4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
54 #include <asm/uaccess.h>
57 int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58 unsigned int nr_bytes)
61 * decide whether to reenable DMA -- 3 is a random magic for now,
62 * if we DMA timeout more than 3 times, just stay in PIO
64 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65 drive->retry_pio <= 3) {
66 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
70 return blk_end_request(rq, error, nr_bytes);
72 EXPORT_SYMBOL_GPL(ide_end_rq);
74 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
76 const struct ide_tp_ops *tp_ops = drive->hwif->tp_ops;
77 struct ide_taskfile *tf = &cmd->tf;
78 struct request *rq = cmd->rq;
79 u8 tf_cmd = tf->command;
84 if (cmd->ftf_flags & IDE_FTFLAG_IN_DATA) {
87 tp_ops->input_data(drive, cmd, data, 2);
89 cmd->tf.data = data[0];
90 cmd->hob.data = data[1];
93 ide_tf_readback(drive, cmd);
95 if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
96 tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
97 if (tf->lbal != 0xc4) {
98 printk(KERN_ERR "%s: head unload failed!\n",
100 ide_tf_dump(drive->name, cmd);
102 drive->dev_flags |= IDE_DFLAG_PARKED;
105 if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
106 memcpy(rq->special, cmd, sizeof(*cmd));
108 if (cmd->tf_flags & IDE_TFLAG_DYN)
112 /* obsolete, blk_rq_bytes() should be used instead */
113 unsigned int ide_rq_bytes(struct request *rq)
115 if (blk_pc_request(rq))
118 return rq->hard_cur_sectors << 9;
120 EXPORT_SYMBOL_GPL(ide_rq_bytes);
122 int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes)
124 ide_hwif_t *hwif = drive->hwif;
125 struct request *rq = hwif->rq;
129 * if failfast is set on a request, override number of sectors
130 * and complete the whole request right now
132 if (blk_noretry_request(rq) && error <= 0)
133 nr_bytes = rq->hard_nr_sectors << 9;
135 rc = ide_end_rq(drive, rq, error, nr_bytes);
141 EXPORT_SYMBOL(ide_complete_rq);
143 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
145 u8 drv_req = blk_special_request(rq) && rq->rq_disk;
146 u8 media = drive->media;
148 drive->failed_pc = NULL;
150 if ((media == ide_floppy || media == ide_tape) && drv_req) {
152 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
154 if (media == ide_tape)
155 rq->errors = IDE_DRV_ERROR_GENERAL;
156 else if (blk_fs_request(rq) == 0 && rq->errors == 0)
158 ide_complete_rq(drive, -EIO, ide_rq_bytes(rq));
162 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
164 tf->nsect = drive->sect;
165 tf->lbal = drive->sect;
166 tf->lbam = drive->cyl;
167 tf->lbah = drive->cyl >> 8;
168 tf->device = (drive->head - 1) | drive->select;
169 tf->command = ATA_CMD_INIT_DEV_PARAMS;
172 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
174 tf->nsect = drive->sect;
175 tf->command = ATA_CMD_RESTORE;
178 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
180 tf->nsect = drive->mult_req;
181 tf->command = ATA_CMD_SET_MULTI;
184 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
186 special_t *s = &drive->special;
189 memset(&cmd, 0, sizeof(cmd));
190 cmd.protocol = ATA_PROT_NODATA;
192 if (s->b.set_geometry) {
193 s->b.set_geometry = 0;
194 ide_tf_set_specify_cmd(drive, &cmd.tf);
195 } else if (s->b.recalibrate) {
196 s->b.recalibrate = 0;
197 ide_tf_set_restore_cmd(drive, &cmd.tf);
198 } else if (s->b.set_multmode) {
199 s->b.set_multmode = 0;
200 ide_tf_set_setmult_cmd(drive, &cmd.tf);
202 int special = s->all;
204 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
208 cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
209 cmd.valid.in.tf = IDE_VALID_IN_TF | IDE_VALID_DEVICE;
210 cmd.tf_flags = IDE_TFLAG_CUSTOM_HANDLER;
212 do_rw_taskfile(drive, &cmd);
218 * do_special - issue some special commands
219 * @drive: drive the command is for
221 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
222 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
224 * It used to do much more, but has been scaled back.
