leds: Do not guard NEW_LEDS with HAS_IOMEM
[linux-2.6] / drivers / crypto / hifn_795x.c
1 /*
2  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/mm.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/scatterlist.h>
31 #include <linux/highmem.h>
32 #include <linux/interrupt.h>
33 #include <linux/crypto.h>
34 #include <linux/hw_random.h>
35 #include <linux/ktime.h>
36
37 #include <crypto/algapi.h>
38 #include <crypto/des.h>
39
40 #include <asm/kmap_types.h>
41
42 #undef dprintk
43
44 #define HIFN_TEST
45 //#define HIFN_DEBUG
46
47 #ifdef HIFN_DEBUG
48 #define dprintk(f, a...)        printk(f, ##a)
49 #else
50 #define dprintk(f, a...)        do {} while (0)
51 #endif
52
53 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
54 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
55 MODULE_PARM_DESC(hifn_pll_ref,
56                  "PLL reference clock (pci[freq] or ext[freq], default ext)");
57
58 static atomic_t hifn_dev_number;
59
60 #define ACRYPTO_OP_DECRYPT      0
61 #define ACRYPTO_OP_ENCRYPT      1
62 #define ACRYPTO_OP_HMAC         2
63 #define ACRYPTO_OP_RNG          3
64
65 #define ACRYPTO_MODE_ECB                0
66 #define ACRYPTO_MODE_CBC                1
67 #define ACRYPTO_MODE_CFB                2
68 #define ACRYPTO_MODE_OFB                3
69
70 #define ACRYPTO_TYPE_AES_128    0
71 #define ACRYPTO_TYPE_AES_192    1
72 #define ACRYPTO_TYPE_AES_256    2
73 #define ACRYPTO_TYPE_3DES       3
74 #define ACRYPTO_TYPE_DES        4
75
76 #define PCI_VENDOR_ID_HIFN              0x13A3
77 #define PCI_DEVICE_ID_HIFN_7955         0x0020
78 #define PCI_DEVICE_ID_HIFN_7956         0x001d
79
80 /* I/O region sizes */
81
82 #define HIFN_BAR0_SIZE                  0x1000
83 #define HIFN_BAR1_SIZE                  0x2000
84 #define HIFN_BAR2_SIZE                  0x8000
85
86 /* DMA registres */
87
88 #define HIFN_DMA_CRA                    0x0C    /* DMA Command Ring Address */
89 #define HIFN_DMA_SDRA                   0x1C    /* DMA Source Data Ring Address */
90 #define HIFN_DMA_RRA                    0x2C    /* DMA Result Ring Address */
91 #define HIFN_DMA_DDRA                   0x3C    /* DMA Destination Data Ring Address */
92 #define HIFN_DMA_STCTL                  0x40    /* DMA Status and Control */
93 #define HIFN_DMA_INTREN                 0x44    /* DMA Interrupt Enable */
94 #define HIFN_DMA_CFG1                   0x48    /* DMA Configuration #1 */
95 #define HIFN_DMA_CFG2                   0x6C    /* DMA Configuration #2 */
96 #define HIFN_CHIP_ID                    0x98    /* Chip ID */
97
98 /*
99  * Processing Unit Registers (offset from BASEREG0)
100  */
101 #define HIFN_0_PUDATA           0x00    /* Processing Unit Data */
102 #define HIFN_0_PUCTRL           0x04    /* Processing Unit Control */
103 #define HIFN_0_PUISR            0x08    /* Processing Unit Interrupt Status */
104 #define HIFN_0_PUCNFG           0x0c    /* Processing Unit Configuration */
105 #define HIFN_0_PUIER            0x10    /* Processing Unit Interrupt Enable */
106 #define HIFN_0_PUSTAT           0x14    /* Processing Unit Status/Chip ID */
107 #define HIFN_0_FIFOSTAT         0x18    /* FIFO Status */
108 #define HIFN_0_FIFOCNFG         0x1c    /* FIFO Configuration */
109 #define HIFN_0_SPACESIZE        0x20    /* Register space size */
110
111 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
112 #define HIFN_PUCTRL_CLRSRCFIFO  0x0010  /* clear source fifo */
113 #define HIFN_PUCTRL_STOP        0x0008  /* stop pu */
114 #define HIFN_PUCTRL_LOCKRAM     0x0004  /* lock ram */
115 #define HIFN_PUCTRL_DMAENA      0x0002  /* enable dma */
116 #define HIFN_PUCTRL_RESET       0x0001  /* Reset processing unit */
117
118 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
119 #define HIFN_PUISR_CMDINVAL     0x8000  /* Invalid command interrupt */
120 #define HIFN_PUISR_DATAERR      0x4000  /* Data error interrupt */
121 #define HIFN_PUISR_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
122 #define HIFN_PUISR_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
123 #define HIFN_PUISR_DSTOVER      0x0200  /* Destination overrun interrupt */
124 #define HIFN_PUISR_SRCCMD       0x0080  /* Source command interrupt */
125 #define HIFN_PUISR_SRCCTX       0x0040  /* Source context interrupt */
126 #define HIFN_PUISR_SRCDATA      0x0020  /* Source data interrupt */
127 #define HIFN_PUISR_DSTDATA      0x0010  /* Destination data interrupt */
128 #define HIFN_PUISR_DSTRESULT    0x0004  /* Destination result interrupt */
129
130 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
131 #define HIFN_PUCNFG_DRAMMASK    0xe000  /* DRAM size mask */
132 #define HIFN_PUCNFG_DSZ_256K    0x0000  /* 256k dram */
133 #define HIFN_PUCNFG_DSZ_512K    0x2000  /* 512k dram */
134 #define HIFN_PUCNFG_DSZ_1M      0x4000  /* 1m dram */
135 #define HIFN_PUCNFG_DSZ_2M      0x6000  /* 2m dram */
136 #define HIFN_PUCNFG_DSZ_4M      0x8000  /* 4m dram */
137 #define HIFN_PUCNFG_DSZ_8M      0xa000  /* 8m dram */
138 #define HIFN_PUNCFG_DSZ_16M     0xc000  /* 16m dram */
139 #define HIFN_PUCNFG_DSZ_32M     0xe000  /* 32m dram */
140 #define HIFN_PUCNFG_DRAMREFRESH 0x1800  /* DRAM refresh rate mask */
141 #define HIFN_PUCNFG_DRFR_512    0x0000  /* 512 divisor of ECLK */
142 #define HIFN_PUCNFG_DRFR_256    0x0800  /* 256 divisor of ECLK */
143 #define HIFN_PUCNFG_DRFR_128    0x1000  /* 128 divisor of ECLK */
144 #define HIFN_PUCNFG_TCALLPHASES 0x0200  /* your guess is as good as mine... */
145 #define HIFN_PUCNFG_TCDRVTOTEM  0x0100  /* your guess is as good as mine... */
146 #define HIFN_PUCNFG_BIGENDIAN   0x0080  /* DMA big endian mode */
147 #define HIFN_PUCNFG_BUS32       0x0040  /* Bus width 32bits */
148 #define HIFN_PUCNFG_BUS16       0x0000  /* Bus width 16 bits */
149 #define HIFN_PUCNFG_CHIPID      0x0020  /* Allow chipid from PUSTAT */
150 #define HIFN_PUCNFG_DRAM        0x0010  /* Context RAM is DRAM */
151 #define HIFN_PUCNFG_SRAM        0x0000  /* Context RAM is SRAM */
152 #define HIFN_PUCNFG_COMPSING    0x0004  /* Enable single compression context */
153 #define HIFN_PUCNFG_ENCCNFG     0x0002  /* Encryption configuration */
154
155 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
156 #define HIFN_PUIER_CMDINVAL     0x8000  /* Invalid command interrupt */
157 #define HIFN_PUIER_DATAERR      0x4000  /* Data error interrupt */
158 #define HIFN_PUIER_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
159 #define HIFN_PUIER_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
160 #define HIFN_PUIER_DSTOVER      0x0200  /* Destination overrun interrupt */
161 #define HIFN_PUIER_SRCCMD       0x0080  /* Source command interrupt */
162 #define HIFN_PUIER_SRCCTX       0x0040  /* Source context interrupt */
163 #define HIFN_PUIER_SRCDATA      0x0020  /* Source data interrupt */
164 #define HIFN_PUIER_DSTDATA      0x0010  /* Destination data interrupt */
165 #define HIFN_PUIER_DSTRESULT    0x0004  /* Destination result interrupt */
166
167 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
168 #define HIFN_PUSTAT_CMDINVAL    0x8000  /* Invalid command interrupt */
169 #define HIFN_PUSTAT_DATAERR     0x4000  /* Data error interrupt */
170 #define HIFN_PUSTAT_SRCFIFO     0x2000  /* Source FIFO ready interrupt */
171 #define HIFN_PUSTAT_DSTFIFO     0x1000  /* Destination FIFO ready interrupt */
172 #define HIFN_PUSTAT_DSTOVER     0x0200  /* Destination overrun interrupt */
173 #define HIFN_PUSTAT_SRCCMD      0x0080  /* Source command interrupt */
174 #define HIFN_PUSTAT_SRCCTX      0x0040  /* Source context interrupt */
175 #define HIFN_PUSTAT_SRCDATA     0x0020  /* Source data interrupt */
176 #define HIFN_PUSTAT_DSTDATA     0x0010  /* Destination data interrupt */
177 #define HIFN_PUSTAT_DSTRESULT   0x0004  /* Destination result interrupt */
178 #define HIFN_PUSTAT_CHIPREV     0x00ff  /* Chip revision mask */
179 #define HIFN_PUSTAT_CHIPENA     0xff00  /* Chip enabled mask */
180 #define HIFN_PUSTAT_ENA_2       0x1100  /* Level 2 enabled */
181 #define HIFN_PUSTAT_ENA_1       0x1000  /* Level 1 enabled */
182 #define HIFN_PUSTAT_ENA_0       0x3000  /* Level 0 enabled */
183 #define HIFN_PUSTAT_REV_2       0x0020  /* 7751 PT6/2 */
184 #define HIFN_PUSTAT_REV_3       0x0030  /* 7751 PT6/3 */
185
186 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
187 #define HIFN_FIFOSTAT_SRC       0x7f00  /* Source FIFO available */
188 #define HIFN_FIFOSTAT_DST       0x007f  /* Destination FIFO available */
189
190 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
191 #define HIFN_FIFOCNFG_THRESHOLD 0x0400  /* must be written as 1 */
192
193 /*
194  * DMA Interface Registers (offset from BASEREG1)
195  */
196 #define HIFN_1_DMA_CRAR         0x0c    /* DMA Command Ring Address */
197 #define HIFN_1_DMA_SRAR         0x1c    /* DMA Source Ring Address */
198 #define HIFN_1_DMA_RRAR         0x2c    /* DMA Result Ring Address */
199 #define HIFN_1_DMA_DRAR         0x3c    /* DMA Destination Ring Address */
200 #define HIFN_1_DMA_CSR          0x40    /* DMA Status and Control */
201 #define HIFN_1_DMA_IER          0x44    /* DMA Interrupt Enable */
202 #define HIFN_1_DMA_CNFG         0x48    /* DMA Configuration */
203 #define HIFN_1_PLL              0x4c    /* 795x: PLL config */
204 #define HIFN_1_7811_RNGENA      0x60    /* 7811: rng enable */
205 #define HIFN_1_7811_RNGCFG      0x64    /* 7811: rng config */
206 #define HIFN_1_7811_RNGDAT      0x68    /* 7811: rng data */
207 #define HIFN_1_7811_RNGSTS      0x6c    /* 7811: rng status */
208 #define HIFN_1_7811_MIPSRST     0x94    /* 7811: MIPS reset */
209 #define HIFN_1_REVID            0x98    /* Revision ID */
210 #define HIFN_1_UNLOCK_SECRET1   0xf4
211 #define HIFN_1_UNLOCK_SECRET2   0xfc
212 #define HIFN_1_PUB_RESET        0x204   /* Public/RNG Reset */
213 #define HIFN_1_PUB_BASE         0x300   /* Public Base Address */
214 #define HIFN_1_PUB_OPLEN        0x304   /* Public Operand Length */
215 #define HIFN_1_PUB_OP           0x308   /* Public Operand */
216 #define HIFN_1_PUB_STATUS       0x30c   /* Public Status */
217 #define HIFN_1_PUB_IEN          0x310   /* Public Interrupt enable */
218 #define HIFN_1_RNG_CONFIG       0x314   /* RNG config */
219 #define HIFN_1_RNG_DATA         0x318   /* RNG data */
220 #define HIFN_1_PUB_MEM          0x400   /* start of Public key memory */
221 #define HIFN_1_PUB_MEMEND       0xbff   /* end of Public key memory */
222
223 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
224 #define HIFN_DMACSR_D_CTRLMASK  0xc0000000      /* Destinition Ring Control */
225 #define HIFN_DMACSR_D_CTRL_NOP  0x00000000      /* Dest. Control: no-op */
226 #define HIFN_DMACSR_D_CTRL_DIS  0x40000000      /* Dest. Control: disable */
227 #define HIFN_DMACSR_D_CTRL_ENA  0x80000000      /* Dest. Control: enable */
228 #define HIFN_DMACSR_D_ABORT     0x20000000      /* Destinition Ring PCIAbort */
229 #define HIFN_DMACSR_D_DONE      0x10000000      /* Destinition Ring Done */
230 #define HIFN_DMACSR_D_LAST      0x08000000      /* Destinition Ring Last */
