Merge branch 'topic/usb-caiaq' into for-linus
[linux-2.6] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <trace/power.h>
37
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
42
43 #include <acpi/processor.h>
44
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
48
49 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
50                 "acpi-cpufreq", msg)
51
52 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
53 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
54 MODULE_LICENSE("GPL");
55
56 enum {
57         UNDEFINED_CAPABLE = 0,
58         SYSTEM_INTEL_MSR_CAPABLE,
59         SYSTEM_IO_CAPABLE,
60 };
61
62 #define INTEL_MSR_RANGE         (0xffff)
63 #define CPUID_6_ECX_APERFMPERF_CAPABILITY       (0x1)
64
65 struct acpi_cpufreq_data {
66         struct acpi_processor_performance *acpi_data;
67         struct cpufreq_frequency_table *freq_table;
68         unsigned int max_freq;
69         unsigned int resume;
70         unsigned int cpu_feature;
71         u64 saved_aperf, saved_mperf;
72 };
73
74 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
75
76 DEFINE_TRACE(power_mark);
77
78 /* acpi_perf_data is a pointer to percpu data. */
79 static struct acpi_processor_performance *acpi_perf_data;
80
81 static struct cpufreq_driver acpi_cpufreq_driver;
82
83 static unsigned int acpi_pstate_strict;
84
85 static int check_est_cpu(unsigned int cpuid)
86 {
87         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
88
89         if (cpu->x86_vendor != X86_VENDOR_INTEL ||
90             !cpu_has(cpu, X86_FEATURE_EST))
91                 return 0;
92
93         return 1;
94 }
95
96 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
97 {
98         struct acpi_processor_performance *perf;
99         int i;
100
101         perf = data->acpi_data;
102
103         for (i = 0; i < perf->state_count; i++) {
104                 if (value == perf->states[i].status)
105                         return data->freq_table[i].frequency;
106         }
107         return 0;
108 }
109
110 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
111 {
112         int i;
113         struct acpi_processor_performance *perf;
114
115         msr &= INTEL_MSR_RANGE;
116         perf = data->acpi_data;
117
118         for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
119                 if (msr == perf->states[data->freq_table[i].index].status)
120                         return data->freq_table[i].frequency;
121         }
122         return data->freq_table[0].frequency;
123 }
124
125 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
126 {
127         switch (data->cpu_feature) {
128         case SYSTEM_INTEL_MSR_CAPABLE:
129                 return extract_msr(val, data);
130         case SYSTEM_IO_CAPABLE:
131                 return extract_io(val, data);
132         default:
133                 return 0;
134         }
135 }
136
137 struct msr_addr {
138         u32 reg;
139 };
140
141 struct io_addr {
142         u16 port;
143         u8 bit_width;
144 };
145
146 struct drv_cmd {
147         unsigned int type;
148         const struct cpumask *mask;
149         union {
150                 struct msr_addr msr;
151                 struct io_addr io;
152         } addr;
153         u32 val;
154 };
155
156 /* Called via smp_call_function_single(), on the target CPU */
157 static void do_drv_read(void *_cmd)
158 {
159         struct drv_cmd *cmd = _cmd;
160         u32 h;
161
162         switch (cmd->type) {
163         case SYSTEM_INTEL_MSR_CAPABLE:
164                 rdmsr(cmd->addr.msr.reg, cmd->val, h);
165                 break;
166         case SYSTEM_IO_CAPABLE:
167                 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
168                                 &cmd->val,
169                                 (u32)cmd->addr.io.bit_width);
170                 break;
171         default:
172                 break;
173         }
174 }
175
176 /* Called via smp_call_function_many(), on the target CPUs */
177 static void do_drv_write(void *_cmd)
178 {
179         struct drv_cmd *cmd = _cmd;
180         u32 lo, hi;
181
182         switch (cmd->type) {