227 static ide_startstop_t do_special (ide_drive_t *drive)
229 special_t *s = &drive->special;
232 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
234 if (drive->media == ide_disk)
235 return ide_disk_special(drive);
242 void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
244 ide_hwif_t *hwif = drive->hwif;
245 struct scatterlist *sg = hwif->sg_table;
246 struct request *rq = cmd->rq;
248 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
249 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
251 } else if (!rq->bio) {
252 sg_init_one(sg, rq->data, rq->data_len);
255 cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
257 EXPORT_SYMBOL_GPL(ide_map_sg);
259 void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
261 cmd->nbytes = cmd->nleft = nr_bytes;
265 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
268 * execute_drive_command - issue special drive command
269 * @drive: the drive to issue the command on
270 * @rq: the request structure holding the command
272 * execute_drive_cmd() issues a special drive command, usually
273 * initiated by ioctl() from the external hdparm program. The
274 * command can be a drive command, drive task or taskfile
275 * operation. Weirdly you can call it with NULL to wait for
276 * all commands to finish. Don't do this as that is due to change
279 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
282 struct ide_cmd *cmd = rq->special;
285 if (cmd->protocol == ATA_PROT_PIO) {
286 ide_init_sg_cmd(cmd, rq->nr_sectors << 9);
287 ide_map_sg(drive, cmd);
290 return do_rw_taskfile(drive, cmd);
294 * NULL is actually a valid way of waiting for
295 * all current requests to be flushed from the queue.
298 printk("%s: DRIVE_CMD (null)\n", drive->name);
301 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
306 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
312 case REQ_UNPARK_HEADS:
313 return ide_do_park_unpark(drive, rq);
314 case REQ_DEVSET_EXEC:
315 return ide_do_devset(drive, rq);
316 case REQ_DRIVE_RESET:
317 return ide_do_reset(drive);
324 * start_request - start of I/O and command issuing for IDE
326 * start_request() initiates handling of a new I/O request. It
327 * accepts commands and I/O (read/write) requests.
329 * FIXME: this function needs a rename
332 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
334 ide_startstop_t startstop;
336 BUG_ON(!blk_rq_started(rq));
339 printk("%s: start_request: current=0x%08lx\n",
340 drive->hwif->name, (unsigned long) rq);
343 /* bail early if we've exceeded max_failures */
344 if (drive->max_failures && (drive->failures > drive->max_failures)) {
345 rq->cmd_flags |= REQ_FAILED;
349 if (blk_pm_request(rq))
350 ide_check_pm_state(drive, rq);
352 drive->hwif->tp_ops->dev_select(drive);
353 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
354 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
355 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
358 if (!drive->special.all) {
359 struct ide_driver *drv;
362 * We reset the drive so we need to issue a SETFEATURES.
363 * Do it _after_ do_special() restored device parameters.
365 if (drive->current_speed == 0xff)
366 ide_config_drive_speed(drive, drive->desired_speed);
368 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
369 return execute_drive_cmd(drive, rq);
370 else if (blk_pm_request(rq)) {
371 struct request_pm_state *pm = rq->data;
373 printk("%s: start_power_step(step: %d)\n",
374 drive->name, pm->pm_step);
376 startstop = ide_start_power_step(drive, rq);
377 if (startstop == ide_stopped &&
378 pm->pm_step == IDE_PM_COMPLETED)
379 ide_complete_pm_rq(drive, rq);
381 } else if (!rq->rq_disk && blk_special_request(rq))
383 * TODO: Once all ULDs have been modified to
384 * check for specific op codes rather than
385 * blindly accepting any special request, the
386 * check for ->rq_disk above may be replaced
387 * by a more suitable mechanism or even
390 return ide_special_rq(drive, rq);
392 drv = *(struct ide_driver **)rq->rq_disk->private_data;
394 return drv->do_request(drive, rq, rq->sector);
396 return do_special(drive);
398 ide_kill_rq(drive, rq);
403 * ide_stall_queue - pause an IDE device
404 * @drive: drive to stall
405 * @timeout: time to stall for (jiffies)
407 * ide_stall_queue() can be used by a drive to give excess bandwidth back
408 * to the port by sleeping for timeout jiffies.