231 #define HIFN_DMACSR_D_WAIT      0x04000000      /* Destinition Ring Waiting */
232 #define HIFN_DMACSR_D_OVER      0x02000000      /* Destinition Ring Overflow */
233 #define HIFN_DMACSR_R_CTRL      0x00c00000      /* Result Ring Control */
234 #define HIFN_DMACSR_R_CTRL_NOP  0x00000000      /* Result Control: no-op */
235 #define HIFN_DMACSR_R_CTRL_DIS  0x00400000      /* Result Control: disable */
236 #define HIFN_DMACSR_R_CTRL_ENA  0x00800000      /* Result Control: enable */
237 #define HIFN_DMACSR_R_ABORT     0x00200000      /* Result Ring PCI Abort */
238 #define HIFN_DMACSR_R_DONE      0x00100000      /* Result Ring Done */
239 #define HIFN_DMACSR_R_LAST      0x00080000      /* Result Ring Last */
240 #define HIFN_DMACSR_R_WAIT      0x00040000      /* Result Ring Waiting */
241 #define HIFN_DMACSR_R_OVER      0x00020000      /* Result Ring Overflow */
242 #define HIFN_DMACSR_S_CTRL      0x0000c000      /* Source Ring Control */
243 #define HIFN_DMACSR_S_CTRL_NOP  0x00000000      /* Source Control: no-op */
244 #define HIFN_DMACSR_S_CTRL_DIS  0x00004000      /* Source Control: disable */
245 #define HIFN_DMACSR_S_CTRL_ENA  0x00008000      /* Source Control: enable */
246 #define HIFN_DMACSR_S_ABORT     0x00002000      /* Source Ring PCI Abort */
247 #define HIFN_DMACSR_S_DONE      0x00001000      /* Source Ring Done */
248 #define HIFN_DMACSR_S_LAST      0x00000800      /* Source Ring Last */
249 #define HIFN_DMACSR_S_WAIT      0x00000400      /* Source Ring Waiting */
250 #define HIFN_DMACSR_ILLW        0x00000200      /* Illegal write (7811 only) */
251 #define HIFN_DMACSR_ILLR        0x00000100      /* Illegal read (7811 only) */
252 #define HIFN_DMACSR_C_CTRL      0x000000c0      /* Command Ring Control */
253 #define HIFN_DMACSR_C_CTRL_NOP  0x00000000      /* Command Control: no-op */
254 #define HIFN_DMACSR_C_CTRL_DIS  0x00000040      /* Command Control: disable */
255 #define HIFN_DMACSR_C_CTRL_ENA  0x00000080      /* Command Control: enable */
256 #define HIFN_DMACSR_C_ABORT     0x00000020      /* Command Ring PCI Abort */
257 #define HIFN_DMACSR_C_DONE      0x00000010      /* Command Ring Done */
258 #define HIFN_DMACSR_C_LAST      0x00000008      /* Command Ring Last */
259 #define HIFN_DMACSR_C_WAIT      0x00000004      /* Command Ring Waiting */
260 #define HIFN_DMACSR_PUBDONE     0x00000002      /* Public op done (7951 only) */
261 #define HIFN_DMACSR_ENGINE      0x00000001      /* Command Ring Engine IRQ */
262
263 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
264 #define HIFN_DMAIER_D_ABORT     0x20000000      /* Destination Ring PCIAbort */
265 #define HIFN_DMAIER_D_DONE      0x10000000      /* Destination Ring Done */
266 #define HIFN_DMAIER_D_LAST      0x08000000      /* Destination Ring Last */
267 #define HIFN_DMAIER_D_WAIT      0x04000000      /* Destination Ring Waiting */
268 #define HIFN_DMAIER_D_OVER      0x02000000      /* Destination Ring Overflow */
269 #define HIFN_DMAIER_R_ABORT     0x00200000      /* Result Ring PCI Abort */
270 #define HIFN_DMAIER_R_DONE      0x00100000      /* Result Ring Done */
271 #define HIFN_DMAIER_R_LAST      0x00080000      /* Result Ring Last */
272 #define HIFN_DMAIER_R_WAIT      0x00040000      /* Result Ring Waiting */
273 #define HIFN_DMAIER_R_OVER      0x00020000      /* Result Ring Overflow */
274 #define HIFN_DMAIER_S_ABORT     0x00002000      /* Source Ring PCI Abort */
275 #define HIFN_DMAIER_S_DONE      0x00001000      /* Source Ring Done */
276 #define HIFN_DMAIER_S_LAST      0x00000800      /* Source Ring Last */
277 #define HIFN_DMAIER_S_WAIT      0x00000400      /* Source Ring Waiting */
278 #define HIFN_DMAIER_ILLW        0x00000200      /* Illegal write (7811 only) */
279 #define HIFN_DMAIER_ILLR        0x00000100      /* Illegal read (7811 only) */
280 #define HIFN_DMAIER_C_ABORT     0x00000020      /* Command Ring PCI Abort */
281 #define HIFN_DMAIER_C_DONE      0x00000010      /* Command Ring Done */
282 #define HIFN_DMAIER_C_LAST      0x00000008      /* Command Ring Last */
283 #define HIFN_DMAIER_C_WAIT      0x00000004      /* Command Ring Waiting */
284 #define HIFN_DMAIER_PUBDONE     0x00000002      /* public op done (7951 only) */
285 #define HIFN_DMAIER_ENGINE      0x00000001      /* Engine IRQ */
286
287 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
288 #define HIFN_DMACNFG_BIGENDIAN  0x10000000      /* big endian mode */
289 #define HIFN_DMACNFG_POLLFREQ   0x00ff0000      /* Poll frequency mask */
290 #define HIFN_DMACNFG_UNLOCK     0x00000800
291 #define HIFN_DMACNFG_POLLINVAL  0x00000700      /* Invalid Poll Scalar */
292 #define HIFN_DMACNFG_LAST       0x00000010      /* Host control LAST bit */
293 #define HIFN_DMACNFG_MODE       0x00000004      /* DMA mode */
294 #define HIFN_DMACNFG_DMARESET   0x00000002      /* DMA Reset # */
295 #define HIFN_DMACNFG_MSTRESET   0x00000001      /* Master Reset # */
296
297 /* PLL configuration register */
298 #define HIFN_PLL_REF_CLK_HBI    0x00000000      /* HBI reference clock */
299 #define HIFN_PLL_REF_CLK_PLL    0x00000001      /* PLL reference clock */
300 #define HIFN_PLL_BP             0x00000002      /* Reference clock bypass */
301 #define HIFN_PLL_PK_CLK_HBI     0x00000000      /* PK engine HBI clock */
302 #define HIFN_PLL_PK_CLK_PLL     0x00000008      /* PK engine PLL clock */
303 #define HIFN_PLL_PE_CLK_HBI     0x00000000      /* PE engine HBI clock */
304 #define HIFN_PLL_PE_CLK_PLL     0x00000010      /* PE engine PLL clock */
305 #define HIFN_PLL_RESERVED_1     0x00000400      /* Reserved bit, must be 1 */
306 #define HIFN_PLL_ND_SHIFT       11              /* Clock multiplier shift */
307 #define HIFN_PLL_ND_MULT_2      0x00000000      /* PLL clock multiplier 2 */
308 #define HIFN_PLL_ND_MULT_4      0x00000800      /* PLL clock multiplier 4 */
309 #define HIFN_PLL_ND_MULT_6      0x00001000      /* PLL clock multiplier 6 */
310 #define HIFN_PLL_ND_MULT_8      0x00001800      /* PLL clock multiplier 8 */
311 #define HIFN_PLL_ND_MULT_10     0x00002000      /* PLL clock multiplier 10 */
312 #define HIFN_PLL_ND_MULT_12     0x00002800      /* PLL clock multiplier 12 */
313 #define HIFN_PLL_IS_1_8         0x00000000      /* charge pump (mult. 1-8) */
314 #define HIFN_PLL_IS_9_12        0x00010000      /* charge pump (mult. 9-12) */
315
316 #define HIFN_PLL_FCK_MAX        266             /* Maximum PLL frequency */
317
318 /* Public key reset register (HIFN_1_PUB_RESET) */
319 #define HIFN_PUBRST_RESET       0x00000001      /* reset public/rng unit */
320
321 /* Public base address register (HIFN_1_PUB_BASE) */
322 #define HIFN_PUBBASE_ADDR       0x00003fff      /* base address */
323
324 /* Public operand length register (HIFN_1_PUB_OPLEN) */
325 #define HIFN_PUBOPLEN_MOD_M     0x0000007f      /* modulus length mask */
326 #define HIFN_PUBOPLEN_MOD_S     0               /* modulus length shift */
327 #define HIFN_PUBOPLEN_EXP_M     0x0003ff80      /* exponent length mask */
328 #define HIFN_PUBOPLEN_EXP_S     7               /* exponent lenght shift */
329 #define HIFN_PUBOPLEN_RED_M     0x003c0000      /* reducend length mask */
330 #define HIFN_PUBOPLEN_RED_S     18              /* reducend length shift */
331
332 /* Public operation register (HIFN_1_PUB_OP) */
333 #define HIFN_PUBOP_AOFFSET_M    0x0000007f      /* A offset mask */
334 #define HIFN_PUBOP_AOFFSET_S    0               /* A offset shift */
335 #define HIFN_PUBOP_BOFFSET_M    0x00000f80      /* B offset mask */
336 #define HIFN_PUBOP_BOFFSET_S    7               /* B offset shift */
337 #define HIFN_PUBOP_MOFFSET_M    0x0003f000      /* M offset mask */
338 #define HIFN_PUBOP_MOFFSET_S    12              /* M offset shift */
339 #define HIFN_PUBOP_OP_MASK      0x003c0000      /* Opcode: */
340 #define HIFN_PUBOP_OP_NOP       0x00000000      /*  NOP */
341 #define HIFN_PUBOP_OP_ADD       0x00040000      /*  ADD */
342 #define HIFN_PUBOP_OP_ADDC      0x00080000      /*  ADD w/carry */
343 #define HIFN_PUBOP_OP_SUB       0x000c0000      /*  SUB */
344 #define HIFN_PUBOP_OP_SUBC      0x00100000      /*  SUB w/carry */
345 #define HIFN_PUBOP_OP_MODADD    0x00140000      /*  Modular ADD */
346 #define HIFN_PUBOP_OP_MODSUB    0x00180000      /*  Modular SUB */
347 #define HIFN_PUBOP_OP_INCA      0x001c0000      /*  INC A */
348 #define HIFN_PUBOP_OP_DECA      0x00200000      /*  DEC A */
349 #define HIFN_PUBOP_OP_MULT      0x00240000      /*  MULT */
350 #define HIFN_PUBOP_OP_MODMULT   0x00280000      /*  Modular MULT */
351 #define HIFN_PUBOP_OP_MODRED    0x002c0000      /*  Modular RED */
352 #define HIFN_PUBOP_OP_MODEXP    0x00300000      /*  Modular EXP */
353
354 /* Public status register (HIFN_1_PUB_STATUS) */
355 #define HIFN_PUBSTS_DONE        0x00000001      /* operation done */
356 #define HIFN_PUBSTS_CARRY       0x00000002      /* carry */
357
358 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
359 #define HIFN_PUBIEN_DONE        0x00000001      /* operation done interrupt */
360
361 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
362 #define HIFN_RNGCFG_ENA         0x00000001      /* enable rng */
363
364 #define HIFN_NAMESIZE                   32
365 #define HIFN_MAX_RESULT_ORDER           5
366
367 #define HIFN_D_CMD_RSIZE                24*4
368 #define HIFN_D_SRC_RSIZE                80*4
369 #define HIFN_D_DST_RSIZE                80*4
370 #define HIFN_D_RES_RSIZE                24*4
371
372 #define HIFN_QUEUE_LENGTH               HIFN_D_CMD_RSIZE-5
373
374 #define AES_MIN_KEY_SIZE                16
375 #define AES_MAX_KEY_SIZE                32
376
377 #define HIFN_DES_KEY_LENGTH             8
378 #define HIFN_3DES_KEY_LENGTH            24
379 #define HIFN_MAX_CRYPT_KEY_LENGTH       AES_MAX_KEY_SIZE
380 #define HIFN_IV_LENGTH                  8
381 #define HIFN_AES_IV_LENGTH              16
382 #define HIFN_MAX_IV_LENGTH              HIFN_AES_IV_LENGTH
383
384 #define HIFN_MAC_KEY_LENGTH             64
385 #define HIFN_MD5_LENGTH                 16
386 #define HIFN_SHA1_LENGTH                20
387 #define HIFN_MAC_TRUNC_LENGTH           12
388
389 #define HIFN_MAX_COMMAND                (8 + 8 + 8 + 64 + 260)
390 #define HIFN_MAX_RESULT                 (8 + 4 + 4 + 20 + 4)
391 #define HIFN_USED_RESULT                12
392
393 struct hifn_desc
394 {
395         volatile __le32         l;
396         volatile __le32         p;
397 };
398
399 struct hifn_dma {
400         struct hifn_desc        cmdr[HIFN_D_CMD_RSIZE+1];
401         struct hifn_desc        srcr[HIFN_D_SRC_RSIZE+1];
402         struct hifn_desc        dstr[HIFN_D_DST_RSIZE+1];
403         struct hifn_desc        resr[HIFN_D_RES_RSIZE+1];
404
405         u8                      command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
406         u8                      result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
407
408         u64                     test_src, test_dst;
409
410         /*
411          *  Our current positions for insertion and removal from the descriptor
412          *  rings.