183         case SYSTEM_INTEL_MSR_CAPABLE:
184                 rdmsr(cmd->addr.msr.reg, lo, hi);
185                 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
186                 wrmsr(cmd->addr.msr.reg, lo, hi);
187                 break;
188         case SYSTEM_IO_CAPABLE:
189                 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
190                                 cmd->val,
191                                 (u32)cmd->addr.io.bit_width);
192                 break;
193         default:
194                 break;
195         }
196 }
197
198 static void drv_read(struct drv_cmd *cmd)
199 {
200         cmd->val = 0;
201
202         smp_call_function_single(cpumask_any(cmd->mask), do_drv_read, cmd, 1);
203 }
204
205 static void drv_write(struct drv_cmd *cmd)
206 {
207         smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
208 }
209
210 static u32 get_cur_val(const struct cpumask *mask)
211 {
212         struct acpi_processor_performance *perf;
213         struct drv_cmd cmd;
214
215         if (unlikely(cpumask_empty(mask)))
216                 return 0;
217
218         switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
219         case SYSTEM_INTEL_MSR_CAPABLE:
220                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
221                 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
222                 break;
223         case SYSTEM_IO_CAPABLE:
224                 cmd.type = SYSTEM_IO_CAPABLE;
225                 perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
226                 cmd.addr.io.port = perf->control_register.address;
227                 cmd.addr.io.bit_width = perf->control_register.bit_width;
228                 break;
229         default:
230                 return 0;
231         }
232
233         cmd.mask = mask;
234         drv_read(&cmd);
235
236         dprintk("get_cur_val = %u\n", cmd.val);
237
238         return cmd.val;
239 }
240
241 struct perf_pair {
242         union {
243                 struct {
244                         u32 lo;
245                         u32 hi;
246                 } split;
247                 u64 whole;
248         } aperf, mperf;
249 };
250
251 /* Called via smp_call_function_single(), on the target CPU */
252 static void read_measured_perf_ctrs(void *_cur)
253 {
254         struct perf_pair *cur = _cur;
255
256         rdmsr(MSR_IA32_APERF, cur->aperf.split.lo, cur->aperf.split.hi);
257         rdmsr(MSR_IA32_MPERF, cur->mperf.split.lo, cur->mperf.split.hi);
258 }
259
260 /*
261  * Return the measured active (C0) frequency on this CPU since last call
262  * to this function.
263  * Input: cpu number
264  * Return: Average CPU frequency in terms of max frequency (zero on error)
265  *
266  * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
267  * over a period of time, while CPU is in C0 state.
268  * IA32_MPERF counts at the rate of max advertised frequency
269  * IA32_APERF counts at the rate of actual CPU frequency
270  * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
271  * no meaning should be associated with absolute values of these MSRs.
272  */
273 static unsigned int get_measured_perf(struct cpufreq_policy *policy,
274                                       unsigned int cpu)
275 {
276         struct perf_pair readin, cur;
277         unsigned int perf_percent;
278         unsigned int retval;
279
280         if (smp_call_function_single(cpu, read_measured_perf_ctrs, &readin, 1))
281                 return 0;
282
283         cur.aperf.whole = readin.aperf.whole -
284                                 per_cpu(drv_data, cpu)->saved_aperf;
285         cur.mperf.whole = readin.mperf.whole -
286                                 per_cpu(drv_data, cpu)->saved_mperf;
287         per_cpu(drv_data, cpu)->saved_aperf = readin.aperf.whole;
288         per_cpu(drv_data, cpu)->saved_mperf = readin.mperf.whole;
289
290 #ifdef __i386__
291         /*
292          * We dont want to do 64 bit divide with 32 bit kernel
293          * Get an approximate value. Return failure in case we cannot get
294          * an approximate value.
