extents(struct inode *inode,
900                                kernel_long_ad laarr[EXTENT_MERGE_SIZE],
901                                int startnum, int endnum,
902                                struct extent_position *epos)
903 {
904         int start = 0, i;
905         kernel_lb_addr tmploc;
906         uint32_t tmplen;
907
908         if (startnum > endnum) {
909                 for (i = 0; i < (startnum - endnum); i++)
910                         udf_delete_aext(inode, *epos, laarr[i].extLocation,
911                                         laarr[i].extLength);
912         } else if (startnum < endnum) {
913                 for (i = 0; i < (endnum - startnum); i++) {
914                         udf_insert_aext(inode, *epos, laarr[i].extLocation,
915                                         laarr[i].extLength);
916                         udf_next_aext(inode, epos, &laarr[i].extLocation,
917                                       &laarr[i].extLength, 1);
918                         start++;
919                 }
920         }
921
922         for (i = start; i < endnum; i++) {
923                 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
924                 udf_write_aext(inode, epos, laarr[i].extLocation,
925                                laarr[i].extLength, 1);
926         }
927 }
928
929 struct buffer_head *udf_bread(struct inode *inode, int block,
930                               int create, int *err)
931 {
932         struct buffer_head *bh = NULL;
933
934         bh = udf_getblk(inode, block, create, err);
935         if (!bh)
936                 return NULL;
937
938         if (buffer_uptodate(bh))
939                 return bh;
940
941         ll_rw_block(READ, 1, &bh);
942
943         wait_on_buffer(bh);
944         if (buffer_uptodate(bh))
945                 return bh;
946
947         brelse(bh);
948         *err = -EIO;
949         return NULL;
950 }
951
952 void udf_truncate(struct inode *inode)
953 {
954         int offset;
955         int err;
956
957         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
958               S_ISLNK(inode->i_mode)))
959                 return;
960         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
961                 return;
962
963         lock_kernel();
964         if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
965                 if (inode->i_sb->s_blocksize < (udf_file_entry_alloc_offset(inode) +
966                                                 inode->i_size)) {
967                         udf_expand_file_adinicb(inode, inode->i_size, &err);
968                         if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
969                                 inode->i_size = UDF_I_LENALLOC(inode);
970                                 unlock_kernel();
971                                 return;
972                         } else {
973                                 udf_truncate_extents(inode);
974                         }
975                 } else {
976                         offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
977                         memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode) + offset, 0x00,
978                                inode->i_sb->s_blocksize - offset - udf_file_entry_alloc_offset(inode));
979                         UDF_I_LENALLOC(inode) = inode->i_size;
980                 }
981         } else {
982                 block_truncate_page(inode->i_mapping, inode->i_size, udf_get_block);
983                 udf_truncate_extents(inode);
984         }
985
986         inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
987         if (IS_SYNC(inode))
988                 udf_sync_inode(inode);
989         else
990                 mark_inode_dirty(inode);
991         unlock_kernel();
992 }
993
994 static void __udf_read_inode(struct inode *inode)
995 {
996         struct buffer_head *bh = NULL;
997         struct fileEntry *fe;
998         uint16_t ident;
999
1000         /*
1001          * Set defaults, but the inode is still incomplete!
1002          * Note: get_new_inode() sets the following on a new inode:
1003          *      i_sb = sb
1004          *      i_no = ino
1005          *      i_flags = sb->s_flags
1006          *      i_state = 0
1007          * clean_inode(): zero fills and sets
1008          *      i_count = 1
1009          *      i_nlink = 1
1010          *      i_op = NULL;
1011          */
1012         bh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 0, &ident);
1013         if (!bh) {
1014                 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1015                        inode->i_ino);
1016                 make_bad_inode(inode);
1017                 return;
1018         }
1019
1020         if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1021             ident != TAG_IDENT_USE) {
1022                 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed ident=%d\n",
1023                        inode->i_ino, ident);
1024                 brelse(bh);
1025                 make_bad_inode(inode);
1026                 return;
1027         }
1028
1029         fe = (struct fileEntry *)bh->b_data;
1030
1031         if (le16_to_cpu(fe->icbTag.strategyType) == 4096) {
1032                 struct buffer_head *ibh = NULL, *nbh = NULL;
1033                 struct indirectEntry *ie;
1034
1035                 ibh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 1, &ident);
1036                 if (ident == TAG_IDENT_IE) {
1037                         if (ibh) {
1038                                 kernel_lb_addr loc;
1039                                 ie = (struct indirectEntry *)ibh->b_data;
1040
1041                                 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1042
1043                                 if (ie->indirectICB.extLength &&
1044                                     (nbh = udf_read_ptagged(inode->i_sb, loc, 0, &ident))) {
1045                                         if (ident == TAG_IDENT_FE ||
1046                                             ident == TAG_IDENT_EFE) {
1047                                                 memcpy(&UDF_I_LOCATION(inode), &loc,
1048                                                        sizeof(kernel_lb_addr));
1049                                                 brelse(bh);
1050                                                 brelse(ibh);