413          */
414         volatile int            cmdi, srci, dsti, resi;
415         volatile int            cmdu, srcu, dstu, resu;
416         int                     cmdk, srck, dstk, resk;
417 };
418
419 #define HIFN_FLAG_CMD_BUSY      (1<<0)
420 #define HIFN_FLAG_SRC_BUSY      (1<<1)
421 #define HIFN_FLAG_DST_BUSY      (1<<2)
422 #define HIFN_FLAG_RES_BUSY      (1<<3)
423 #define HIFN_FLAG_OLD_KEY       (1<<4)
424
425 #define HIFN_DEFAULT_ACTIVE_NUM 5
426
427 struct hifn_device
428 {
429         char                    name[HIFN_NAMESIZE];
430
431         int                     irq;
432
433         struct pci_dev          *pdev;
434         void __iomem            *bar[3];
435
436         unsigned long           result_mem;
437         dma_addr_t              dst;
438
439         void                    *desc_virt;
440         dma_addr_t              desc_dma;
441
442         u32                     dmareg;
443
444         void                    *sa[HIFN_D_RES_RSIZE];
445
446         spinlock_t              lock;
447
448         void                    *priv;
449
450         u32                     flags;
451         int                     active, started;
452         struct delayed_work     work;
453         unsigned long           reset;
454         unsigned long           success;
455         unsigned long           prev_success;
456
457         u8                      snum;
458
459         struct tasklet_struct   tasklet;
460
461         struct crypto_queue     queue;
462         struct list_head        alg_list;
463
464         unsigned int            pk_clk_freq;
465
466 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
467         unsigned int            rng_wait_time;
468         ktime_t                 rngtime;
469         struct hwrng            rng;
470 #endif
471 };
472
473 #define HIFN_D_LENGTH                   0x0000ffff
474 #define HIFN_D_NOINVALID                0x01000000
475 #define HIFN_D_MASKDONEIRQ              0x02000000
476 #define HIFN_D_DESTOVER                 0x04000000
477 #define HIFN_D_OVER                     0x08000000
478 #define HIFN_D_LAST                     0x20000000
479 #define HIFN_D_JUMP                     0x40000000
480 #define HIFN_D_VALID                    0x80000000
481
482 struct hifn_base_command
483 {
484         volatile __le16         masks;
485         volatile __le16         session_num;
486         volatile __le16         total_source_count;
487         volatile __le16         total_dest_count;
488 };
489
490 #define HIFN_BASE_CMD_COMP              0x0100  /* enable compression engine */
491 #define HIFN_BASE_CMD_PAD               0x0200  /* enable padding engine */
492 #define HIFN_BASE_CMD_MAC               0x0400  /* enable MAC engine */
493 #define HIFN_BASE_CMD_CRYPT             0x0800  /* enable crypt engine */
494 #define HIFN_BASE_CMD_DECODE            0x2000
495 #define HIFN_BASE_CMD_SRCLEN_M          0xc000
496 #define HIFN_BASE_CMD_SRCLEN_S          14
497 #define HIFN_BASE_CMD_DSTLEN_M          0x3000
498 #define HIFN_BASE_CMD_DSTLEN_S          12
499 #define HIFN_BASE_CMD_LENMASK_HI        0x30000
500 #define HIFN_BASE_CMD_LENMASK_LO        0x0ffff
501
502 /*
503  * Structure to help build up the command data structure.
504  */
505 struct hifn_crypt_command
506 {
507         volatile __le16                 masks;
508         volatile __le16                 header_skip;
509         volatile __le16                 source_count;
510         volatile __le16                 reserved;
511 };
512
513 #define HIFN_CRYPT_CMD_ALG_MASK         0x0003          /* algorithm: */
514 #define HIFN_CRYPT_CMD_ALG_DES          0x0000          /*   DES */
515 #define HIFN_CRYPT_CMD_ALG_3DES         0x0001          /*   3DES */
516 #define HIFN_CRYPT_CMD_ALG_RC4          0x0002          /*   RC4 */
517 #define HIFN_CRYPT_CMD_ALG_AES          0x0003          /*   AES */
518 #define HIFN_CRYPT_CMD_MODE_MASK        0x0018          /* Encrypt mode: */
519 #define HIFN_CRYPT_CMD_MODE_ECB         0x0000          /*   ECB */
520 #define HIFN_CRYPT_CMD_MODE_CBC         0x0008          /*   CBC */
521 #define HIFN_CRYPT_CMD_MODE_CFB         0x0010          /*   CFB */
522 #define HIFN_CRYPT_CMD_MODE_OFB         0x0018          /*   OFB */
523 #define HIFN_CRYPT_CMD_CLR_CTX          0x0040          /* clear context */
524 #define HIFN_CRYPT_CMD_KSZ_MASK         0x0600          /* AES key size: */
525 #define HIFN_CRYPT_CMD_KSZ_128          0x0000          /*  128 bit */
526 #define HIFN_CRYPT_CMD_KSZ_192          0x0200          /*  192 bit */
527 #define HIFN_CRYPT_CMD_KSZ_256          0x0400          /*  256 bit */
528 #define HIFN_CRYPT_CMD_NEW_KEY          0x0800          /* expect new key */
529 #define HIFN_CRYPT_CMD_NEW_IV           0x1000          /* expect new iv */
530 #define HIFN_CRYPT_CMD_SRCLEN_M         0xc000
531 #define HIFN_CRYPT_CMD_SRCLEN_S         14
532
533 /*
534  * Structure to help build up the command data structure.
535  */
536 struct hifn_mac_command
537 {
538         volatile u16            masks;
539         volatile u16            header_skip;
540         volatile u16            source_count;
541         volatile u16            reserved;
542 };
543
544 #define HIFN_MAC_CMD_ALG_MASK           0x0001
545 #define HIFN_MAC_CMD_ALG_SHA1           0x0000
546 #define HIFN_MAC_CMD_ALG_MD5            0x0001
547 #define HIFN_MAC_CMD_MODE_MASK          0x000c
548 #define HIFN_MAC_CMD_MODE_HMAC          0x0000
549 #define HIFN_MAC_CMD_MODE_SSL_MAC       0x0004
550 #define HIFN_MAC_CMD_MODE_HASH          0x0008
551 #define HIFN_MAC_CMD_MODE_FULL          0x0004
552 #define HIFN_MAC_CMD_TRUNC              0x0010
553 #define HIFN_MAC_CMD_RESULT             0x0020
554 #define HIFN_MAC_CMD_APPEND             0x0040
555 #define HIFN_MAC_CMD_SRCLEN_M           0xc000
556 #define HIFN_MAC_CMD_SRCLEN_S           14
557
558 /*
559  * MAC POS IPsec initiates authentication after encryption on encodes
560  * and before decryption on decodes.
561  */
562 #define HIFN_MAC_CMD_POS_IPSEC          0x0200
563 #define HIFN_MAC_CMD_NEW_KEY            0x0800
564
565 struct hifn_comp_command
566 {
567         volatile u16            masks;
568         volatile u16            header_skip;
569         volatile u16            source_count;
570         volatile u16            reserved;
571 };
572
573 #define HIFN_COMP_CMD_SRCLEN_M          0xc000
574 #define HIFN_COMP_CMD_SRCLEN_S          14
575 #define HIFN_COMP_CMD_ONE               0x0100  /* must be one */
576 #define HIFN_COMP_CMD_CLEARHIST         0x0010  /* clear history */
577 #define HIFN_COMP_CMD_UPDATEHIST        0x0008  /* update history */
578 #define HIFN_COMP_CMD_LZS_STRIP0        0x0004  /* LZS: strip zero */
579 #define HIFN_COMP_CMD_MPPC_RESTART      0x0004  /* MPPC: restart */
580 #define HIFN_COMP_CMD_ALG_MASK          0x0001  /* compression mode: */
581 #define HIFN_COMP_CMD_ALG_MPPC          0x0001  /*   MPPC */
582 #define HIFN_COMP_CMD_ALG_LZS           0x0000  /*   LZS */
583
584 struct hifn_base_result
585 {
586         volatile u16            flags;
587         volatile u16            session;
588         volatile u16            src_cnt;                /* 15:0 of source count */
589         volatile u16            dst_cnt;                /* 15:0 of dest count */
590 };
591
592 #define HIFN_BASE_RES_DSTOVERRUN        0x0200  /* destination overrun */
593 #define HIFN_BASE_RES_SRCLEN_M          0xc000  /* 17:16 of source count */
594 #define HIFN_BASE_RES_SRCLEN_S          14
595 #define HIFN_BASE_RES_DSTLEN_M          0x3000  /* 17:16 of dest count */
596 #define HIFN_BASE_RES_DSTLEN_S          12
597
598 struct hifn_comp_result
599 {
600         volatile u16            flags;
601         volatile u16            crc;
602 };
603
604 #define HIFN_COMP_RES_LCB_M             0xff00  /* longitudinal check byte */
605 #define HIFN_COMP_RES_LCB_S             8
606 #define HIFN_COMP_RES_RESTART           0x0004  /* MPPC: restart */
607 #define HIFN_COMP_RES_ENDMARKER         0x0002  /* LZS: end marker seen */
608 #define HIFN_COMP_RES_SRC_NOTZERO       0x0001  /* source expired */
609
610 struct hifn_mac_result
611 {
612         volatile u16            flags;
613         volatile u16            reserved;
614         /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
615 };
616
617 #define HIFN_MAC_RES_MISCOMPARE         0x0002  /* compare failed */
618 #define HIFN_MAC_RES_SRC_NOTZERO        0x0001  /* source expired */
619
620 struct hifn_crypt_result
621 {
622         volatile u16            flags;
623         volatile u16            reserved;
624 };
625
626 #define HIFN_CRYPT_RES_SRC_NOTZERO      0x0001  /* source expired */
627
628 #ifndef HIFN_POLL_FREQUENCY
629 #define HIFN_POLL_FREQUENCY     0x1
630 #endif
631
632 #ifndef HIFN_POLL_SCALAR
633 #define HIFN_POLL_SCALAR        0x0
634 #endif
635
636 #define HIFN_MAX_SEGLEN         0xffff          /* maximum dma segment len */
637 #define HIFN_MAX_DMALEN         0x3ffff         /* maximum dma length */
638
639 struct hifn_crypto_alg
640 {
641         struct list_head        entry;
642         struct crypto_alg       alg;
643         struct hifn_device      *dev;
644 };
645
646 #define ASYNC_SCATTERLIST_CACHE 16
647
648 #define ASYNC_FLAGS_MISALIGNED  (1<<0)
649
650 struct ablkcipher_walk
651 {
652         struct scatterlist      cache[ASYNC_SCATTERLIST_CACHE];
653         u32                     flags;
654         int                     num;
655 };
656
657 struct hifn_context
658 {
659         u8                      key[HIFN_MAX_CRYPT_KEY_LENGTH], *iv;
660         struct hifn_device      *dev;
661         unsigned int            keysize, ivsize;
662         u8                      op, type, mode, unused;
663         struct ablkcipher_walk  walk;
664         atomic_t                sg_num;
665 };
666
667 #define crypto_alg_to_hifn(a)   container_of(a, struct hifn_crypto_alg, alg)
668
669 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
670 {
671         u32 ret;
672
673         ret = readl(dev->bar[0] + reg);
674
675         return ret;
676 }
677
678 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
679 {
680         u32 ret;
681
682         ret = readl(dev->bar[1] + reg);
683
684         return ret;
685 }
686
687 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
688 {
689         writel(val, dev->bar[0] + reg);
690 }
691
692 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
693 {
694         writel(val, dev->bar[1] + reg);
695 }
696
697 static void hifn_wait_puc(struct hifn_device *dev)
698 {
699         int i;
700         u32 ret;
701
702         for (i=10000; i > 0; --i) {
703                 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
704                 if (!(ret & HIFN_PUCTRL_RESET))
705                         break;
706
707                 udelay(1);
708         }
709
710         if (!i)
711                 dprintk("%s: Failed to reset PUC unit.\n", dev->name);
712 }
713
714 static void hifn_reset_puc(struct hifn_device *dev)
715 {
716         hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
717         hifn_wait_puc(dev);
718 }
719
720 static void hifn_stop_device(struct hifn_device *dev)
721 {
722         hifn_write_1(dev, HIFN_1_DMA_CSR,
723                 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
724                 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
725         hifn_write_0(dev, HIFN_0_PUIER, 0);
726         hifn_write_1(dev, HIFN_1_DMA_IER, 0);
727 }
728
729 static void hifn_reset_dma(struct hifn_device *dev, int full)
730 {
731         hifn_stop_device(dev);
732
733         /*
734          * Setting poll frequency and others to 0.