295          */
296         if (unlikely(cur.aperf.split.hi || cur.mperf.split.hi)) {
297                 int shift_count;
298                 u32 h;
299
300                 h = max_t(u32, cur.aperf.split.hi, cur.mperf.split.hi);
301                 shift_count = fls(h);
302
303                 cur.aperf.whole >>= shift_count;
304                 cur.mperf.whole >>= shift_count;
305         }
306
307         if (((unsigned long)(-1) / 100) < cur.aperf.split.lo) {
308                 int shift_count = 7;
309                 cur.aperf.split.lo >>= shift_count;
310                 cur.mperf.split.lo >>= shift_count;
311         }
312
313         if (cur.aperf.split.lo && cur.mperf.split.lo)
314                 perf_percent = (cur.aperf.split.lo * 100) / cur.mperf.split.lo;
315         else
316                 perf_percent = 0;
317
318 #else
319         if (unlikely(((unsigned long)(-1) / 100) < cur.aperf.whole)) {
320                 int shift_count = 7;
321                 cur.aperf.whole >>= shift_count;
322                 cur.mperf.whole >>= shift_count;
323         }
324
325         if (cur.aperf.whole && cur.mperf.whole)
326                 perf_percent = (cur.aperf.whole * 100) / cur.mperf.whole;
327         else
328                 perf_percent = 0;
329
330 #endif
331
332         retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100;
333
334         return retval;
335 }
336
337 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
338 {
339         struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
340         unsigned int freq;
341         unsigned int cached_freq;
342
343         dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
344
345         if (unlikely(data == NULL ||
346                      data->acpi_data == NULL || data->freq_table == NULL)) {
347                 return 0;
348         }
349
350         cached_freq = data->freq_table[data->acpi_data->state].frequency;
351         freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
352         if (freq != cached_freq) {
353                 /*
354                  * The dreaded BIOS frequency change behind our back.
355                  * Force set the frequency on next target call.
356                  */
357                 data->resume = 1;
358         }
359
360         dprintk("cur freq = %u\n", freq);
361
362         return freq;
363 }
364
365 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
366                                 struct acpi_cpufreq_data *data)
367 {
368         unsigned int cur_freq;
369         unsigned int i;
370
371         for (i = 0; i < 100; i++) {
372                 cur_freq = extract_freq(get_cur_val(mask), data);
373                 if (cur_freq == freq)
374                         return 1;
375                 udelay(10);
376         }
377         return 0;
378 }
379
380 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
381                                unsigned int target_freq, unsigned int relation)
382 {
383         struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
384         struct acpi_processor_performance *perf;
385         struct cpufreq_freqs freqs;
386         struct drv_cmd cmd;
387         unsigned int next_state = 0; /* Index into freq_table */
388         unsigned int next_perf_state = 0; /* Index into perf table */
389         unsigned int i;
390         int result = 0;
391         struct power_trace it;
392
393         dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
394
395         if (unlikely(data == NULL ||
396              data->acpi_data == NULL || data->freq_table == NULL)) {
397                 return -ENODEV;
398         }
399
400         perf = data->acpi_data;
401         result = cpufreq_frequency_table_target(policy,
402                                                 data->freq_table,
403                                                 target_freq,
404                                                 relation, &next_state);
405         if (unlikely(result)) {
406                 result = -ENODEV;
407                 goto out;
408         }
409
410         next_perf_state = data->freq_table[next_state].index;
411         if (perf->state == next_perf_state) {
412                 if (unlikely(data->resume)) {
413                         dprintk("Called after resume, resetting to P%d\n",
414                                 next_perf_state);
415                         data->resume = 0;
416                 } else {
417                         dprintk("Already at target state (P%d)\n",
418                                 next_perf_state);
419                         goto out;
420                 }
421         }
422
423         trace_power_mark(&it, POWER_PSTATE, next_perf_state);
424
425         switch (data->cpu_feature) {
426         case SYSTEM_INTEL_MSR_CAPABLE:
427                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
428                 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
429                 cmd.val = (u32) perf->states[next_perf_state].control;