411 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
413 if (timeout > WAIT_WORSTCASE)
414 timeout = WAIT_WORSTCASE;
415 drive->sleep = timeout + jiffies;
416 drive->dev_flags |= IDE_DFLAG_SLEEPING;
418 EXPORT_SYMBOL(ide_stall_queue);
420 static inline int ide_lock_port(ide_hwif_t *hwif)
430 static inline void ide_unlock_port(ide_hwif_t *hwif)
435 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
439 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
440 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
443 host->get_lock(ide_intr, hwif);
449 static inline void ide_unlock_host(struct ide_host *host)
451 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
452 if (host->release_lock)
453 host->release_lock();
454 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
459 * Issue a new request to a device.
461 void do_ide_request(struct request_queue *q)
463 ide_drive_t *drive = q->queuedata;
464 ide_hwif_t *hwif = drive->hwif;
465 struct ide_host *host = hwif->host;
466 struct request *rq = NULL;
467 ide_startstop_t startstop;
470 * drive is doing pre-flush, ordered write, post-flush sequence. even
471 * though that is 3 requests, it must be seen as a single transaction.
472 * we must not preempt this drive until that is complete
474 if (blk_queue_flushing(q))
476 * small race where queue could get replugged during
477 * the 3-request flush cycle, just yank the plug since
478 * we want it to finish asap
482 spin_unlock_irq(q->queue_lock);
484 if (ide_lock_host(host, hwif))
487 spin_lock_irq(&hwif->lock);
489 if (!ide_lock_port(hwif)) {
490 ide_hwif_t *prev_port;
492 prev_port = hwif->host->cur_port;
495 if (drive->dev_flags & IDE_DFLAG_SLEEPING &&
496 time_after(drive->sleep, jiffies)) {
497 ide_unlock_port(hwif);
501 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
504 * set nIEN for previous port, drives in the
505 * quirk_list may not like intr setups/cleanups
507 if (prev_port && prev_port->cur_dev->quirk_list == 0)
508 prev_port->tp_ops->write_devctl(prev_port,
512 hwif->host->cur_port = hwif;
514 hwif->cur_dev = drive;
515 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
517 spin_unlock_irq(&hwif->lock);
518 spin_lock_irq(q->queue_lock);
520 * we know that the queue isn't empty, but this can happen
521 * if the q->prep_rq_fn() decides to kill a request
523 rq = elv_next_request(drive->queue);
524 spin_unlock_irq(q->queue_lock);
525 spin_lock_irq(&hwif->lock);
528 ide_unlock_port(hwif);
533 * Sanity: don't accept a request that isn't a PM request
534 * if we are currently power managed. This is very important as
535 * blk_stop_queue() doesn't prevent the elv_next_request()
536 * above to return us whatever is in the queue. Since we call
537 * ide_do_request() ourselves, we end up taking requests while
538 * the queue is blocked...
540 * We let requests forced at head of queue with ide-preempt
541 * though. I hope that doesn't happen too much, hopefully not
542 * unless the subdriver triggers such a thing in its own PM
545 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
546 blk_pm_request(rq) == 0 &&
547 (rq->cmd_flags & REQ_PREEMPT) == 0) {
548 /* there should be no pending command at this point */
549 ide_unlock_port(hwif);
555 spin_unlock_irq(&hwif->lock);
556 startstop = start_request(drive, rq);
557 spin_lock_irq(&hwif->lock);
559 if (startstop == ide_stopped)
564 spin_unlock_irq(&hwif->lock);
566 ide_unlock_host(host);
567 spin_lock_irq(q->queue_lock);
571 spin_unlock_irq(&hwif->lock);
572 ide_unlock_host(host);
574 spin_lock_irq(q->queue_lock);
576 if (!elv_queue_empty(q))
580 static void ide_plug_device(ide_drive_t *drive)
582 struct request_queue *q = drive->queue;
585 spin_lock_irqsave(q->queue_lock, flags);
586 if (!elv_queue_empty(q))
588 spin_unlock_irqrestore(q->queue_lock, flags);
591 static int drive_is_ready(ide_drive_t *drive)
593 ide_hwif_t *hwif = drive->hwif;
596 if (drive->waiting_for_dma)
597 return hwif->dma_ops->dma_test_irq(drive);
599 if (hwif->io_ports.ctl_addr &&
600 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
601 stat = hwif->tp_ops->read_altstatus(hwif);
603 /* Note: this may clear a pending IRQ!! */
604 stat = hwif->tp_ops->read_status(hwif);
607 /* drive busy: definitely not interrupting */
610 /* drive ready: *might* be interrupting */
615 * ide_timer_expiry - handle lack of an IDE interrupt
616 * @data: timer callback magic (hwif)
618 * An IDE command has timed out before the expected drive return
619 * occurred. At this point we attempt to clean up the current
620 * mess. If the current handler includes an expiry handler then
621 * we invoke the expiry handler, and providing it is happy the
622 * work is done. If that fails we apply generic recovery rules
623 * invoking the handler and checking the drive DMA status. We
624 * have an excessively incestuous relationship with the DMA
625 * logic that wants cleaning up.