735          */
736         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
737                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
738         mdelay(1);
739
740         /*
741          * Reset DMA.
742          */
743         if (full) {
744                 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
745                 mdelay(1);
746         } else {
747                 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
748                                 HIFN_DMACNFG_MSTRESET);
749                 hifn_reset_puc(dev);
750         }
751
752         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
753                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
754
755         hifn_reset_puc(dev);
756 }
757
758 static u32 hifn_next_signature(u_int32_t a, u_int cnt)
759 {
760         int i;
761         u32 v;
762
763         for (i = 0; i < cnt; i++) {
764
765                 /* get the parity */
766                 v = a & 0x80080125;
767                 v ^= v >> 16;
768                 v ^= v >> 8;
769                 v ^= v >> 4;
770                 v ^= v >> 2;
771                 v ^= v >> 1;
772
773                 a = (v & 1) ^ (a << 1);
774         }
775
776         return a;
777 }
778
779 static struct pci2id {
780         u_short         pci_vendor;
781         u_short         pci_prod;
782         char            card_id[13];
783 } pci2id[] = {
784         {
785                 PCI_VENDOR_ID_HIFN,
786                 PCI_DEVICE_ID_HIFN_7955,
787                 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
788                   0x00, 0x00, 0x00, 0x00, 0x00 }
789         },
790         {
791                 PCI_VENDOR_ID_HIFN,
792                 PCI_DEVICE_ID_HIFN_7956,
793                 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
794                   0x00, 0x00, 0x00, 0x00, 0x00 }
795         }
796 };
797
798 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
799 static int hifn_rng_data_present(struct hwrng *rng, int wait)
800 {
801         struct hifn_device *dev = (struct hifn_device *)rng->priv;
802         s64 nsec;
803
804         nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
805         nsec -= dev->rng_wait_time;
806         if (nsec <= 0)
807                 return 1;
808         if (!wait)
809                 return 0;
810         ndelay(nsec);
811         return 1;
812 }
813
814 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
815 {
816         struct hifn_device *dev = (struct hifn_device *)rng->priv;
817
818         *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
819         dev->rngtime = ktime_get();
820         return 4;
821 }
822
823 static int hifn_register_rng(struct hifn_device *dev)
824 {
825         /*
826          * We must wait at least 256 Pk_clk cycles between two reads of the rng.
827          */
828         dev->rng_wait_time      = DIV_ROUND_UP(NSEC_PER_SEC, dev->pk_clk_freq) *
829                                   256;
830
831         dev->rng.name           = dev->name;
832         dev->rng.data_present   = hifn_rng_data_present,
833         dev->rng.data_read      = hifn_rng_data_read,
834         dev->rng.priv           = (unsigned long)dev;
835
836         return hwrng_register(&dev->rng);
837 }
838
839 static void hifn_unregister_rng(struct hifn_device *dev)
840 {
841         hwrng_unregister(&dev->rng);
842 }
843 #else
844 #define hifn_register_rng(dev)          0
845 #define hifn_unregister_rng(dev)
846 #endif
847
848 static int hifn_init_pubrng(struct hifn_device *dev)
849 {
850         int i;
851
852         hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
853                         HIFN_PUBRST_RESET);
854
855         for (i=100; i > 0; --i) {
856                 mdelay(1);
857
858                 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
859                         break;
860         }
861
862         if (!i)
863                 dprintk("Chip %s: Failed to initialise public key engine.\n",
864                                 dev->name);
865         else {
866                 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
867                 dev->dmareg |= HIFN_DMAIER_PUBDONE;
868                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
869
870                 dprintk("Chip %s: Public key engine has been sucessfully "
871                                 "initialised.\n", dev->name);
872         }
873
874         /*
875          * Enable RNG engine.
876          */
877
878         hifn_write_1(dev, HIFN_1_RNG_CONFIG,
879                         hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
880         dprintk("Chip %s: RNG engine has been successfully initialised.\n",
881                         dev->name);
882
883 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
884         /* First value must be discarded */
885         hifn_read_1(dev, HIFN_1_RNG_DATA);
886         dev->rngtime = ktime_get();
887 #endif
888         return 0;
889 }
890
891 static int hifn_enable_crypto(struct hifn_device *dev)
892 {
893         u32 dmacfg, addr;
894         char *offtbl = NULL;
895         int i;
896
897         for (i = 0; i < sizeof(pci2id)/sizeof(pci2id[0]); i++) {
898                 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
899                                 pci2id[i].pci_prod == dev->pdev->device) {
900                         offtbl = pci2id[i].card_id;
901                         break;
902                 }
903         }
904
905         if (offtbl == NULL) {
906                 dprintk("Chip %s: Unknown card!\n", dev->name);
907                 return -ENODEV;
908         }
909
910         dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
911
912         hifn_write_1(dev, HIFN_1_DMA_CNFG,
913                         HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
914                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
915         mdelay(1);
916         addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
917         mdelay(1);
918         hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
919         mdelay(1);
920
921         for (i=0; i<12; ++i) {
922                 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
923                 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
924
925                 mdelay(1);
926         }
927         hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
928
929         dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
930
931         return 0;
932 }
933
934 static void hifn_init_dma(struct hifn_device *dev)
935 {
936         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
937         u32 dptr = dev->desc_dma;
938         int i;
939
940         for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
941                 dma->cmdr[i].p = __cpu_to_le32(dptr +
942                                 offsetof(struct hifn_dma, command_bufs[i][0]));
943         for (i=0; i<HIFN_D_RES_RSIZE; ++i)
944                 dma->resr[i].p = __cpu_to_le32(dptr +
945                                 offsetof(struct hifn_dma, result_bufs[i][0]));
946
947         /*
948          * Setup LAST descriptors.
949          */
950         dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
951                         offsetof(struct hifn_dma, cmdr[0]));
952         dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
953                         offsetof(struct hifn_dma, srcr[0]));
954         dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
955                         offsetof(struct hifn_dma, dstr[0]));
956         dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
957                         offsetof(struct hifn_dma, resr[0]));
958
959         dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
960         dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
961         dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
962 }
963
964 /*
965  * Initialize the PLL. We need to know the frequency of the reference clock
966  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
967  * allows us to operate without the risk of overclocking the chip. If it
968  * actually uses 33MHz, the chip will operate at half the speed, this can be
969  * overriden by specifying the frequency as module parameter (pci33).
970  *
971  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
972  * stable clock and the PCI clock frequency may vary, so the default is the
973  * external clock. There is no way to find out its frequency, we default to
974  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
975  * has an external crystal populated at 66MHz.
976  */
977 static void hifn_init_pll(struct hifn_device *dev)
978 {
979         unsigned int freq, m;
980         u32 pllcfg;
981
982         pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
983
984         if (strncmp(hifn_pll_ref, "ext", 3) == 0)
985                 pllcfg |= HIFN_PLL_REF_CLK_PLL;
986         else
987                 pllcfg |= HIFN_PLL_REF_CLK_HBI;
988
989         if (hifn_pll_ref[3] != '\0')
990                 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
991         else {
992                 freq = 66;
993                 printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
994                                  "override with hifn_pll_ref=%.3s<frequency>\n",
995                        freq, hifn_pll_ref);
996         }
997
998         m = HIFN_PLL_FCK_MAX / freq;
999
1000         pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
1001         if (m <= 8)
1002                 pllcfg |= HIFN_PLL_IS_1_8;
1003         else
1004                 pllcfg |= HIFN_PLL_IS_9_12;
1005
1006         /* Select clock source and enable clock bypass */
1007         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1008                      HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
1009
1010         /* Let the chip lock to the input clock */
1011         mdelay(10);
1012
1013         /* Disable clock bypass */
1014         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1015                      HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
1016
1017         /* Switch the engines to the PLL */
1018         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1019                      HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
1020
1021         /*
1022          * The Fpk_clk runs at half the total speed. Its frequency is needed to
1023          * calculate the minimum time between two reads of the rng. Since 33MHz
1024          * is actually 33.333... we overestimate the frequency here, resulting
1025          * in slightly larger intervals.