430                 break;
431         case SYSTEM_IO_CAPABLE:
432                 cmd.type = SYSTEM_IO_CAPABLE;
433                 cmd.addr.io.port = perf->control_register.address;
434                 cmd.addr.io.bit_width = perf->control_register.bit_width;
435                 cmd.val = (u32) perf->states[next_perf_state].control;
436                 break;
437         default:
438                 result = -ENODEV;
439                 goto out;
440         }
441
442         /* cpufreq holds the hotplug lock, so we are safe from here on */
443         if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
444                 cmd.mask = policy->cpus;
445         else
446                 cmd.mask = cpumask_of(policy->cpu);
447
448         freqs.old = perf->states[perf->state].core_frequency * 1000;
449         freqs.new = data->freq_table[next_state].frequency;
450         for_each_cpu(i, cmd.mask) {
451                 freqs.cpu = i;
452                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
453         }
454
455         drv_write(&cmd);
456
457         if (acpi_pstate_strict) {
458                 if (!check_freqs(cmd.mask, freqs.new, data)) {
459                         dprintk("acpi_cpufreq_target failed (%d)\n",
460                                 policy->cpu);
461                         result = -EAGAIN;
462                         goto out;
463                 }
464         }
465
466         for_each_cpu(i, cmd.mask) {
467                 freqs.cpu = i;
468                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
469         }
470         perf->state = next_perf_state;
471
472 out:
473         return result;
474 }
475
476 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
477 {
478         struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
479
480         dprintk("acpi_cpufreq_verify\n");
481
482         return cpufreq_frequency_table_verify(policy, data->freq_table);
483 }
484
485 static unsigned long
486 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
487 {
488         struct acpi_processor_performance *perf = data->acpi_data;
489
490         if (cpu_khz) {
491                 /* search the closest match to cpu_khz */
492                 unsigned int i;
493                 unsigned long freq;
494                 unsigned long freqn = perf->states[0].core_frequency * 1000;
495
496                 for (i = 0; i < (perf->state_count-1); i++) {
497                         freq = freqn;
498                         freqn = perf->states[i+1].core_frequency * 1000;
499                         if ((2 * cpu_khz) > (freqn + freq)) {
500                                 perf->state = i;
501                                 return freq;
502                         }
503                 }
504                 perf->state = perf->state_count-1;
505                 return freqn;
506         } else {
507                 /* assume CPU is at P0... */
508                 perf->state = 0;
509                 return perf->states[0].core_frequency * 1000;
510         }
511 }
512
513 static void free_acpi_perf_data(void)
514 {
515         unsigned int i;
516
517         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
518         for_each_possible_cpu(i)
519                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
520                                  ->shared_cpu_map);
521         free_percpu(acpi_perf_data);
522 }
523
524 /*
525  * acpi_cpufreq_early_init - initialize ACPI P-States library
526  *
527  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
528  * in order to determine correct frequency and voltage pairings. We can
529  * do _PDC and _PSD and find out the processor dependency for the
530  * actual init that will happen later...
531  */
532 static int __init acpi_cpufreq_early_init(void)
533 {
534         unsigned int i;
535         dprintk("acpi_cpufreq_early_init\n");
536
537         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
538         if (!acpi_perf_data) {
539                 dprintk("Memory allocation error for acpi_perf_data.\n");
540                 return -ENOMEM;
541         }
542         for_each_possible_cpu(i) {
543                 if (!alloc_cpumask_var_node(
544                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
545                         GFP_KERNEL, cpu_to_node(i))) {
546
547                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
548                         free_acpi_perf_data();
549                         return -ENOMEM;
550                 }
551         }
552
553         /* Do initialization in ACPI core */
554         acpi_processor_preregister_performance(acpi_perf_data);
555         return 0;
556 }
557
558 #ifdef CONFIG_SMP
559 /*
560  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
561  * or do it in BIOS firmware and won't inform about it to OS. If not
562  * detected, this has a side effect of making CPU run at a different speed
563  * than OS intended it to run at. Detect it and handle it cleanly.
