x86: coding style fixes to arch/x86/kernel/mca_32.c
[linux-2.6] / arch / ia64 / mm / contig.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1998-2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *      Stephane Eranian <eranian@hpl.hp.com>
9  * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10  * Copyright (C) 1999 VA Linux Systems
11  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12  * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
13  *
14  * Routines used by ia64 machines with contiguous (or virtually contiguous)
15  * memory.
16  */
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
19 #include <linux/mm.h>
20 #include <linux/nmi.h>
21 #include <linux/swap.h>
22
23 #include <asm/meminit.h>
24 #include <asm/pgalloc.h>
25 #include <asm/pgtable.h>
26 #include <asm/sections.h>
27 #include <asm/mca.h>
28
29 #ifdef CONFIG_VIRTUAL_MEM_MAP
30 static unsigned long max_gap;
31 #endif
32
33 /**
34  * show_mem - give short summary of memory stats
35  *
36  * Shows a simple page count of reserved and used pages in the system.
37  * For discontig machines, it does this on a per-pgdat basis.
38  */
39 void show_mem(void)
40 {
41         int i, total_reserved = 0;
42         int total_shared = 0, total_cached = 0;
43         unsigned long total_present = 0;
44         pg_data_t *pgdat;
45
46         printk(KERN_INFO "Mem-info:\n");
47         show_free_areas();
48         printk(KERN_INFO "Free swap:       %6ldkB\n",
49                nr_swap_pages<<(PAGE_SHIFT-10));
50         printk(KERN_INFO "Node memory in pages:\n");
51         for_each_online_pgdat(pgdat) {
52                 unsigned long present;
53                 unsigned long flags;
54                 int shared = 0, cached = 0, reserved = 0;
55
56                 pgdat_resize_lock(pgdat, &flags);
57                 present = pgdat->node_present_pages;
58                 for(i = 0; i < pgdat->node_spanned_pages; i++) {
59                         struct page *page;
60                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
61                                 touch_nmi_watchdog();
62                         if (pfn_valid(pgdat->node_start_pfn + i))
63                                 page = pfn_to_page(pgdat->node_start_pfn + i);
64                         else {
65 #ifdef CONFIG_VIRTUAL_MEM_MAP
66                                 if (max_gap < LARGE_GAP)
67                                         continue;
68 #endif
69                                 i = vmemmap_find_next_valid_pfn(pgdat->node_id,
70                                          i) - 1;
71                                 continue;
72                         }
73                         if (PageReserved(page))
74                                 reserved++;
75                         else if (PageSwapCache(page))
76                                 cached++;
77                         else if (page_count(page))
78                                 shared += page_count(page)-1;
79                 }
80                 pgdat_resize_unlock(pgdat, &flags);
81                 total_present += present;
82                 total_reserved += reserved;
83                 total_cached += cached;
84                 total_shared += shared;
85                 printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, "
86                        "shrd: %10d, swpd: %10d\n", pgdat->node_id,
87                        present, reserved, shared, cached);
88         }
89         printk(KERN_INFO "%ld pages of RAM\n", total_present);
90         printk(KERN_INFO "%d reserved pages\n", total_reserved);
91         printk(KERN_INFO "%d pages shared\n", total_shared);
92         printk(KERN_INFO "%d pages swap cached\n", total_cached);
93         printk(KERN_INFO "Total of %ld pages in page table cache\n",
94                quicklist_total_size());
95         printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
96 }
97
98
99 /* physical address where the bootmem map is located */
100 unsigned long bootmap_start;
101
102 /**
103  * find_bootmap_location - callback to find a memory area for the bootmap
104  * @start: start of region
105  * @end: end of region
106  * @arg: unused callback data
107  *
108  * Find a place to put the bootmap and return its starting address in
109  * bootmap_start.  This address must be page-aligned.
110  */
111 static int __init
112 find_bootmap_location (unsigned long start, unsigned long end, void *arg)
113 {
114         unsigned long needed = *(unsigned long *)arg;
115         unsigned long range_start, range_end, free_start;
116         int i;
117
118 #if IGNORE_PFN0
119         if (start == PAGE_OFFSET) {
120                 start += PAGE_SIZE;
121                 if (start >= end)
122                         return 0;
123         }
124 #endif
125
126         free_start = PAGE_OFFSET;
127
128         for (i = 0; i < num_rsvd_regions; i++) {
129                 range_start = max(start, free_start);
130                 range_end   = min(end, rsvd_region[i].start & PAGE_MASK);
131
132                 free_start = PAGE_ALIGN(rsvd_region[i].end);
133
134                 if (range_end <= range_start)
135                         continue; /* skip over empty range */
136
137                 if (range_end - range_start >= needed) {
138                         bootmap_start = __pa(range_start);
139                         return -1;      /* done */
140                 }
141
142                 /* nothing more available in this segment */
143                 if (range_end == end)
144                         return 0;
145         }
146         return 0;
147 }
148
149 #ifdef CONFIG_SMP
150 static void *cpu_data;
151 /**
152  * per_cpu_init - setup per-cpu variables
153  *
154  * Allocate and setup per-cpu data areas.