1026          */
1027         dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
1028 }
1029
1030 static void hifn_init_registers(struct hifn_device *dev)
1031 {
1032         u32 dptr = dev->desc_dma;
1033
1034         /* Initialization magic... */
1035         hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
1036         hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
1037         hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
1038
1039         /* write all 4 ring address registers */
1040         hifn_write_1(dev, HIFN_1_DMA_CRAR, __cpu_to_le32(dptr +
1041                                 offsetof(struct hifn_dma, cmdr[0])));
1042         hifn_write_1(dev, HIFN_1_DMA_SRAR, __cpu_to_le32(dptr +
1043                                 offsetof(struct hifn_dma, srcr[0])));
1044         hifn_write_1(dev, HIFN_1_DMA_DRAR, __cpu_to_le32(dptr +
1045                                 offsetof(struct hifn_dma, dstr[0])));
1046         hifn_write_1(dev, HIFN_1_DMA_RRAR, __cpu_to_le32(dptr +
1047                                 offsetof(struct hifn_dma, resr[0])));
1048
1049         mdelay(2);
1050 #if 0
1051         hifn_write_1(dev, HIFN_1_DMA_CSR,
1052             HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1053             HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1054             HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1055             HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1056             HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1057             HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1058             HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1059             HIFN_DMACSR_S_WAIT |
1060             HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1061             HIFN_DMACSR_C_WAIT |
1062             HIFN_DMACSR_ENGINE |
1063             HIFN_DMACSR_PUBDONE);
1064 #else
1065         hifn_write_1(dev, HIFN_1_DMA_CSR,
1066             HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1067             HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1068             HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1069             HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1070             HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1071             HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1072             HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1073             HIFN_DMACSR_S_WAIT |
1074             HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1075             HIFN_DMACSR_C_WAIT |
1076             HIFN_DMACSR_ENGINE |
1077             HIFN_DMACSR_PUBDONE);
1078 #endif
1079         hifn_read_1(dev, HIFN_1_DMA_CSR);
1080
1081         dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1082             HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1083             HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1084             HIFN_DMAIER_ENGINE;
1085         dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1086
1087         hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1088         hifn_read_1(dev, HIFN_1_DMA_IER);
1089 #if 0
1090         hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1091                     HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1092                     HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1093                     HIFN_PUCNFG_DRAM);
1094 #else
1095         hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1096 #endif
1097         hifn_init_pll(dev);
1098
1099         hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1100         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1101             HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1102             ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1103             ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1104 }
1105
1106 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1107                 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1108 {
1109         struct hifn_base_command *base_cmd;
1110         u8 *buf_pos = buf;
1111
1112         base_cmd = (struct hifn_base_command *)buf_pos;
1113         base_cmd->masks = __cpu_to_le16(mask);
1114         base_cmd->total_source_count =
1115                 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1116         base_cmd->total_dest_count =
1117                 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1118
1119         dlen >>= 16;
1120         slen >>= 16;
1121         base_cmd->session_num = __cpu_to_le16(snum |
1122             ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1123             ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1124
1125         return sizeof(struct hifn_base_command);
1126 }
1127
1128 static int hifn_setup_crypto_command(struct hifn_device *dev,
1129                 u8 *buf, unsigned dlen, unsigned slen,
1130                 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1131 {
1132         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1133         struct hifn_crypt_command *cry_cmd;
1134         u8 *buf_pos = buf;
1135         u16 cmd_len;
1136
1137         cry_cmd = (struct hifn_crypt_command *)buf_pos;
1138
1139         cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1140         dlen >>= 16;
1141         cry_cmd->masks = __cpu_to_le16(mode |
1142                         ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1143                          HIFN_CRYPT_CMD_SRCLEN_M));
1144         cry_cmd->header_skip = 0;
1145         cry_cmd->reserved = 0;
1146
1147         buf_pos += sizeof(struct hifn_crypt_command);
1148
1149         dma->cmdu++;
1150         if (dma->cmdu > 1) {
1151                 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1152                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1153         }
1154
1155         if (keylen) {
1156                 memcpy(buf_pos, key, keylen);
1157                 buf_pos += keylen;
1158         }
1159         if (ivsize) {
1160                 memcpy(buf_pos, iv, ivsize);
1161                 buf_pos += ivsize;
1162         }
1163
1164         cmd_len = buf_pos - buf;
1165
1166         return cmd_len;
1167 }
1168
1169 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1170                 unsigned int offset, unsigned int size)
1171 {
1172         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1173         int idx;
1174         dma_addr_t addr;
1175
1176         addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1177
1178         idx = dma->srci;
1179
1180         dma->srcr[idx].p = __cpu_to_le32(addr);
1181         dma->srcr[idx].l = __cpu_to_le32(size) | HIFN_D_VALID |
1182                         HIFN_D_MASKDONEIRQ | HIFN_D_NOINVALID | HIFN_D_LAST;
1183
1184         if (++idx == HIFN_D_SRC_RSIZE) {
1185                 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1186                                 HIFN_D_JUMP |
1187                                 HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1188                 idx = 0;
1189         }
1190
1191         dma->srci = idx;
1192         dma->srcu++;
1193
1194         if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1195                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1196                 dev->flags |= HIFN_FLAG_SRC_BUSY;
1197         }
1198
1199         return size;
1200 }
1201
1202 static void hifn_setup_res_desc(struct hifn_device *dev)
1203 {
1204         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1205
1206         dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1207                         HIFN_D_VALID | HIFN_D_LAST);
1208         /*
1209          * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1210          *                                      HIFN_D_LAST | HIFN_D_NOINVALID);
1211          */
1212
1213         if (++dma->resi == HIFN_D_RES_RSIZE) {
1214                 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1215                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1216                 dma->resi = 0;
1217         }
1218
1219         dma->resu++;
1220
1221         if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1222                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1223                 dev->flags |= HIFN_FLAG_RES_BUSY;
1224         }
1225 }
1226
1227 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1228                 unsigned offset, unsigned size)
1229 {
1230         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1231         int idx;
1232         dma_addr_t addr;
1233
1234         addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1235
1236         idx = dma->dsti;
1237         dma->dstr[idx].p = __cpu_to_le32(addr);
1238         dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1239                         HIFN_D_MASKDONEIRQ | HIFN_D_NOINVALID | HIFN_D_LAST);
1240
1241         if (++idx == HIFN_D_DST_RSIZE) {
1242                 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1243                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1244                                 HIFN_D_LAST | HIFN_D_NOINVALID);
1245                 idx = 0;
1246         }
1247         dma->dsti = idx;
1248         dma->dstu++;
1249
1250         if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1251                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1252                 dev->flags |= HIFN_FLAG_DST_BUSY;
1253         }
1254 }
1255
1256 static int hifn_setup_dma(struct hifn_device *dev, struct page *spage, unsigned int soff,
1257                 struct page *dpage, unsigned int doff, unsigned int nbytes, void *priv,
1258                 struct hifn_context *ctx)
1259 {
1260         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1261         int cmd_len, sa_idx;
1262         u8 *buf, *buf_pos;
1263         u16 mask;
1264
1265         dprintk("%s: spage: %p, soffset: %u, dpage: %p, doffset: %u, nbytes: %u, priv: %p, ctx: %p.\n",
1266                         dev->name, spage, soff, dpage, doff, nbytes, priv, ctx);
1267
1268         sa_idx = dma->resi;
1269
1270         hifn_setup_src_desc(dev, spage, soff, nbytes);
1271
1272         buf_pos = buf = dma->command_bufs[dma->cmdi];
1273
1274         mask = 0;
1275         switch (ctx->op) {
1276                 case ACRYPTO_OP_DECRYPT:
1277                         mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1278                         break;
1279                 case ACRYPTO_OP_ENCRYPT:
1280                         mask = HIFN_BASE_CMD_CRYPT;
1281                         break;
1282                 case ACRYPTO_OP_HMAC:
1283                         mask = HIFN_BASE_CMD_MAC;
1284                         break;
1285                 default:
1286                         goto err_out;
1287         }
1288
1289         buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1290                         nbytes, mask, dev->snum);
1291
1292         if (ctx->op == ACRYPTO_OP_ENCRYPT || ctx->op == ACRYPTO_OP_DECRYPT) {
1293                 u16 md = 0;
1294
1295                 if (ctx->keysize)
1296                         md |= HIFN_CRYPT_CMD_NEW_KEY;
1297                 if (ctx->iv && ctx->mode != ACRYPTO_MODE_ECB)
1298                         md |= HIFN_CRYPT_CMD_NEW_IV;
1299
1300                 switch (ctx->mode) {
1301                         case ACRYPTO_MODE_ECB:
1302                                 md |= HIFN_CRYPT_CMD_MODE_ECB;
1303                                 break;
1304                         case ACRYPTO_MODE_CBC:
1305                                 md |= HIFN_CRYPT_CMD_MODE_CBC;
1306                                 break;
1307                         case ACRYPTO_MODE_CFB:
1308                                 md |= HIFN_CRYPT_CMD_MODE_CFB;
1309                                 break;
1310                         case ACRYPTO_MODE_OFB:
1311                                 md |= HIFN_CRYPT_CMD_MODE_OFB;
1312                                 break;
1313                         default:
1314                                 goto err_out;
1315                 }
1316
1317                 switch (ctx->type) {
1318                         case ACRYPTO_TYPE_AES_128:
1319                                 if (ctx->keysize != 16)
1320                                         goto err_out;
1321                                 md |= HIFN_CRYPT_CMD_KSZ_128 |
1322                                         HIFN_CRYPT_CMD_ALG_AES;
1323                                 break;
1324                         case ACRYPTO_TYPE_AES_192:
1325                                 if (ctx->keysize != 24)
1326                                         goto err_out;
1327                                 md |= HIFN_CRYPT_CMD_KSZ_192 |
1328                                         HIFN_CRYPT_CMD_ALG_AES;
1329                                 break;
1330                         case ACRYPTO_TYPE_AES_256:
1331                                 if (ctx->keysize != 32)
1332                                         goto err_out;
1333                                 md |= HIFN_CRYPT_CMD_KSZ_256 |
1334                                         HIFN_CRYPT_CMD_ALG_AES;
1335                                 break;
1336                         case ACRYPTO_TYPE_3DES:
1337                                 if (ctx->keysize != 24)
1338                                         goto err_out;
1339                                 md |= HIFN_CRYPT_CMD_ALG_3DES;
1340                                 break;
1341                         case ACRYPTO_TYPE_DES:
1342                                 if (ctx->keysize != 8)
1343                                         goto err_out;
1344                                 md |= HIFN_CRYPT_CMD_ALG_DES;
1345                                 break;
1346                         default:
1347                                 goto err_out;
1348                 }
1349
1350                 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1351                                 nbytes, nbytes, ctx->key, ctx->keysize,
1352                                 ctx->iv, ctx->ivsize, md);
1353         }
1354
1355         dev->sa[sa_idx] = priv;
1356
1357         cmd_len = buf_pos - buf;
1358         dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1359                         HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1360
1361         if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1362                 dma->cmdr[dma->cmdi].l = __cpu_to_le32(HIFN_MAX_COMMAND |
1363                         HIFN_D_VALID | HIFN_D_LAST |
1364                         HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1365                 dma->cmdi = 0;
1366         } else
1367                 dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
1368
1369         if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1370                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1371                 dev->flags |= HIFN_FLAG_CMD_BUSY;
1372         }
1373
1374         hifn_setup_dst_desc(dev, dpage, doff, nbytes);
1375         hifn_setup_res_desc(dev);
1376
1377         return 0;
1378
1379 err_out:
1380         return -EINVAL;
1381 }
1382
1383 static int ablkcipher_walk_init(struct ablkcipher_walk *w,
1384                 int num, gfp_t gfp_flags)
1385 {
1386         int i;
1387
1388         num = min(ASYNC_SCATTERLIST_CACHE, num);
1389         sg_init_table(w->cache, num);
1390
1391         w->num = 0;
1392         for (i=0; i<num; ++i) {
1393                 struct page *page = alloc_page(gfp_flags);
1394                 struct scatterlist *s;
1395
1396                 if (!page)
1397                         break;
1398
1399                 s = &w->cache[i];
1400
1401                 sg_set_page(s, page, PAGE_SIZE, 0);
1402                 w->num++;
1403         }
1404
1405         return i;
1406 }
1407
1408 static void ablkcipher_walk_exit(struct ablkcipher_walk *w)
1409 {
1410         int i;
1411
1412         for (i=0; i<w->num; ++i) {
1413                 struct scatterlist *s = &w->cache[i];
1414
1415                 __free_page(sg_page(s));
1416
1417                 s->length = 0;
1418         }
1419
1420         w->num = 0;
1421 }
1422
1423 static int ablkcipher_add(void *daddr, unsigned int *drestp, struct scatterlist *src,
1424                 unsigned int size, unsigned int *nbytesp)
1425 {
1426         unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1427         int idx = 0;
1428         void *saddr;
1429
1430         if (drest < size || size > nbytes)
1431                 return -EINVAL;
1432
1433         while (size) {
1434                 copy = min(drest, src->length);
1435
1436                 saddr = kmap_atomic(sg_page(src), KM_SOFTIRQ1);
1437                 memcpy(daddr, saddr + src->offset, copy);
1438                 kunmap_atomic(saddr, KM_SOFTIRQ1);
1439
1440                 size -= copy;
1441                 drest -= copy;
1442                 nbytes -= copy;
1443                 daddr += copy;
1444
1445                 dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1446                                 __func__, copy, size, drest, nbytes);
1447
1448                 src++;
1449                 idx++;
1450         }
1451
1452         *nbytesp = nbytes;
1453         *drestp = drest;
1454
1455         return idx;
1456 }
1457
1458 static int ablkcipher_walk(struct ablkcipher_request *req,
1459                 struct ablkcipher_walk *w)
1460 {
1461         unsigned blocksize =
1462                 crypto_ablkcipher_blocksize(crypto_ablkcipher_reqtfm(req));
1463         unsigned alignmask =
1464                 crypto_ablkcipher_alignmask(crypto_ablkcipher_reqtfm(req));
1465         struct scatterlist *src, *dst, *t;
1466         void *daddr;
1467         unsigned int nbytes = req->nbytes, offset, copy, diff;
1468         int idx, tidx, err;
1469
1470         tidx = idx = 0;
1471         offset = 0;
1472         while (nbytes) {
1473                 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1474                         return -EINVAL;
1475
1476                 src = &req->src[idx];
1477                 dst = &req->dst[idx];
1478
1479                 dprintk("\n%s: slen: %u, dlen: %u, soff: %u, doff: %u, offset: %u, "
1480                                 "blocksize: %u, nbytes: %u.\n",
1481                                 __func__, src->length, dst->length, src->offset,
1482                                 dst->offset, offset, blocksize, nbytes);
1483
1484                 if (src->length & (blocksize - 1) ||
1485                                 src->offset & (alignmask - 1) ||
1486                                 dst->length & (blocksize - 1) ||
1487                                 dst->offset & (alignmask - 1) ||
1488                                 offset) {
1489                         unsigned slen = src->length - offset;
1490                         unsigned dlen = PAGE_SIZE;
1491
1492                         t = &w->cache[idx];
1493
1494                         daddr = kmap_atomic(sg_page(t), KM_SOFTIRQ0);
1495                         err = ablkcipher_add(daddr, &dlen, src, slen, &nbytes);
1496                         if (err < 0)
1497                                 goto err_out_unmap;
1498
1499                         idx += err;
1500
1501                         copy = slen & ~(blocksize - 1);
1502                         diff = slen & (blocksize - 1);
1503
1504                         if (dlen < nbytes) {
1505                                 /*
1506                                  * Destination page does not have enough space
1507                                  * to put there additional blocksized chunk,
1508                                  * so we mark that page as containing only
1509                                  * blocksize aligned chunks:
1510                                  *      t->length = (slen & ~(blocksize - 1));
1511                                  * and increase number of bytes to be processed
1512                                  * in next chunk:
1513                                  *      nbytes += diff;
1514                                  */
1515                                 nbytes += diff;
1516
1517                                 /*
1518                                  * Temporary of course...