1051                                                 brelse(nbh);
1052                                                 __udf_read_inode(inode);
1053                                                 return;
1054                                         } else {
1055                                                 brelse(nbh);
1056                                                 brelse(ibh);
1057                                         }
1058                                 } else {
1059                                         brelse(ibh);
1060                                 }
1061                         }
1062                 } else {
1063                         brelse(ibh);
1064                 }
1065         } else if (le16_to_cpu(fe->icbTag.strategyType) != 4) {
1066                 printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1067                        le16_to_cpu(fe->icbTag.strategyType));
1068                 brelse(bh);
1069                 make_bad_inode(inode);
1070                 return;
1071         }
1072         udf_fill_inode(inode, bh);
1073
1074         brelse(bh);
1075 }
1076
1077 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1078 {
1079         struct fileEntry *fe;
1080         struct extendedFileEntry *efe;
1081         time_t convtime;
1082         long convtime_usec;
1083         int offset;
1084
1085         fe = (struct fileEntry *)bh->b_data;
1086         efe = (struct extendedFileEntry *)bh->b_data;
1087
1088         if (le16_to_cpu(fe->icbTag.strategyType) == 4)
1089                 UDF_I_STRAT4096(inode) = 0;
1090         else /* if (le16_to_cpu(fe->icbTag.strategyType) == 4096) */
1091                 UDF_I_STRAT4096(inode) = 1;
1092
1093         UDF_I_ALLOCTYPE(inode) = le16_to_cpu(fe->icbTag.flags) & ICBTAG_FLAG_AD_MASK;
1094         UDF_I_UNIQUE(inode) = 0;
1095         UDF_I_LENEATTR(inode) = 0;
1096         UDF_I_LENEXTENTS(inode) = 0;
1097         UDF_I_LENALLOC(inode) = 0;
1098         UDF_I_NEXT_ALLOC_BLOCK(inode) = 0;
1099         UDF_I_NEXT_ALLOC_GOAL(inode) = 0;
1100         if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_EFE) {
1101                 UDF_I_EFE(inode) = 1;
1102                 UDF_I_USE(inode) = 0;
1103                 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry))) {
1104                         make_bad_inode(inode);
1105                         return;
1106                 }
1107                 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct extendedFileEntry),
1108                        inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry));
1109         } else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_FE) {
1110                 UDF_I_EFE(inode) = 0;
1111                 UDF_I_USE(inode) = 0;
1112                 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct fileEntry))) {
1113                         make_bad_inode(inode);
1114                         return;
1115                 }
1116                 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct fileEntry),
1117                        inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1118         } else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
1119                 UDF_I_EFE(inode) = 0;
1120                 UDF_I_USE(inode) = 1;
1121                 UDF_I_LENALLOC(inode) =
1122                     le32_to_cpu(((struct unallocSpaceEntry *)bh->b_data)->lengthAllocDescs);
1123                 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry))) {
1124                         make_bad_inode(inode);
1125                         return;
1126                 }
1127                 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct unallocSpaceEntry),
1128                        inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry));
1129                 return;
1130         }
1131
1132         inode->i_uid = le32_to_cpu(fe->uid);
1133         if (inode->i_uid == -1 ||
1134             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1135             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1136                 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1137
1138         inode->i_gid = le32_to_cpu(fe->gid);
1139         if (inode->i_gid == -1 ||
1140             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1141             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1142                 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1143
1144         inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1145         if (!inode->i_nlink)
1146                 inode->i_nlink = 1;
1147
1148         inode->i_size = le64_to_cpu(fe->informationLength);
1149         UDF_I_LENEXTENTS(inode) = inode->i_size;
1150
1151         inode->i_mode = udf_convert_permissions(fe);
1152         inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask;
1153
1154         if (UDF_I_EFE(inode) == 0) {
1155                 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1156                         (inode->i_sb->s_blocksize_bits - 9);
1157
1158                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1159                                       lets_to_cpu(fe->accessTime))) {
1160                         inode->i_atime.tv_sec = convtime;
1161                         inode->i_atime.tv_nsec = convtime_usec * 1000;
1162                 } else {
1163                         inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb);
1164                 }
1165
1166                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1167                                       lets_to_cpu(fe->modificationTime))) {
1168                         inode->i_mtime.tv_sec = convtime;
1169                         inode->i_mtime.tv_nsec = convtime_usec * 1000;
1170                 } else {
1171                         inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb);
1172                 }
1173
1174                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1175                                       lets_to_cpu(fe->attrTime))) {
1176                         inode->i_ctime.tv_sec = convtime;
1177                         inode->i_ctime.tv_nsec = convtime_usec * 1000;
1178                 } else {
1179                         inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb);
1180                 }