628 void ide_timer_expiry (unsigned long data)
630 ide_hwif_t *hwif = (ide_hwif_t *)data;
631 ide_drive_t *uninitialized_var(drive);
632 ide_handler_t *handler;
637 spin_lock_irqsave(&hwif->lock, flags);
639 handler = hwif->handler;
641 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
643 * Either a marginal timeout occurred
644 * (got the interrupt just as timer expired),
645 * or we were "sleeping" to give other devices a chance.
646 * Either way, we don't really want to complain about anything.
649 ide_expiry_t *expiry = hwif->expiry;
650 ide_startstop_t startstop = ide_stopped;
652 drive = hwif->cur_dev;
655 wait = expiry(drive);
656 if (wait > 0) { /* continue */
658 hwif->timer.expires = jiffies + wait;
659 hwif->req_gen_timer = hwif->req_gen;
660 add_timer(&hwif->timer);
661 spin_unlock_irqrestore(&hwif->lock, flags);
665 hwif->handler = NULL;
668 * We need to simulate a real interrupt when invoking
669 * the handler() function, which means we need to
670 * globally mask the specific IRQ:
672 spin_unlock(&hwif->lock);
673 /* disable_irq_nosync ?? */
674 disable_irq(hwif->irq);
675 /* local CPU only, as if we were handling an interrupt */
678 startstop = handler(drive);
679 } else if (drive_is_ready(drive)) {
680 if (drive->waiting_for_dma)
681 hwif->dma_ops->dma_lost_irq(drive);
683 hwif->ack_intr(hwif);
684 printk(KERN_WARNING "%s: lost interrupt\n",
686 startstop = handler(drive);
688 if (drive->waiting_for_dma)
689 startstop = ide_dma_timeout_retry(drive, wait);
691 startstop = ide_error(drive, "irq timeout",
692 hwif->tp_ops->read_status(hwif));
694 spin_lock_irq(&hwif->lock);
695 enable_irq(hwif->irq);
696 if (startstop == ide_stopped) {
697 ide_unlock_port(hwif);
701 spin_unlock_irqrestore(&hwif->lock, flags);
704 ide_unlock_host(hwif->host);
705 ide_plug_device(drive);
710 * unexpected_intr - handle an unexpected IDE interrupt
711 * @irq: interrupt line
712 * @hwif: port being processed
714 * There's nothing really useful we can do with an unexpected interrupt,
715 * other than reading the status register (to clear it), and logging it.
716 * There should be no way that an irq can happen before we're ready for it,
717 * so we needn't worry much about losing an "important" interrupt here.
719 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
720 * the drive enters "idle", "standby", or "sleep" mode, so if the status
721 * looks "good", we just ignore the interrupt completely.
723 * This routine assumes __cli() is in effect when called.