1519                                  * Kick author if you will catch this one.
1520                                  */
1521                                 printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
1522                                         "slen: %u, offset: %u.\n",
1523                                         __func__, dlen, nbytes, slen, offset);
1524                                 printk(KERN_ERR "%s: please contact author to fix this "
1525                                         "issue, generally you should not catch "
1526                                         "this path under any condition but who "
1527                                         "knows how did you use crypto code.\n"
1528                                         "Thank you.\n", __func__);
1529                                 BUG();
1530                         } else {
1531                                 copy += diff + nbytes;
1532
1533                                 src = &req->src[idx];
1534
1535                                 err = ablkcipher_add(daddr + slen, &dlen, src, nbytes, &nbytes);
1536                                 if (err < 0)
1537                                         goto err_out_unmap;
1538
1539                                 idx += err;
1540                         }
1541
1542                         t->length = copy;
1543                         t->offset = offset;
1544
1545                         kunmap_atomic(daddr, KM_SOFTIRQ0);
1546                 } else {
1547                         nbytes -= src->length;
1548                         idx++;
1549                 }
1550
1551                 tidx++;
1552         }
1553
1554         return tidx;
1555
1556 err_out_unmap:
1557         kunmap_atomic(daddr, KM_SOFTIRQ0);
1558         return err;
1559 }
1560
1561 static int hifn_setup_session(struct ablkcipher_request *req)
1562 {
1563         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1564         struct hifn_device *dev = ctx->dev;
1565         struct page *spage, *dpage;
1566         unsigned long soff, doff, flags;
1567         unsigned int nbytes = req->nbytes, idx = 0, len;
1568         int err = -EINVAL, sg_num;
1569         struct scatterlist *src, *dst, *t;
1570         unsigned blocksize =
1571                 crypto_ablkcipher_blocksize(crypto_ablkcipher_reqtfm(req));
1572         unsigned alignmask =
1573                 crypto_ablkcipher_alignmask(crypto_ablkcipher_reqtfm(req));
1574
1575         if (ctx->iv && !ctx->ivsize && ctx->mode != ACRYPTO_MODE_ECB)
1576                 goto err_out_exit;
1577
1578         ctx->walk.flags = 0;
1579
1580         while (nbytes) {
1581                 src = &req->src[idx];
1582                 dst = &req->dst[idx];
1583
1584                 if (src->length & (blocksize - 1) ||
1585                                 src->offset & (alignmask - 1) ||
1586                                 dst->length & (blocksize - 1) ||
1587                                 dst->offset & (alignmask - 1)) {
1588                         ctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1589                 }
1590
1591                 nbytes -= src->length;
1592                 idx++;
1593         }
1594
1595         if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1596                 err = ablkcipher_walk_init(&ctx->walk, idx, GFP_ATOMIC);
1597                 if (err < 0)
1598                         return err;
1599         }
1600
1601         nbytes = req->nbytes;
1602         idx = 0;
1603
1604         sg_num = ablkcipher_walk(req, &ctx->walk);
1605
1606         atomic_set(&ctx->sg_num, sg_num);
1607
1608         spin_lock_irqsave(&dev->lock, flags);
1609         if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1610                 err = -EAGAIN;
1611                 goto err_out;
1612         }
1613
1614         dev->snum++;
1615         dev->started += sg_num;
1616
1617         while (nbytes) {
1618                 src = &req->src[idx];
1619                 dst = &req->dst[idx];
1620                 t = &ctx->walk.cache[idx];
1621
1622                 if (t->length) {
1623                         spage = dpage = sg_page(t);
1624                         soff = doff = 0;
1625                         len = t->length;
1626                 } else {
1627                         spage = sg_page(src);
1628                         soff = src->offset;
1629
1630                         dpage = sg_page(dst);
1631                         doff = dst->offset;
1632
1633                         len = dst->length;
1634                 }
1635
1636                 idx++;
1637
1638                 err = hifn_setup_dma(dev, spage, soff, dpage, doff, nbytes,
1639                                 req, ctx);
1640                 if (err)
1641                         goto err_out;
1642
1643                 nbytes -= len;
1644         }
1645
1646         dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1647         spin_unlock_irqrestore(&dev->lock, flags);
1648
1649         return 0;
1650
1651 err_out:
1652         spin_unlock_irqrestore(&dev->lock, flags);
1653 err_out_exit:
1654         if (err && printk_ratelimit())
1655                 dprintk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1656                                 "type: %u, err: %d.\n",
1657                         dev->name, ctx->iv, ctx->ivsize,
1658                         ctx->key, ctx->keysize,
1659                         ctx->mode, ctx->op, ctx->type, err);
1660
1661         return err;
1662 }
1663
1664 static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
1665 {
1666         int n, err;
1667         u8 src[16];
1668         struct hifn_context ctx;
1669         u8 fips_aes_ecb_from_zero[16] = {
1670                 0x66, 0xE9, 0x4B, 0xD4,
1671                 0xEF, 0x8A, 0x2C, 0x3B,
1672                 0x88, 0x4C, 0xFA, 0x59,
1673                 0xCA, 0x34, 0x2B, 0x2E};
1674
1675         memset(src, 0, sizeof(src));
1676         memset(ctx.key, 0, sizeof(ctx.key));
1677
1678         ctx.dev = dev;
1679         ctx.keysize = 16;
1680         ctx.ivsize = 0;
1681         ctx.iv = NULL;
1682         ctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
1683         ctx.mode = ACRYPTO_MODE_ECB;
1684         ctx.type = ACRYPTO_TYPE_AES_128;
1685         atomic_set(&ctx.sg_num, 1);
1686
1687         err = hifn_setup_dma(dev,
1688                         virt_to_page(src), offset_in_page(src),
1689                         virt_to_page(src), offset_in_page(src),
1690                         sizeof(src), NULL, &ctx);
1691         if (err)
1692                 goto err_out;
1693
1694         msleep(200);
1695
1696         dprintk("%s: decoded: ", dev->name);
1697         for (n=0; n<sizeof(src); ++n)
1698                 dprintk("%02x ", src[n]);
1699         dprintk("\n");
1700         dprintk("%s: FIPS   : ", dev->name);
1701         for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
1702                 dprintk("%02x ", fips_aes_ecb_from_zero[n]);
1703         dprintk("\n");
1704
1705         if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
1706                 printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
1707                                 "passed.\n", dev->name);
1708                 return 0;
1709         }
1710
1711 err_out:
1712         printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
1713         return -1;
1714 }
1715
1716 static int hifn_start_device(struct hifn_device *dev)
1717 {
1718         int err;
1719
1720         hifn_reset_dma(dev, 1);
1721
1722         err = hifn_enable_crypto(dev);
1723         if (err)
1724                 return err;
1725
1726         hifn_reset_puc(dev);
1727
1728         hifn_init_dma(dev);
1729
1730         hifn_init_registers(dev);
1731
1732         hifn_init_pubrng(dev);
1733
1734         return 0;
1735 }
1736
1737 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1738                 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1739 {
1740         unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1741         void *daddr;
1742         int idx = 0;
1743
1744         if (srest < size || size > nbytes)
1745                 return -EINVAL;
1746
1747         while (size) {
1748
1749                 copy = min(dst->length, srest);
1750
1751                 daddr = kmap_atomic(sg_page(dst), KM_IRQ0);
1752                 memcpy(daddr + dst->offset + offset, saddr, copy);
1753                 kunmap_atomic(daddr, KM_IRQ0);
1754
1755                 nbytes -= copy;
1756                 size -= copy;
1757                 srest -= copy;
1758                 saddr += copy;
1759                 offset = 0;
1760
1761                 dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1762                                 __func__, copy, size, srest, nbytes);
1763
1764                 dst++;
1765                 idx++;
1766         }
1767
1768         *nbytesp = nbytes;
1769         *srestp = srest;
1770
1771         return idx;
1772 }
1773
1774 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1775 {
1776         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1777         struct hifn_device *dev;
1778
1779         dprintk("%s: req: %p, ctx: %p.\n", __func__, req, ctx);
1780
1781         dev = ctx->dev;
1782         dprintk("%s: req: %p, started: %d, sg_num: %d.\n",
1783                 __func__, req, dev->started, atomic_read(&ctx->sg_num));
1784
1785         if (--dev->started < 0)
1786                 BUG();
1787
1788         if (atomic_dec_and_test(&ctx->sg_num)) {
1789                 unsigned int nbytes = req->nbytes;
1790                 int idx = 0, err;
1791                 struct scatterlist *dst, *t;
1792                 void *saddr;
1793
1794                 if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1795                         while (nbytes) {
1796                                 t = &ctx->walk.cache[idx];
1797                                 dst = &req->dst[idx];
1798
1799                                 dprintk("\n%s: sg_page(t): %p, t->length: %u, "
1800                                         "sg_page(dst): %p, dst->length: %u, "
1801                                         "nbytes: %u.\n",
1802                                         __func__, sg_page(t), t->length,
1803                                         sg_page(dst), dst->length, nbytes);
1804
1805                                 if (!t->length) {
1806                                         nbytes -= dst->length;
1807                                         idx++;
1808                                         continue;
1809                                 }
1810
1811                                 saddr = kmap_atomic(sg_page(t), KM_IRQ1);
1812
1813                                 err = ablkcipher_get(saddr, &t->length, t->offset,
1814                                                 dst, nbytes, &nbytes);
1815                                 if (err < 0) {
1816                                         kunmap_atomic(saddr, KM_IRQ1);
1817                                         break;
1818                                 }
1819
1820                                 idx += err;
1821                                 kunmap_atomic(saddr, KM_IRQ1);
1822                         }
1823
1824                         ablkcipher_walk_exit(&ctx->walk);
1825                 }
1826
1827                 req->base.complete(&req->base, error);
1828         }
1829 }
1830
1831 static void hifn_check_for_completion(struct hifn_device *dev, int error)
1832 {
1833         int i;
1834         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1835
1836         for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
1837                 struct hifn_desc *d = &dma->resr[i];
1838
1839                 if (!(d->l & __cpu_to_le32(HIFN_D_VALID)) && dev->sa[i]) {
1840                         dev->success++;
1841                         dev->reset = 0;
1842                         hifn_process_ready(dev->sa[i], error);
1843                         dev->sa[i] = NULL;
1844                 }
1845
1846                 if (d->l & __cpu_to_le32(HIFN_D_DESTOVER | HIFN_D_OVER))
1847                         if (printk_ratelimit())
1848                                 printk("%s: overflow detected [d: %u, o: %u] "
1849                                                 "at %d resr: l: %08x, p: %08x.\n",
1850                                         dev->name,
1851                                         !!(d->l & __cpu_to_le32(HIFN_D_DESTOVER)),
1852                                         !!(d->l & __cpu_to_le32(HIFN_D_OVER)),
1853                                         i, d->l, d->p);
1854         }
1855 }
1856
1857 static void hifn_clear_rings(struct hifn_device *dev)
1858 {
1859         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1860         int i, u;
1861
1862         dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1863                         "k: %d.%d.%d.%d.\n",
1864                         dev->name,
1865                         dma->cmdi, dma->srci, dma->dsti, dma->resi,
1866                         dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1867                         dma->cmdk, dma->srck, dma->dstk, dma->resk);
1868
1869         i = dma->resk; u = dma->resu;
1870         while (u != 0) {
1871                 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1872                         break;
1873
1874                 if (i != HIFN_D_RES_RSIZE)
1875                         u--;
1876
1877                 if (++i == (HIFN_D_RES_RSIZE + 1))
1878                         i = 0;
1879         }
1880         dma->resk = i; dma->resu = u;
1881
1882         i = dma->srck; u = dma->srcu;
1883         while (u != 0) {
1884                 if (i == HIFN_D_SRC_RSIZE)
1885                         i = 0;
1886                 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1887                         break;
1888                 i++, u--;
1889         }
1890         dma->srck = i; dma->srcu = u;
1891
1892         i = dma->cmdk; u = dma->cmdu;
1893         while (u != 0) {
1894                 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1895                         break;
1896                 if (i != HIFN_D_CMD_RSIZE)
1897                         u--;
1898                 if (++i == (HIFN_D_CMD_RSIZE + 1))
1899                         i = 0;
1900         }
1901         dma->cmdk = i; dma->cmdu = u;
1902
1903         i = dma->dstk; u = dma->dstu;
1904         while (u != 0) {
1905                 if (i == HIFN_D_DST_RSIZE)
1906                         i = 0;
1907                 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1908                         break;
1909                 i++, u--;
1910         }
1911         dma->dstk = i; dma->dstu = u;
1912
1913         dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1914                         "k: %d.%d.%d.%d.\n",
1915                         dev->name,
1916                         dma->cmdi, dma->srci, dma->dsti, dma->resi,
1917                         dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1918                         dma->cmdk, dma->srck, dma->dstk, dma->resk);
1919 }
1920
1921 static void hifn_work(struct work_struct *work)
1922 {
1923         struct delayed_work *dw = container_of(work, struct delayed_work, work);
1924         struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1925         unsigned long flags;
1926         int reset = 0;
1927         u32 r = 0;
1928
1929         spin_lock_irqsave(&dev->lock, flags);
1930         if (dev->active == 0) {
1931                 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1932
1933                 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1934                         dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1935                         r |= HIFN_DMACSR_C_CTRL_DIS;
1936                 }
1937                 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1938                         dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1939                         r |= HIFN_DMACSR_S_CTRL_DIS;
1940                 }
1941                 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1942                         dev->flags &= ~HIFN_FLAG_DST_BUSY;
1943                         r |= HIFN_DMACSR_D_CTRL_DIS;