1181
1182                 UDF_I_UNIQUE(inode) = le64_to_cpu(fe->uniqueID);
1183                 UDF_I_LENEATTR(inode) = le32_to_cpu(fe->lengthExtendedAttr);
1184                 UDF_I_LENALLOC(inode) = le32_to_cpu(fe->lengthAllocDescs);
1185                 offset = sizeof(struct fileEntry) + UDF_I_LENEATTR(inode);
1186         } else {
1187                 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1188                     (inode->i_sb->s_blocksize_bits - 9);
1189
1190                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1191                                       lets_to_cpu(efe->accessTime))) {
1192                         inode->i_atime.tv_sec = convtime;
1193                         inode->i_atime.tv_nsec = convtime_usec * 1000;
1194                 } else {
1195                         inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb);
1196                 }
1197
1198                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1199                                       lets_to_cpu(efe->modificationTime))) {
1200                         inode->i_mtime.tv_sec = convtime;
1201                         inode->i_mtime.tv_nsec = convtime_usec * 1000;
1202                 } else {
1203                         inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb);
1204                 }
1205
1206                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1207                                       lets_to_cpu(efe->createTime))) {
1208                         UDF_I_CRTIME(inode).tv_sec = convtime;
1209                         UDF_I_CRTIME(inode).tv_nsec = convtime_usec * 1000;
1210                 } else {
1211                         UDF_I_CRTIME(inode) = UDF_SB_RECORDTIME(inode->i_sb);
1212                 }
1213
1214                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1215                                       lets_to_cpu(efe->attrTime))) {
1216                         inode->i_ctime.tv_sec = convtime;
1217                         inode->i_ctime.tv_nsec = convtime_usec * 1000;
1218                 } else {
1219                         inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb);
1220                 }
1221
1222                 UDF_I_UNIQUE(inode) = le64_to_cpu(efe->uniqueID);
1223                 UDF_I_LENEATTR(inode) = le32_to_cpu(efe->lengthExtendedAttr);
1224                 UDF_I_LENALLOC(inode) = le32_to_cpu(efe->lengthAllocDescs);
1225                 offset = sizeof(struct extendedFileEntry) + UDF_I_LENEATTR(inode);
1226         }
1227
1228         switch (fe->icbTag.fileType) {
1229         case ICBTAG_FILE_TYPE_DIRECTORY:
1230                 inode->i_op = &udf_dir_inode_operations;
1231                 inode->i_fop = &udf_dir_operations;
1232                 inode->i_mode |= S_IFDIR;
1233                 inc_nlink(inode);
1234                 break;
1235         case ICBTAG_FILE_TYPE_REALTIME:
1236         case ICBTAG_FILE_TYPE_REGULAR:
1237         case ICBTAG_FILE_TYPE_UNDEF:
1238                 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB)
1239                         inode->i_data.a_ops = &udf_adinicb_aops;
1240                 else
1241                         inode->i_data.a_ops = &udf_aops;
1242                 inode->i_op = &udf_file_inode_operations;
1243                 inode->i_fop = &udf_file_operations;
1244                 inode->i_mode |= S_IFREG;
1245                 break;
1246         case ICBTAG_FILE_TYPE_BLOCK:
1247                 inode->i_mode |= S_IFBLK;
1248                 break;
1249         case ICBTAG_FILE_TYPE_CHAR:
1250                 inode->i_mode |= S_IFCHR;
1251                 break;
1252         case ICBTAG_FILE_TYPE_FIFO:
1253                 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1254                 break;
1255         case ICBTAG_FILE_TYPE_SOCKET:
1256                 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1257                 break;
1258         case ICBTAG_FILE_TYPE_SYMLINK:
1259                 inode->i_data.a_ops = &udf_symlink_aops;
1260                 inode->i_op = &page_symlink_inode_operations;
1261                 inode->i_mode = S_IFLNK | S_IRWXUGO;
1262                 break;
1263         default:
1264                 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown file type=%d\n",
1265                        inode->i_ino, fe->icbTag.fileType);
1266                 make_bad_inode(inode);
1267                 return;
1268         }
1269         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1270                 struct deviceSpec *dsea = (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1271                 if (dsea) {
1272                         init_special_inode(inode, inode->i_mode,
1273                                            MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1274                                                  le32_to_cpu(dsea->minorDeviceIdent)));
1275                         /* Developer ID ??? */
1276                 } else {
1277                         make_bad_inode(inode);
1278                 }
1279         }
1280 }
1281
1282 static int udf_alloc_i_data(struct inode *inode, size_t size)
1283 {
1284         UDF_I_DATA(inode) = kmalloc(size, GFP_KERNEL);
1285
1286         if (!UDF_I_DATA(inode)) {
1287                 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) no free memory\n",
1288                        inode->i_ino);
1289                 return -ENOMEM;
1290         }
1291
1292         return 0;
1293 }
1294
1295 static mode_t udf_convert_permissions(struct fileEntry *fe)
1296 {
1297         mode_t mode;
1298         uint32_t permissions;
1299         uint32_t flags;
1300
1301         permissions = le32_to_cpu(fe->permissions);
1302         flags = le16_to_cpu(fe->icbTag.flags);
1303
1304         mode =  (( permissions      ) & S_IRWXO) |
1305                 (( permissions >> 2 ) & S_IRWXG) |
1306                 (( permissions >> 4 ) & S_IRWXU) |
1307                 (( flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1308                 (( flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1309                 (( flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1310
1311         return mode;
1312 }
1313
1314 /*
1315  * udf_write_inode
1316  *
1317  * PURPOSE
1318  *      Write out the specified inode.