564  */
565 static int bios_with_sw_any_bug;
566
567 static int sw_any_bug_found(const struct dmi_system_id *d)
568 {
569         bios_with_sw_any_bug = 1;
570         return 0;
571 }
572
573 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
574         {
575                 .callback = sw_any_bug_found,
576                 .ident = "Supermicro Server X6DLP",
577                 .matches = {
578                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
579                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
580                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
581                 },
582         },
583         { }
584 };
585 #endif
586
587 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
588 {
589         unsigned int i;
590         unsigned int valid_states = 0;
591         unsigned int cpu = policy->cpu;
592         struct acpi_cpufreq_data *data;
593         unsigned int result = 0;
594         struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
595         struct acpi_processor_performance *perf;
596
597         dprintk("acpi_cpufreq_cpu_init\n");
598
599         data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
600         if (!data)
601                 return -ENOMEM;
602
603         data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
604         per_cpu(drv_data, cpu) = data;
605
606         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
607                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
608
609         result = acpi_processor_register_performance(data->acpi_data, cpu);
610         if (result)
611                 goto err_free;
612
613         perf = data->acpi_data;
614         policy->shared_type = perf->shared_type;
615
616         /*
617          * Will let policy->cpus know about dependency only when software
618          * coordination is required.
619          */
620         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
621             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
622                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
623         }
624         cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
625
626 #ifdef CONFIG_SMP
627         dmi_check_system(sw_any_bug_dmi_table);
628         if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
629                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
630                 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
631         }
632 #endif
633
634         /* capability check */
635         if (perf->state_count <= 1) {
636                 dprintk("No P-States\n");
637                 result = -ENODEV;
638                 goto err_unreg;
639         }
640
641         if (perf->control_register.space_id != perf->status_register.space_id) {
642                 result = -ENODEV;
643                 goto err_unreg;
644         }
645
646         switch (perf->control_register.space_id) {
647         case ACPI_ADR_SPACE_SYSTEM_IO:
648                 dprintk("SYSTEM IO addr space\n");
649                 data->cpu_feature = SYSTEM_IO_CAPABLE;
650                 break;
651         case ACPI_ADR_SPACE_FIXED_HARDWARE:
652                 dprintk("HARDWARE addr space\n");
653                 if (!check_est_cpu(cpu)) {
654                         result = -ENODEV;
655                         goto err_unreg;
656                 }
657                 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
658                 break;
659         default:
660                 dprintk("Unknown addr space %d\n",
661                         (u32) (perf->control_register.space_id));
662                 result = -ENODEV;
663                 goto err_unreg;
664         }
665
666         data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
667                     (perf->state_count+1), GFP_KERNEL);
668         if (!data->freq_table) {
669                 result = -ENOMEM;
670                 goto err_unreg;
671         }
672
673         /* detect transition latency */
674         policy->cpuinfo.transition_latency = 0;
675         for (i = 0; i < perf->state_count; i++) {
676                 if ((perf->states[i].transition_latency * 1000) >
677                     policy->cpuinfo.transition_latency)
678                         policy->cpuinfo.transition_latency =
679                             perf->states[i].transition_latency * 1000;
680         }
681
682         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
683         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
684             policy->cpuinfo.transition_latency > 20 * 1000) {
685                 static int print_once;
686                 policy->cpuinfo.transition_latency = 20 * 1000;
687                 if (!print_once) {
688                         print_once = 1;
689                         printk(KERN_INFO "Capping off P-state tranision latency"
690                                 " at 20 uS\n");
691                 }
692         }
693
694         data->max_freq = perf->states[0].core_frequency * 1000;
695         /* table init */