1944                 }
1945                 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1946                         dev->flags &= ~HIFN_FLAG_RES_BUSY;
1947                         r |= HIFN_DMACSR_R_CTRL_DIS;
1948                 }
1949                 if (r)
1950                         hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1951         } else
1952                 dev->active--;
1953
1954         if (dev->prev_success == dev->success && dev->started)
1955                 reset = 1;
1956         dev->prev_success = dev->success;
1957         spin_unlock_irqrestore(&dev->lock, flags);
1958
1959         if (reset) {
1960                 dprintk("%s: r: %08x, active: %d, started: %d, "
1961                                 "success: %lu: reset: %d.\n",
1962                         dev->name, r, dev->active, dev->started,
1963                         dev->success, reset);
1964
1965                 if (++dev->reset >= 5) {
1966                         dprintk("%s: really hard reset.\n", dev->name);
1967                         hifn_reset_dma(dev, 1);
1968                         hifn_stop_device(dev);
1969                         hifn_start_device(dev);
1970                         dev->reset = 0;
1971                 }
1972
1973                 spin_lock_irqsave(&dev->lock, flags);
1974                 hifn_check_for_completion(dev, -EBUSY);
1975                 hifn_clear_rings(dev);
1976                 dev->started = 0;
1977                 spin_unlock_irqrestore(&dev->lock, flags);
1978         }
1979
1980         schedule_delayed_work(&dev->work, HZ);
1981 }
1982
1983 static irqreturn_t hifn_interrupt(int irq, void *data)
1984 {
1985         struct hifn_device *dev = (struct hifn_device *)data;
1986         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1987         u32 dmacsr, restart;
1988
1989         dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1990
1991         dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1992                         "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1993                 dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1994                 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1995                 dma->cmdi, dma->srci, dma->dsti, dma->resi);
1996
1997         if ((dmacsr & dev->dmareg) == 0)
1998                 return IRQ_NONE;
1999
2000         hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
2001
2002         if (dmacsr & HIFN_DMACSR_ENGINE)
2003                 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
2004         if (dmacsr & HIFN_DMACSR_PUBDONE)
2005                 hifn_write_1(dev, HIFN_1_PUB_STATUS,
2006                         hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
2007
2008         restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
2009         if (restart) {
2010                 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
2011
2012                 if (printk_ratelimit())
2013                         printk("%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
2014                                 dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
2015                                 !!(dmacsr & HIFN_DMACSR_D_OVER),
2016                                 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
2017                 if (!!(puisr & HIFN_PUISR_DSTOVER))
2018                         hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
2019                 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
2020                                         HIFN_DMACSR_D_OVER));
2021         }
2022
2023         restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
2024                         HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
2025         if (restart) {
2026                 if (printk_ratelimit())
2027                         printk("%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
2028                                 dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
2029                                 !!(dmacsr & HIFN_DMACSR_S_ABORT),
2030                                 !!(dmacsr & HIFN_DMACSR_D_ABORT),
2031                                 !!(dmacsr & HIFN_DMACSR_R_ABORT));
2032                 hifn_reset_dma(dev, 1);
2033                 hifn_init_dma(dev);
2034                 hifn_init_registers(dev);
2035         }
2036
2037         if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
2038                 dprintk("%s: wait on command.\n", dev->name);
2039                 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
2040                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
2041         }
2042
2043         tasklet_schedule(&dev->tasklet);
2044         hifn_clear_rings(dev);
2045
2046         return IRQ_HANDLED;
2047 }
2048
2049 static void hifn_flush(struct hifn_device *dev)
2050 {
2051         unsigned long flags;
2052         struct crypto_async_request *async_req;
2053         struct hifn_context *ctx;
2054         struct ablkcipher_request *req;
2055         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
2056         int i;
2057
2058         spin_lock_irqsave(&dev->lock, flags);
2059         for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
2060                 struct hifn_desc *d = &dma->resr[i];
2061
2062                 if (dev->sa[i]) {
2063                         hifn_process_ready(dev->sa[i],
2064                                 (d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
2065                 }
2066         }
2067
2068         while ((async_req = crypto_dequeue_request(&dev->queue))) {
2069                 ctx = crypto_tfm_ctx(async_req->tfm);
2070                 req = container_of(async_req, struct ablkcipher_request, base);
2071
2072                 hifn_process_ready(req, -ENODEV);
2073         }
2074         spin_unlock_irqrestore(&dev->lock, flags);
2075 }
2076
2077 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
2078                 unsigned int len)
2079 {
2080         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2081         struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2082         struct hifn_device *dev = ctx->dev;
2083
2084         if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
2085                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2086                 return -1;
2087         }
2088
2089         if (len == HIFN_DES_KEY_LENGTH) {
2090                 u32 tmp[DES_EXPKEY_WORDS];
2091                 int ret = des_ekey(tmp, key);
2092                 
2093                 if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
2094                         tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
2095                         return -EINVAL;
2096                 }
2097         }
2098
2099         dev->flags &= ~HIFN_FLAG_OLD_KEY;
2100
2101         memcpy(ctx->key, key, len);
2102         ctx->keysize = len;
2103
2104         return 0;
2105 }
2106
2107 static int hifn_handle_req(struct ablkcipher_request *req)
2108 {
2109         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2110         struct hifn_device *dev = ctx->dev;
2111         int err = -EAGAIN;
2112
2113         if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2114                 err = hifn_setup_session(req);
2115
2116         if (err == -EAGAIN) {
2117                 unsigned long flags;
2118
2119                 spin_lock_irqsave(&dev->lock, flags);
2120                 err = ablkcipher_enqueue_request(&dev->queue, req);
2121                 spin_unlock_irqrestore(&dev->lock, flags);
2122         }
2123
2124         return err;
2125 }
2126
2127 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2128                 u8 type, u8 mode)
2129 {
2130         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2131         unsigned ivsize;
2132
2133         ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2134
2135         if (req->info && mode != ACRYPTO_MODE_ECB) {
2136                 if (type == ACRYPTO_TYPE_AES_128)
2137                         ivsize = HIFN_AES_IV_LENGTH;
2138                 else if (type == ACRYPTO_TYPE_DES)
2139                         ivsize = HIFN_DES_KEY_LENGTH;
2140                 else if (type == ACRYPTO_TYPE_3DES)
2141                         ivsize = HIFN_3DES_KEY_LENGTH;
2142         }
2143
2144         if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2145                 if (ctx->keysize == 24)
2146                         type = ACRYPTO_TYPE_AES_192;
2147                 else if (ctx->keysize == 32)
2148                         type = ACRYPTO_TYPE_AES_256;
2149         }
2150
2151         ctx->op = op;
2152         ctx->mode = mode;
2153         ctx->type = type;
2154         ctx->iv = req->info;
2155         ctx->ivsize = ivsize;
2156
2157         /*
2158          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2159          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2160          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2161          */
2162
2163         return hifn_handle_req(req);
2164 }
2165
2166 static int hifn_process_queue(struct hifn_device *dev)
2167 {
2168         struct crypto_async_request *async_req;
2169         struct hifn_context *ctx;
2170         struct ablkcipher_request *req;
2171         unsigned long flags;
2172         int err = 0;
2173
2174         while (dev->started < HIFN_QUEUE_LENGTH) {
2175                 spin_lock_irqsave(&dev->lock, flags);
2176                 async_req = crypto_dequeue_request(&dev->queue);
2177                 spin_unlock_irqrestore(&dev->lock, flags);
2178
2179                 if (!async_req)
2180                         break;
2181
2182                 ctx = crypto_tfm_ctx(async_req->tfm);
2183                 req = container_of(async_req, struct ablkcipher_request, base);
2184
2185                 err = hifn_handle_req(req);
2186                 if (err)
2187                         break;
2188         }
2189
2190         return err;
2191 }
2192
2193 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2194                 u8 type, u8 mode)
2195 {
2196         int err;
2197         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2198         struct hifn_device *dev = ctx->dev;
2199
2200         err = hifn_setup_crypto_req(req, op, type, mode);
2201         if (err)
2202                 return err;
2203
2204         if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2205                 err = hifn_process_queue(dev);
2206
2207         return err;
2208 }
2209
2210 /*
2211  * AES ecryption functions.
2212  */
2213 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2214 {
2215         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2216                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2217 }
2218 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2219 {
2220         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2221                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2222 }
2223 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2224 {
2225         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2226                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2227 }
2228 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2229 {
2230         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2231                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2232 }
2233
2234 /*
2235  * AES decryption functions.
2236  */
2237 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2238 {
2239         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2240                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2241 }
2242 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2243 {
2244         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2245                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2246 }
2247 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2248 {
2249         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2250                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2251 }
2252 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2253 {
2254         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2255                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2256 }
2257
2258 /*
2259  * DES ecryption functions.
2260  */
2261 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2262 {
2263         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2264                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2265 }
2266 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2267 {
2268         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2269                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2270 }
2271 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2272 {
2273         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2274                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2275 }
2276 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2277 {
2278         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2279                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2280 }
2281
2282 /*
2283  * DES decryption functions.
2284  */
2285 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2286 {
2287         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2288                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2289 }
2290 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2291 {
2292         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2293                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2294 }
2295 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2296 {
2297         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2298                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2299 }
2300 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2301 {
2302         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2303                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2304 }
2305
2306 /*
2307  * 3DES ecryption functions.
2308  */
2309 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2310 {
2311         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2312                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2313 }
2314 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2315 {
2316         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2317                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2318 }
2319 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2320 {
2321         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2322                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2323 }
2324 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2325 {
2326         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2327                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2328 }
2329
2330 /*
2331  * 3DES decryption functions.
2332  */
2333 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2334 {
2335         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2336                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2337 }
2338 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2339 {
2340         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2341                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2342 }
2343 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2344 {
2345         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2346                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2347 }
2348 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2349 {
2350         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2351                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2352 }
2353
2354 struct hifn_alg_template
2355 {
2356         char name[CRYPTO_MAX_ALG_NAME];
2357         char drv_name[CRYPTO_MAX_ALG_NAME];
2358         unsigned int bsize;
2359         struct ablkcipher_alg ablkcipher;
2360 };
2361
2362 static struct hifn_alg_template hifn_alg_templates[] = {
2363         /*
2364          * 3DES ECB, CBC, CFB and OFB modes.