1319  *
1320  * DESCRIPTION
1321  *      This routine is called whenever an inode is synced.
1322  *      Currently this routine is just a placeholder.
1323  *
1324  * HISTORY
1325  *      July 1, 1997 - Andrew E. Mileski
1326  *      Written, tested, and released.
1327  */
1328
1329 int udf_write_inode(struct inode *inode, int sync)
1330 {
1331         int ret;
1332
1333         lock_kernel();
1334         ret = udf_update_inode(inode, sync);
1335         unlock_kernel();
1336
1337         return ret;
1338 }
1339
1340 int udf_sync_inode(struct inode *inode)
1341 {
1342         return udf_update_inode(inode, 1);
1343 }
1344
1345 static int udf_update_inode(struct inode *inode, int do_sync)
1346 {
1347         struct buffer_head *bh = NULL;
1348         struct fileEntry *fe;
1349         struct extendedFileEntry *efe;
1350         uint32_t udfperms;
1351         uint16_t icbflags;
1352         uint16_t crclen;
1353         int i;
1354         kernel_timestamp cpu_time;
1355         int err = 0;
1356
1357         bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, UDF_I_LOCATION(inode), 0));
1358         if (!bh) {
1359                 udf_debug("bread failure\n");
1360                 return -EIO;
1361         }
1362
1363         memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1364
1365         fe = (struct fileEntry *)bh->b_data;
1366         efe = (struct extendedFileEntry *)bh->b_data;
1367
1368         if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
1369                 struct unallocSpaceEntry *use =
1370                         (struct unallocSpaceEntry *)bh->b_data;
1371
1372                 use->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1373                 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), UDF_I_DATA(inode),
1374                        inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry));
1375                 crclen = sizeof(struct unallocSpaceEntry) + UDF_I_LENALLOC(inode) - sizeof(tag);
1376                 use->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum);
1377                 use->descTag.descCRCLength = cpu_to_le16(crclen);
1378                 use->descTag.descCRC = cpu_to_le16(udf_crc((char *)use + sizeof(tag), crclen, 0));
1379
1380                 use->descTag.tagChecksum = 0;
1381                 for (i = 0; i < 16; i++) {
1382                         if (i != 4)
1383                                 use->descTag.tagChecksum += ((uint8_t *)&(use->descTag))[i];
1384                 }
1385
1386                 mark_buffer_dirty(bh);
1387                 brelse(bh);
1388                 return err;
1389         }
1390
1391         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1392                 fe->uid = cpu_to_le32(-1);
1393         else
1394                 fe->uid = cpu_to_le32(inode->i_uid);
1395
1396         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1397                 fe->gid = cpu_to_le32(-1);
1398         else
1399                 fe->gid = cpu_to_le32(inode->i_gid);
1400
1401         udfperms =      ((inode->i_mode & S_IRWXO)     ) |
1402                         ((inode->i_mode & S_IRWXG) << 2) |
1403                         ((inode->i_mode & S_IRWXU) << 4);
1404
1405         udfperms |=     (le32_to_cpu(fe->permissions) &
1406                         (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1407                          FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1408                          FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1409         fe->permissions = cpu_to_le32(udfperms);
1410
1411         if (S_ISDIR(inode->i_mode))
1412                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1413         else
1414                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1415
1416         fe->informationLength = cpu_to_le64(inode->i_size);
1417
1418         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1419                 regid *eid;
1420                 struct deviceSpec *dsea =
1421                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1422                 if (!dsea) {
1423                         dsea = (struct deviceSpec *)
1424                                 udf_add_extendedattr(inode,
1425                                                      sizeof(struct deviceSpec) +
1426                                                      sizeof(regid), 12, 0x3);
1427                         dsea->attrType = cpu_to_le32(12);
1428                         dsea->attrSubtype = 1;
1429                         dsea->attrLength = cpu_to_le32(sizeof(struct deviceSpec) +
1430                                                        sizeof(regid));
1431                         dsea->impUseLength = cpu_to_le32(sizeof(regid));
1432                 }
1433                 eid = (regid *)dsea->impUse;
1434                 memset(eid, 0, sizeof(regid));
1435                 strcpy(eid->ident, UDF_ID_DEVELOPER);
1436                 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1437                 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1438                 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1439                 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1440         }
1441
1442         if (UDF_I_EFE(inode) == 0) {
1443                 memcpy(bh->b_data + sizeof(struct fileEntry), UDF_I_DATA(inode),
1444                        inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1445                 fe->logicalBlocksRecorded = cpu_to_le64(
1446                         (inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >>
1447                         (inode->i_sb->s_blocksize_bits - 9));
1448
1449                 if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1450                         fe->accessTime = cpu_to_lets(cpu_time);
1451                 if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1452                         fe->modificationTime = cpu_to_lets(cpu_time);
1453                 if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1454                         fe->attrTime = cpu_to_lets(cpu_time);
1455                 memset(&(fe->impIdent), 0, sizeof(regid));