155  */
156 void * __cpuinit
157 per_cpu_init (void)
158 {
159         int cpu;
160         static int first_time=1;
161
162         /*
163          * get_free_pages() cannot be used before cpu_init() done.  BSP
164          * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
165          * get_zeroed_page().
166          */
167         if (first_time) {
168                 first_time=0;
169                 for (cpu = 0; cpu < NR_CPUS; cpu++) {
170                         memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
171                         __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start;
172                         cpu_data += PERCPU_PAGE_SIZE;
173                         per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
174                 }
175         }
176         return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
177 }
178
179 static inline void
180 alloc_per_cpu_data(void)
181 {
182         cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
183                                    PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
184 }
185 #else
186 #define alloc_per_cpu_data() do { } while (0)
187 #endif /* CONFIG_SMP */
188
189 /**
190  * find_memory - setup memory map
191  *
192  * Walk the EFI memory map and find usable memory for the system, taking
193  * into account reserved areas.
194  */
195 void __init
196 find_memory (void)
197 {
198         unsigned long bootmap_size;
199
200         reserve_memory();
201
202         /* first find highest page frame number */
203         min_low_pfn = ~0UL;
204         max_low_pfn = 0;
205         efi_memmap_walk(find_max_min_low_pfn, NULL);
206         max_pfn = max_low_pfn;
207         /* how many bytes to cover all the pages */
208         bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
209
210         /* look for a location to hold the bootmap */
211         bootmap_start = ~0UL;
212         efi_memmap_walk(find_bootmap_location, &bootmap_size);
213         if (bootmap_start == ~0UL)
214                 panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
215
216         bootmap_size = init_bootmem_node(NODE_DATA(0),
217                         (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
218
219         /* Free all available memory, then mark bootmem-map as being in use. */
220         efi_memmap_walk(filter_rsvd_memory, free_bootmem);
221         reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
222
223         find_initrd();
224
225         alloc_per_cpu_data();
226 }
227
228 static int
229 count_pages (u64 start, u64 end, void *arg)
230 {
231         unsigned long *count = arg;
232
233         *count += (end - start) >> PAGE_SHIFT;
234         return 0;
235 }
236
237 /*
238  * Set up the page tables.
239  */
240
241 void __init
242 paging_init (void)
243 {
244         unsigned long max_dma;
245         unsigned long max_zone_pfns[MAX_NR_ZONES];
246
247         num_physpages = 0;
248         efi_memmap_walk(count_pages, &num_physpages);
249
250         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
251 #ifdef CONFIG_ZONE_DMA
252         max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
253         max_zone_pfns[ZONE_DMA] = max_dma;
254 #endif
255         max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
256
257 #ifdef CONFIG_VIRTUAL_MEM_MAP
258         efi_memmap_walk(register_active_ranges, NULL);
259         efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
260         if (max_gap < LARGE_GAP) {
261                 vmem_map = (struct page *) 0;
262                 free_area_init_nodes(max_zone_pfns);
263         } else {
264                 unsigned long map_size;
265
266                 /* allocate virtual_mem_map */
267
268                 map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
269                         sizeof(struct page));
270                 vmalloc_end -= map_size;
271                 vmem_map = (struct page *) vmalloc_end;
272                 efi_memmap_walk(create_mem_map_page_table, NULL);
273
274                 /*
275                  * alloc_node_mem_map makes an adjustment for mem_map
276                  * which isn't compatible with vmem_map.
277                  */
278                 NODE_DATA(0)->node_mem_map = vmem_map +
279                         find_min_pfn_with_active_regions();
280                 free_area_init_nodes(max_zone_pfns);
281
282                 printk("Virtual mem_map starts at 0x%p\n", mem_map);
283         }
284 #else /* !CONFIG_VIRTUAL_MEM_MAP */
285         add_active_range(0, 0, max_low_pfn);
286         free_area_init_nodes(max_zone_pfns);
287 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
288         zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
289 }