725 * If an unexpected interrupt happens on irq15 while we are handling irq14
726 * and if the two interfaces are "serialized" (CMD640), then it looks like
727 * we could screw up by interfering with a new request being set up for
730 * In reality, this is a non-issue. The new command is not sent unless
731 * the drive is ready to accept one, in which case we know the drive is
732 * not trying to interrupt us. And ide_set_handler() is always invoked
733 * before completing the issuance of any new drive command, so we will not
734 * be accidentally invoked as a result of any valid command completion
738 static void unexpected_intr(int irq, ide_hwif_t *hwif)
740 u8 stat = hwif->tp_ops->read_status(hwif);
742 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
743 /* Try to not flood the console with msgs */
744 static unsigned long last_msgtime, count;
747 if (time_after(jiffies, last_msgtime + HZ)) {
748 last_msgtime = jiffies;
749 printk(KERN_ERR "%s: unexpected interrupt, "
750 "status=0x%02x, count=%ld\n",
751 hwif->name, stat, count);
757 * ide_intr - default IDE interrupt handler
758 * @irq: interrupt number
760 * @regs: unused weirdness from the kernel irq layer
762 * This is the default IRQ handler for the IDE layer. You should
763 * not need to override it. If you do be aware it is subtle in
766 * hwif is the interface in the group currently performing
767 * a command. hwif->cur_dev is the drive and hwif->handler is
768 * the IRQ handler to call. As we issue a command the handlers
769 * step through multiple states, reassigning the handler to the
770 * next step in the process. Unlike a smart SCSI controller IDE
771 * expects the main processor to sequence the various transfer
772 * stages. We also manage a poll timer to catch up with most
773 * timeout situations. There are still a few where the handlers
774 * don't ever decide to give up.
776 * The handler eventually returns ide_stopped to indicate the
777 * request completed. At this point we issue the next request
778 * on the port and the process begins again.
781 irqreturn_t ide_intr (int irq, void *dev_id)
783 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
784 struct ide_host *host = hwif->host;
785 ide_drive_t *uninitialized_var(drive);
786 ide_handler_t *handler;
788 ide_startstop_t startstop;
789 irqreturn_t irq_ret = IRQ_NONE;
792 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
793 if (hwif != host->cur_port)
797 spin_lock_irqsave(&hwif->lock, flags);
799 if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
802 handler = hwif->handler;
804 if (handler == NULL || hwif->polling) {
806 * Not expecting an interrupt from this drive.
807 * That means this could be:
808 * (1) an interrupt from another PCI device
809 * sharing the same PCI INT# as us.
810 * or (2) a drive just entered sleep or standby mode,
811 * and is interrupting to let us know.
812 * or (3) a spurious interrupt of unknown origin.
814 * For PCI, we cannot tell the difference,
815 * so in that case we just ignore it and hope it goes away.
817 if ((host->irq_flags & IRQF_SHARED) == 0) {
819 * Probably not a shared PCI interrupt,
820 * so we can safely try to do something about it:
822 unexpected_intr(irq, hwif);
825 * Whack the status register, just in case
826 * we have a leftover pending IRQ.
828 (void)hwif->tp_ops->read_status(hwif);
833 drive = hwif->cur_dev;
835 if (!drive_is_ready(drive))
837 * This happens regularly when we share a PCI IRQ with
838 * another device. Unfortunately, it can also happen
839 * with some buggy drives that trigger the IRQ before
840 * their status register is up to date. Hopefully we have
841 * enough advance overhead that the latter isn't a problem.
845 hwif->handler = NULL;
848 del_timer(&hwif->timer);
849 spin_unlock(&hwif->lock);
851 if (hwif->port_ops && hwif->port_ops->clear_irq)
852 hwif->port_ops->clear_irq(drive);
854 if (drive->dev_flags & IDE_DFLAG_UNMASK)
855 local_irq_enable_in_hardirq();
857 /* service this interrupt, may set handler for next interrupt */
858 startstop = handler(drive);
860 spin_lock_irq(&hwif->lock);
862 * Note that handler() may have set things up for another
863 * interrupt to occur soon, but it cannot happen until
864 * we exit from this routine, because it will be the
865 * same irq as is currently being serviced here, and Linux
866 * won't allow another of the same (on any CPU) until we return.
868 if (startstop == ide_stopped) {
869 BUG_ON(hwif->handler);
870 ide_unlock_port(hwif);
873 irq_ret = IRQ_HANDLED;
875 spin_unlock_irqrestore(&hwif->lock, flags);
878 ide_unlock_host(hwif->host);
879 ide_plug_device(drive);
884 EXPORT_SYMBOL_GPL(ide_intr);
886 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
888 ide_hwif_t *hwif = drive->hwif;
893 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
895 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
899 EXPORT_SYMBOL_GPL(ide_pad_transfer);