1456                 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1457                 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1458                 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1459                 fe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
1460                 fe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
1461                 fe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1462                 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1463                 crclen = sizeof(struct fileEntry);
1464         } else {
1465                 memcpy(bh->b_data + sizeof(struct extendedFileEntry), UDF_I_DATA(inode),
1466                        inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry));
1467                 efe->objectSize = cpu_to_le64(inode->i_size);
1468                 efe->logicalBlocksRecorded = cpu_to_le64(
1469                         (inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >>
1470                         (inode->i_sb->s_blocksize_bits - 9));
1471
1472                 if (UDF_I_CRTIME(inode).tv_sec > inode->i_atime.tv_sec ||
1473                     (UDF_I_CRTIME(inode).tv_sec == inode->i_atime.tv_sec &&
1474                      UDF_I_CRTIME(inode).tv_nsec > inode->i_atime.tv_nsec)) {
1475                         UDF_I_CRTIME(inode) = inode->i_atime;
1476                 }
1477                 if (UDF_I_CRTIME(inode).tv_sec > inode->i_mtime.tv_sec ||
1478                     (UDF_I_CRTIME(inode).tv_sec == inode->i_mtime.tv_sec &&
1479                      UDF_I_CRTIME(inode).tv_nsec > inode->i_mtime.tv_nsec)) {
1480                         UDF_I_CRTIME(inode) = inode->i_mtime;
1481                 }
1482                 if (UDF_I_CRTIME(inode).tv_sec > inode->i_ctime.tv_sec ||
1483                     (UDF_I_CRTIME(inode).tv_sec == inode->i_ctime.tv_sec &&
1484                      UDF_I_CRTIME(inode).tv_nsec > inode->i_ctime.tv_nsec)) {
1485                         UDF_I_CRTIME(inode) = inode->i_ctime;
1486                 }
1487
1488                 if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1489                         efe->accessTime = cpu_to_lets(cpu_time);
1490                 if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1491                         efe->modificationTime = cpu_to_lets(cpu_time);
1492                 if (udf_time_to_stamp(&cpu_time, UDF_I_CRTIME(inode)))
1493                         efe->createTime = cpu_to_lets(cpu_time);
1494                 if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1495                         efe->attrTime = cpu_to_lets(cpu_time);
1496
1497                 memset(&(efe->impIdent), 0, sizeof(regid));
1498                 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1499                 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1500                 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1501                 efe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
1502                 efe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
1503                 efe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1504                 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1505                 crclen = sizeof(struct extendedFileEntry);
1506         }
1507         if (UDF_I_STRAT4096(inode)) {
1508                 fe->icbTag.strategyType = cpu_to_le16(4096);
1509                 fe->icbTag.strategyParameter = cpu_to_le16(1);
1510                 fe->icbTag.numEntries = cpu_to_le16(2);
1511         } else {
1512                 fe->icbTag.strategyType = cpu_to_le16(4);
1513                 fe->icbTag.numEntries = cpu_to_le16(1);
1514         }
1515
1516         if (S_ISDIR(inode->i_mode))
1517                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1518         else if (S_ISREG(inode->i_mode))
1519                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1520         else if (S_ISLNK(inode->i_mode))
1521                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1522         else if (S_ISBLK(inode->i_mode))
1523                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1524         else if (S_ISCHR(inode->i_mode))
1525                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1526         else if (S_ISFIFO(inode->i_mode))
1527                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1528         else if (S_ISSOCK(inode->i_mode))
1529                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1530
1531         icbflags =      UDF_I_ALLOCTYPE(inode) |
1532                         ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1533                         ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1534                         ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1535                         (le16_to_cpu(fe->icbTag.flags) &
1536                                 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1537                                 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1538
1539         fe->icbTag.flags = cpu_to_le16(icbflags);
1540         if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200)
1541                 fe->descTag.descVersion = cpu_to_le16(3);
1542         else
1543                 fe->descTag.descVersion = cpu_to_le16(2);
1544         fe->descTag.tagSerialNum = cpu_to_le16(UDF_SB_SERIALNUM(inode->i_sb));
1545         fe->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum);
1546         crclen += UDF_I_LENEATTR(inode) + UDF_I_LENALLOC(inode) - sizeof(tag);
1547         fe->descTag.descCRCLength = cpu_to_le16(crclen);
1548         fe->descTag.descCRC = cpu_to_le16(udf_crc((char *)fe + sizeof(tag), crclen, 0));
1549
1550         fe->descTag.tagChecksum = 0;
1551         for (i = 0; i < 16; i++) {
1552                 if (i != 4)
1553                         fe->descTag.tagChecksum += ((uint8_t *)&(fe->descTag))[i];
1554         }
1555
1556         /* write the data blocks */
1557         mark_buffer_dirty(bh);
1558         if (do_sync) {
1559                 sync_dirty_buffer(bh);
1560                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1561                         printk("IO error syncing udf inode [%s:%08lx]\n",