696         for (i = 0; i < perf->state_count; i++) {
697                 if (i > 0 && perf->states[i].core_frequency >=
698                     data->freq_table[valid_states-1].frequency / 1000)
699                         continue;
700
701                 data->freq_table[valid_states].index = i;
702                 data->freq_table[valid_states].frequency =
703                     perf->states[i].core_frequency * 1000;
704                 valid_states++;
705         }
706         data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
707         perf->state = 0;
708
709         result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
710         if (result)
711                 goto err_freqfree;
712
713         switch (perf->control_register.space_id) {
714         case ACPI_ADR_SPACE_SYSTEM_IO:
715                 /* Current speed is unknown and not detectable by IO port */
716                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
717                 break;
718         case ACPI_ADR_SPACE_FIXED_HARDWARE:
719                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
720                 policy->cur = get_cur_freq_on_cpu(cpu);
721                 break;
722         default:
723                 break;
724         }
725
726         /* notify BIOS that we exist */
727         acpi_processor_notify_smm(THIS_MODULE);
728
729         /* Check for APERF/MPERF support in hardware */
730         if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
731                 unsigned int ecx;
732                 ecx = cpuid_ecx(6);
733                 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
734                         acpi_cpufreq_driver.getavg = get_measured_perf;
735         }
736
737         dprintk("CPU%u - ACPI performance management activated.\n", cpu);
738         for (i = 0; i < perf->state_count; i++)
739                 dprintk("     %cP%d: %d MHz, %d mW, %d uS\n",
740                         (i == perf->state ? '*' : ' '), i,
741                         (u32) perf->states[i].core_frequency,
742                         (u32) perf->states[i].power,
743                         (u32) perf->states[i].transition_latency);
744
745         cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
746
747         /*
748          * the first call to ->target() should result in us actually
749          * writing something to the appropriate registers.
750          */
751         data->resume = 1;
752
753         return result;
754
755 err_freqfree:
756         kfree(data->freq_table);
757 err_unreg:
758         acpi_processor_unregister_performance(perf, cpu);
759 err_free:
760         kfree(data);
761         per_cpu(drv_data, cpu) = NULL;
762
763         return result;
764 }
765
766 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
767 {
768         struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
769
770         dprintk("acpi_cpufreq_cpu_exit\n");
771
772         if (data) {
773                 cpufreq_frequency_table_put_attr(policy->cpu);
774                 per_cpu(drv_data, policy->cpu) = NULL;
775                 acpi_processor_unregister_performance(data->acpi_data,
776                                                       policy->cpu);
777                 kfree(data);
778         }
779
780         return 0;
781 }
782
783 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
784 {
785         struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
786
787         dprintk("acpi_cpufreq_resume\n");
788
789         data->resume = 1;
790
791         return 0;
792 }
793
794 static struct freq_attr *acpi_cpufreq_attr[] = {
795         &cpufreq_freq_attr_scaling_available_freqs,
796         NULL,
797 };
798
799 static struct cpufreq_driver acpi_cpufreq_driver = {
800         .verify = acpi_cpufreq_verify,
801         .target = acpi_cpufreq_target,
802         .init = acpi_cpufreq_cpu_init,
803         .exit = acpi_cpufreq_cpu_exit,
804         .resume = acpi_cpufreq_resume,
805         .name = "acpi-cpufreq",
806         .owner = THIS_MODULE,
807         .attr = acpi_cpufreq_attr,
808 };
809
810 static int __init acpi_cpufreq_init(void)
811 {
812         int ret;
813
814         if (acpi_disabled)
815                 return 0;
816
817         dprintk("acpi_cpufreq_init\n");
818
819         ret = acpi_cpufreq_early_init();
820         if (ret)
821                 return ret;
822
823         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
824         if (ret)
825                 free_acpi_perf_data();
826
827         return ret;
828 }
829
830 static void __exit acpi_cpufreq_exit(void)
831 {
832         dprintk("acpi_cpufreq_exit\n");
833
834         cpufreq_unregister_driver(&acpi_cpufreq_driver);
835
836         free_percpu(acpi_perf_data);
837 }
838
839 module_param(acpi_pstate_strict, uint, 0644);
840 MODULE_PARM_DESC(acpi_pstate_strict,
841         "value 0 or non-zero. non-zero -> strict ACPI checks are "
842         "performed during frequency changes.");
843
844 late_initcall(acpi_cpufreq_init);
845 module_exit(acpi_cpufreq_exit);
846
847 MODULE_ALIAS("acpi");