1562                                inode->i_sb->s_id, inode->i_ino);
1563                         err = -EIO;
1564                 }
1565         }
1566         brelse(bh);
1567
1568         return err;
1569 }
1570
1571 struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino)
1572 {
1573         unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1574         struct inode *inode = iget_locked(sb, block);
1575
1576         if (!inode)
1577                 return NULL;
1578
1579         if (inode->i_state & I_NEW) {
1580                 memcpy(&UDF_I_LOCATION(inode), &ino, sizeof(kernel_lb_addr));
1581                 __udf_read_inode(inode);
1582                 unlock_new_inode(inode);
1583         }
1584
1585         if (is_bad_inode(inode))
1586                 goto out_iput;
1587
1588         if (ino.logicalBlockNum >= UDF_SB_PARTLEN(sb, ino.partitionReferenceNum)) {
1589                 udf_debug("block=%d, partition=%d out of range\n",
1590                           ino.logicalBlockNum, ino.partitionReferenceNum);
1591                 make_bad_inode(inode);
1592                 goto out_iput;
1593         }
1594
1595         return inode;
1596
1597  out_iput:
1598         iput(inode);
1599         return NULL;
1600 }
1601
1602 int8_t udf_add_aext(struct inode * inode, struct extent_position * epos,
1603                     kernel_lb_addr eloc, uint32_t elen, int inc)
1604 {
1605         int adsize;
1606         short_ad *sad = NULL;
1607         long_ad *lad = NULL;
1608         struct allocExtDesc *aed;
1609         int8_t etype;
1610         uint8_t *ptr;
1611
1612         if (!epos->bh)
1613                 ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1614         else
1615                 ptr = epos->bh->b_data + epos->offset;
1616
1617         if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
1618                 adsize = sizeof(short_ad);
1619         else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
1620                 adsize = sizeof(long_ad);
1621         else
1622                 return -1;
1623
1624         if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1625                 char *sptr, *dptr;
1626                 struct buffer_head *nbh;
1627                 int err, loffset;
1628                 kernel_lb_addr obloc = epos->block;
1629
1630                 if (!(epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1631                                                                   obloc.partitionReferenceNum,
1632                                                                   obloc.logicalBlockNum, &err))) {
1633                         return -1;
1634                 }
1635                 if (!(nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1636                                                                        epos->block, 0)))) {
1637                         return -1;
1638                 }
1639                 lock_buffer(nbh);
1640                 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1641                 set_buffer_uptodate(nbh);
1642                 unlock_buffer(nbh);
1643                 mark_buffer_dirty_inode(nbh, inode);
1644
1645                 aed = (struct allocExtDesc *)(nbh->b_data);
1646                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1647                         aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum);
1648                 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1649                         loffset = epos->offset;
1650                         aed->lengthAllocDescs = cpu_to_le32(adsize);
1651                         sptr = ptr - adsize;
1652                         dptr = nbh->b_data + sizeof(struct allocExtDesc);
1653                         memcpy(dptr, sptr, adsize);
1654                         epos->offset = sizeof(struct allocExtDesc) + adsize;
1655                 } else {
1656                         loffset = epos->offset + adsize;
1657                         aed->lengthAllocDescs = cpu_to_le32(0);
1658                         sptr = ptr;
1659                         epos->offset = sizeof(struct allocExtDesc);
1660
1661                         if (epos->bh) {
1662                                 aed = (struct allocExtDesc *)epos->bh->b_data;
1663                                 aed->lengthAllocDescs =
1664                                         cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
1665                         } else {
1666                                 UDF_I_LENALLOC(inode) += adsize;
1667                                 mark_inode_dirty(inode);
1668                         }
1669                 }
1670                 if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200)
1671                         udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1672                                     epos->block.logicalBlockNum, sizeof(tag));
1673                 else
1674                         udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1675                                     epos->block.logicalBlockNum, sizeof(tag));
1676                 switch (UDF_I_ALLOCTYPE(inode)) {
1677                 case ICBTAG_FLAG_AD_SHORT:
1678                         sad = (short_ad *)sptr;
1679                         sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1680                                                      inode->i_sb->s_blocksize);
1681                         sad->extPosition = cpu_to_le32(epos->block.logicalBlockNum);
1682                         break;
1683                 case ICBTAG_FLAG_AD_LONG:
1684                         lad = (long_ad *)sptr;
1685                         lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1686                                                      inode->i_sb->s_blocksize);
1687                         lad->extLocation = cpu_to_lelb(epos->block);
1688                         memset(lad->impUse, 0x00, sizeof(lad->impUse));
1689                         break;
1690                 }
1691                 if (epos->bh) {
1692                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1693                             UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1694                                 udf_update_tag(epos->bh->b_data, loffset);
1695                         else
1696                                 udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc));
1697                         mark_buffer_dirty_inode(epos->bh, inode);
1698                         brelse(epos->bh);
1699                 } else {
1700                         mark_inode_dirty(inode);
1701                 }
1702                 epos->bh = nbh;
1703         }
1704
1705         etype = udf_write_aext(inode, epos, eloc, elen, inc);
1706
1707         if (!epos->bh) {
1708                 UDF_I_LENALLOC(inode) += adsize;
1709                 mark_inode_dirty(inode);
1710         } else {
1711                 aed = (struct allocExtDesc *)epos->bh->b_data;
1712                 aed->lengthAllocDescs =
1713                         cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
1714                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1715                         udf_update_tag(epos->bh->b_data, epos->offset + (inc ? 0 : adsize));
1716                 else
1717                         udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc));
1718                 mark_buffer_dirty_inode(epos->bh, inode);
1719         }
1720
1721         return etype;
1722 }
1723
1724 int8_t udf_write_aext(struct inode * inode, struct extent_position * epos,
1725                       kernel_lb_addr eloc, uint32_t elen, int inc)
1726 {
1727         int adsize;
1728         uint8_t *ptr;
1729         short_ad *sad;
1730         long_ad *lad;
1731
1732         if (!epos->bh)
1733                 ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1734         else
1735                 ptr = epos->bh->b_data + epos->offset;
1736
1737         switch (UDF_I_ALLOCTYPE(inode)) {
1738         case ICBTAG_FLAG_AD_SHORT:
1739                 sad = (short_ad *)ptr;
1740                 sad->extLength = cpu_to_le32(elen);
1741                 sad->extPosition = cpu_to_le32(eloc.logicalBlockNum);
1742                 adsize = sizeof(short_ad);
1743                 break;
1744         case ICBTAG_FLAG_AD_LONG:
1745                 lad = (long_ad *)ptr;
1746                 lad->extLength = cpu_to_le32(elen);
1747                 lad->extLocation = cpu_to_lelb(eloc);
1748                 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1749                 adsize = sizeof(long_ad);
1750                 break;
1751         default:
1752                 return -1;
1753         }
1754
1755         if (epos->bh) {
1756                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1757                     UDF_SB_UDFREV(inode->i_sb) >= 0x0201) {
1758                         struct allocExtDesc *aed = (struct allocExtDesc *)epos->bh->b_data;
1759                         udf_update_tag(epos->bh->b_data,
1760                                        le32_to_cpu(aed->lengthAllocDescs) + sizeof(struct allocExtDesc));
1761                 }
1762                 mark_buffer_dirty_inode(epos->bh, inode);
1763         } else {
1764                 mark_inode_dirty(inode);
1765         }
1766
1767         if (inc)
1768                 epos->offset += adsize;
1769
1770         return (elen >> 30);
1771 }
1772
1773 int8_t udf_next_aext(struct inode * inode, struct extent_position * epos,
1774                      kernel_lb_addr * eloc, uint32_t * elen, int inc)
1775 {
1776         int8_t etype;
1777
1778         while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1779                (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1780                 epos->block = *eloc;
1781                 epos->offset = sizeof(struct allocExtDesc);
1782                 brelse(epos->bh);
1783                 if (!(epos->bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, epos->block, 0)))) {
1784                         udf_debug("reading block %d failed!\n",
1785                                   udf_get_lb_pblock(inode->i_sb, epos->block, 0));
1786                         return -1;
1787                 }
1788         }
1789
1790         return etype;
1791 }
1792
1793 int8_t udf_current_aext(struct inode * inode, struct extent_position * epos,
1794                         kernel_lb_addr * eloc, uint32_t * elen, int inc)
1795 {
1796         int alen;
1797         int8_t etype;
1798         uint8_t *ptr;
1799         short_ad *sad;
1800         long_ad *lad;
1801
1802
1803         if (!epos->bh) {
1804                 if (!epos->offset)
1805                         epos->offset = udf_file_entry_alloc_offset(inode);
1806                 ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1807                 alen = udf_file_entry_alloc_offset(inode) + UDF_I_LENALLOC(inode);
1808         } else {
1809                 if (!epos->offset)
1810                         epos->offset = sizeof(struct allocExtDesc);
1811                 ptr = epos->bh->b_data + epos->offset;
1812                 alen = sizeof(struct allocExtDesc) +
1813                         le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->lengthAllocDescs);
1814         }
1815
1816         switch (UDF_I_ALLOCTYPE(inode)) {
1817         case ICBTAG_FLAG_AD_SHORT:
1818                 if (!(sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc)))
1819                         return -1;
1820                 etype = le32_to_cpu(sad->extLength) >> 30;
1821                 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1822                 eloc->partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum;
1823                 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1824                 break;
1825         case ICBTAG_FLAG_AD_LONG:
1826                 if (!(lad = udf_get_filelongad(ptr, alen, &epos->offset, inc)))
1827                         return -1;
1828                 etype = le32_to_cpu(lad->extLength) >> 30;
1829                 *eloc = lelb_to_cpu(lad->extLocation);
1830                 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1831                 break;
1832         default:
1833                 udf_debug("alloc_type = %d unsupported\n", UDF_I_ALLOCTYPE(inode));
1834                 return -1;
1835         }
1836
1837         return etype;
1838 }
1839
1840 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1841                               kernel_lb_addr neloc, uint32_t nelen)
1842 {
1843         kernel_lb_addr oeloc;
1844         uint32_t oelen;
1845         int8_t etype;
1846
1847         if (epos.bh)
1848                 get_bh(epos.bh);
1849
1850         while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1851                 udf_write_aext(inode, &epos, neloc, nelen, 1);
1852                 neloc = oeloc;
1853                 nelen = (etype << 30) | oelen;
1854         }
1855         udf_add_aext(inode, &epos, neloc, nelen, 1);
1856         brelse(epos.bh);
1857
1858         return (nelen >> 30);
1859 }
1860
1861 int8_t udf_delete_aext(struct inode * inode, struct extent_position epos,
1862                        kernel_lb_addr eloc, uint32_t elen)
1863 {
1864         struct extent_position oepos;
1865         int adsize;
1866         int8_t etype;
1867         struct allocExtDesc *aed;
1868
1869         if (epos.bh) {
1870                 get_bh(epos.bh);
1871                 get_bh(epos.bh);
1872         }
1873
1874         if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
1875                 adsize = sizeof(short_ad);
1876         else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
1877                 adsize = sizeof(long_ad);
1878         else
1879                 adsize = 0;
1880
1881         oepos = epos;
1882         if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
1883                 return -1;
1884
1885         while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
1886                 udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1);
1887                 if (oepos.bh != epos.bh) {
1888                         oepos.block = epos.block;
1889                         brelse(oepos.bh);
1890                         get_bh(epos.bh);
1891                         oepos.bh = epos.bh;
1892                         oepos.offset = epos.offset - adsize;
1893                 }
1894         }
1895         memset(&eloc, 0x00, sizeof(kernel_lb_addr));
1896         elen = 0;
1897
1898         if (epos.bh != oepos.bh) {
1899                 udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1);
1900                 udf_write_aext(inode, &oepos, eloc, elen, 1);
1901                 udf_write_aext(inode, &oepos, eloc, elen, 1);
1902                 if (!oepos.bh) {
1903                         UDF_I_LENALLOC(inode) -= (adsize * 2);
1904                         mark_inode_dirty(inode);
1905                 } else {
1906                         aed = (struct allocExtDesc *)oepos.bh->b_data;
1907                         aed->lengthAllocDescs =
1908                                 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - (2 * adsize));
1909                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1910                             UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1911                                 udf_update_tag(oepos.bh->b_data, oepos.offset - (2 * adsize));
1912                         else
1913                                 udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc));
1914                         mark_buffer_dirty_inode(oepos.bh, inode);
1915                 }
1916         } else {
1917                 udf_write_aext(inode, &oepos, eloc, elen, 1);
1918                 if (!oepos.bh) {
1919                         UDF_I_LENALLOC(inode) -= adsize;
1920                         mark_inode_dirty(inode);
1921                 } else {
1922                         aed = (struct allocExtDesc *)oepos.bh->b_data;
1923                         aed->lengthAllocDescs =
1924                                 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - adsize);
1925                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1926                             UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1927                                 udf_update_tag(oepos.bh->b_data, epos.offset - adsize);
1928                         else
1929                                 udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc));
1930                         mark_buffer_dirty_inode(oepos.bh, inode);
1931                 }
1932         }
1933
1934         brelse(epos.bh);
1935         brelse(oepos.bh);
1936
1937         return (elen >> 30);
1938 }
1939
1940 int8_t inode_bmap(struct inode * inode, sector_t block,
1941                   struct extent_position * pos, kernel_lb_addr * eloc,
1942                   uint32_t * elen, sector_t * offset)
1943 {
1944         loff_t lbcount = 0, bcount =
1945             (loff_t) block << inode->i_sb->s_blocksize_bits;
1946         int8_t etype;
1947
1948         if (block < 0) {
1949                 printk(KERN_ERR "udf: inode_bmap: block < 0\n");
1950                 return -1;
1951         }
1952
1953         pos->offset = 0;
1954         pos->block = UDF_I_LOCATION(inode);
1955         pos->bh = NULL;
1956         *elen = 0;
1957
1958         do {
1959                 if ((etype = udf_next_aext(inode, pos, eloc, elen, 1)) == -1) {
1960                         *offset = (bcount - lbcount) >> inode->i_sb->s_blocksize_bits;
1961                         UDF_I_LENEXTENTS(inode) = lbcount;
1962                         return -1;
1963                 }
1964                 lbcount += *elen;
1965         } while (lbcount <= bcount);
1966
1967         *offset = (bcount + *elen - lbcount) >> inode->i_sb->s_blocksize_bits;
1968
1969         return etype;
1970 }
1971
1972 long udf_block_map(struct inode *inode, sector_t block)
1973 {
1974         kernel_lb_addr eloc;
1975         uint32_t elen;
1976         sector_t offset;
1977         struct extent_position epos = {};
1978         int ret;
1979
1980         lock_kernel();
1981
1982         if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == (EXT_RECORDED_ALLOCATED >> 30))
1983                 ret = udf_get_lb_pblock(inode->i_sb, eloc, offset);
1984         else
1985                 ret = 0;
1986
1987         unlock_kernel();
1988         brelse(epos.bh);
1989
1990         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
1991                 return udf_fixed_to_variable(ret);
1992         else
1993                 return ret;
1994 }