2365          */
2366         {
2367                 .name = "cfb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
2368                 .ablkcipher = {
2369                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2370                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2371                         .setkey         =       hifn_setkey,
2372                         .encrypt        =       hifn_encrypt_3des_cfb,
2373                         .decrypt        =       hifn_decrypt_3des_cfb,
2374                 },
2375         },
2376         {
2377                 .name = "ofb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
2378                 .ablkcipher = {
2379                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2380                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2381                         .setkey         =       hifn_setkey,
2382                         .encrypt        =       hifn_encrypt_3des_ofb,
2383                         .decrypt        =       hifn_decrypt_3des_ofb,
2384                 },
2385         },
2386         {
2387                 .name = "cbc(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
2388                 .ablkcipher = {
2389                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2390                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2391                         .setkey         =       hifn_setkey,
2392                         .encrypt        =       hifn_encrypt_3des_cbc,
2393                         .decrypt        =       hifn_decrypt_3des_cbc,
2394                 },
2395         },
2396         {
2397                 .name = "ecb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
2398                 .ablkcipher = {
2399                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2400                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2401                         .setkey         =       hifn_setkey,
2402                         .encrypt        =       hifn_encrypt_3des_ecb,
2403                         .decrypt        =       hifn_decrypt_3des_ecb,
2404                 },
2405         },
2406
2407         /*
2408          * DES ECB, CBC, CFB and OFB modes.
2409          */
2410         {
2411                 .name = "cfb(des)", .drv_name = "hifn-des", .bsize = 8,
2412                 .ablkcipher = {
2413                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2414                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2415                         .setkey         =       hifn_setkey,
2416                         .encrypt        =       hifn_encrypt_des_cfb,
2417                         .decrypt        =       hifn_decrypt_des_cfb,
2418                 },
2419         },
2420         {
2421                 .name = "ofb(des)", .drv_name = "hifn-des", .bsize = 8,
2422                 .ablkcipher = {
2423                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2424                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2425                         .setkey         =       hifn_setkey,
2426                         .encrypt        =       hifn_encrypt_des_ofb,
2427                         .decrypt        =       hifn_decrypt_des_ofb,
2428                 },
2429         },
2430         {
2431                 .name = "cbc(des)", .drv_name = "hifn-des", .bsize = 8,
2432                 .ablkcipher = {
2433                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2434                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2435                         .setkey         =       hifn_setkey,
2436                         .encrypt        =       hifn_encrypt_des_cbc,
2437                         .decrypt        =       hifn_decrypt_des_cbc,
2438                 },
2439         },
2440         {
2441                 .name = "ecb(des)", .drv_name = "hifn-des", .bsize = 8,
2442                 .ablkcipher = {
2443                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2444                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2445                         .setkey         =       hifn_setkey,
2446                         .encrypt        =       hifn_encrypt_des_ecb,
2447                         .decrypt        =       hifn_decrypt_des_ecb,
2448                 },
2449         },
2450
2451         /*
2452          * AES ECB, CBC, CFB and OFB modes.
2453          */
2454         {
2455                 .name = "ecb(aes)", .drv_name = "hifn-aes", .bsize = 16,
2456                 .ablkcipher = {
2457                         .min_keysize    =       AES_MIN_KEY_SIZE,
2458                         .max_keysize    =       AES_MAX_KEY_SIZE,
2459                         .setkey         =       hifn_setkey,
2460                         .encrypt        =       hifn_encrypt_aes_ecb,
2461                         .decrypt        =       hifn_decrypt_aes_ecb,
2462                 },
2463         },
2464         {
2465                 .name = "cbc(aes)", .drv_name = "hifn-aes", .bsize = 16,
2466                 .ablkcipher = {
2467                         .min_keysize    =       AES_MIN_KEY_SIZE,
2468                         .max_keysize    =       AES_MAX_KEY_SIZE,
2469                         .setkey         =       hifn_setkey,
2470                         .encrypt        =       hifn_encrypt_aes_cbc,
2471                         .decrypt        =       hifn_decrypt_aes_cbc,
2472                 },
2473         },
2474         {
2475                 .name = "cfb(aes)", .drv_name = "hifn-aes", .bsize = 16,
2476                 .ablkcipher = {
2477                         .min_keysize    =       AES_MIN_KEY_SIZE,
2478                         .max_keysize    =       AES_MAX_KEY_SIZE,
2479                         .setkey         =       hifn_setkey,
2480                         .encrypt        =       hifn_encrypt_aes_cfb,
2481                         .decrypt        =       hifn_decrypt_aes_cfb,
2482                 },
2483         },
2484         {
2485                 .name = "ofb(aes)", .drv_name = "hifn-aes", .bsize = 16,
2486                 .ablkcipher = {
2487                         .min_keysize    =       AES_MIN_KEY_SIZE,
2488                         .max_keysize    =       AES_MAX_KEY_SIZE,
2489                         .setkey         =       hifn_setkey,
2490                         .encrypt        =       hifn_encrypt_aes_ofb,
2491                         .decrypt        =       hifn_decrypt_aes_ofb,
2492                 },
2493         },
2494 };
2495
2496 static int hifn_cra_init(struct crypto_tfm *tfm)
2497 {
2498         struct crypto_alg *alg = tfm->__crt_alg;
2499         struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2500         struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2501
2502         ctx->dev = ha->dev;
2503
2504         return 0;
2505 }
2506
2507 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2508 {
2509         struct hifn_crypto_alg *alg;
2510         int err;
2511
2512         alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
2513         if (!alg)
2514                 return -ENOMEM;
2515
2516         snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2517         snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", t->drv_name);
2518
2519         alg->alg.cra_priority = 300;
2520         alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
2521         alg->alg.cra_blocksize = t->bsize;
2522         alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2523         alg->alg.cra_alignmask = 15;
2524         if (t->bsize == 8)
2525                 alg->alg.cra_alignmask = 3;
2526         alg->alg.cra_type = &crypto_ablkcipher_type;
2527         alg->alg.cra_module = THIS_MODULE;
2528         alg->alg.cra_u.ablkcipher = t->ablkcipher;
2529         alg->alg.cra_init = hifn_cra_init;
2530
2531         alg->dev = dev;
2532
2533         list_add_tail(&alg->entry, &dev->alg_list);
2534
2535         err = crypto_register_alg(&alg->alg);
2536         if (err) {
2537                 list_del(&alg->entry);
2538                 kfree(alg);
2539         }
2540
2541         return err;
2542 }
2543
2544 static void hifn_unregister_alg(struct hifn_device *dev)
2545 {
2546         struct hifn_crypto_alg *a, *n;
2547
2548         list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2549                 list_del(&a->entry);
2550                 crypto_unregister_alg(&a->alg);
2551                 kfree(a);
2552         }
2553 }
2554
2555 static int hifn_register_alg(struct hifn_device *dev)
2556 {
2557         int i, err;
2558
2559         for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
2560                 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2561                 if (err)
2562                         goto err_out_exit;
2563         }
2564
2565         return 0;
2566
2567 err_out_exit:
2568         hifn_unregister_alg(dev);
2569         return err;
2570 }
2571
2572 static void hifn_tasklet_callback(unsigned long data)
2573 {
2574         struct hifn_device *dev = (struct hifn_device *)data;
2575
2576         /*
2577          * This is ok to call this without lock being held,
2578          * althogh it modifies some parameters used in parallel,
2579          * (like dev->success), but they are used in process
2580          * context or update is atomic (like setting dev->sa[i] to NULL).
2581          */
2582         hifn_check_for_completion(dev, 0);
2583 }
2584
2585 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2586 {
2587         int err, i;
2588         struct hifn_device *dev;
2589         char name[8];
2590
2591         err = pci_enable_device(pdev);
2592         if (err)
2593                 return err;
2594         pci_set_master(pdev);
2595
2596         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2597         if (err)
2598                 goto err_out_disable_pci_device;
2599
2600         snprintf(name, sizeof(name), "hifn%d",
2601                         atomic_inc_return(&hifn_dev_number)-1);
2602
2603         err = pci_request_regions(pdev, name);
2604         if (err)
2605                 goto err_out_disable_pci_device;
2606
2607         if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2608             pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2609             pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2610                 dprintk("%s: Broken hardware - I/O regions are too small.\n",
2611                                 pci_name(pdev));
2612                 err = -ENODEV;
2613                 goto err_out_free_regions;
2614         }
2615
2616         dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2617                         GFP_KERNEL);
2618         if (!dev) {
2619                 err = -ENOMEM;
2620                 goto err_out_free_regions;
2621         }
2622
2623         INIT_LIST_HEAD(&dev->alg_list);
2624
2625         snprintf(dev->name, sizeof(dev->name), "%s", name);
2626         spin_lock_init(&dev->lock);
2627
2628         for (i=0; i<3; ++i) {
2629                 unsigned long addr, size;
2630
2631                 addr = pci_resource_start(pdev, i);
2632                 size = pci_resource_len(pdev, i);
2633
2634                 dev->bar[i] = ioremap_nocache(addr, size);
2635                 if (!dev->bar[i])
2636                         goto err_out_unmap_bars;
2637         }
2638
2639         dev->result_mem = __get_free_pages(GFP_KERNEL, HIFN_MAX_RESULT_ORDER);
2640         if (!dev->result_mem) {
2641                 dprintk("Failed to allocate %d pages for result_mem.\n",
2642                                 HIFN_MAX_RESULT_ORDER);
2643                 goto err_out_unmap_bars;
2644         }
2645         memset((void *)dev->result_mem, 0, PAGE_SIZE*(1<<HIFN_MAX_RESULT_ORDER));
2646
2647         dev->dst = pci_map_single(pdev, (void *)dev->result_mem,
2648                         PAGE_SIZE << HIFN_MAX_RESULT_ORDER, PCI_DMA_FROMDEVICE);
2649
2650         dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma),
2651                         &dev->desc_dma);
2652         if (!dev->desc_virt) {
2653                 dprintk("Failed to allocate descriptor rings.\n");
2654                 goto err_out_free_result_pages;
2655         }
2656         memset(dev->desc_virt, 0, sizeof(struct hifn_dma));
2657
2658         dev->pdev = pdev;
2659         dev->irq = pdev->irq;
2660
2661         for (i=0; i<HIFN_D_RES_RSIZE; ++i)
2662                 dev->sa[i] = NULL;
2663
2664         pci_set_drvdata(pdev, dev);
2665
2666         tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2667
2668         crypto_init_queue(&dev->queue, 1);
2669
2670         err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2671         if (err) {
2672                 dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
2673                 dev->irq = 0;
2674                 goto err_out_free_desc;
2675         }
2676
2677         err = hifn_start_device(dev);
2678         if (err)
2679                 goto err_out_free_irq;
2680
2681         err = hifn_test(dev, 1, 0);
2682         if (err)
2683                 goto err_out_stop_device;
2684
2685         err = hifn_register_rng(dev);
2686         if (err)
2687                 goto err_out_stop_device;
2688
2689         err = hifn_register_alg(dev);
2690         if (err)
2691                 goto err_out_unregister_rng;
2692
2693         INIT_DELAYED_WORK(&dev->work, hifn_work);
2694         schedule_delayed_work(&dev->work, HZ);
2695
2696         dprintk("HIFN crypto accelerator card at %s has been "
2697                         "successfully registered as %s.\n",
2698                         pci_name(pdev), dev->name);
2699
2700         return 0;
2701
2702 err_out_unregister_rng:
2703         hifn_unregister_rng(dev);
2704 err_out_stop_device:
2705         hifn_reset_dma(dev, 1);
2706         hifn_stop_device(dev);
2707 err_out_free_irq:
2708         free_irq(dev->irq, dev->name);
2709         tasklet_kill(&dev->tasklet);
2710 err_out_free_desc:
2711         pci_free_consistent(pdev, sizeof(struct hifn_dma),
2712                         dev->desc_virt, dev->desc_dma);
2713
2714 err_out_free_result_pages:
2715         pci_unmap_single(pdev, dev->dst, PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
2716                         PCI_DMA_FROMDEVICE);
2717         free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
2718
2719 err_out_unmap_bars:
2720         for (i=0; i<3; ++i)
2721                 if (dev->bar[i])
2722                         iounmap(dev->bar[i]);
2723
2724 err_out_free_regions:
2725         pci_release_regions(pdev);
2726
2727 err_out_disable_pci_device:
2728         pci_disable_device(pdev);
2729
2730         return err;
2731 }
2732
2733 static void hifn_remove(struct pci_dev *pdev)
2734 {
2735         int i;
2736         struct hifn_device *dev;
2737
2738         dev = pci_get_drvdata(pdev);
2739
2740         if (dev) {
2741                 cancel_delayed_work(&dev->work);
2742                 flush_scheduled_work();
2743
2744                 hifn_unregister_rng(dev);
2745                 hifn_unregister_alg(dev);
2746                 hifn_reset_dma(dev, 1);
2747                 hifn_stop_device(dev);
2748
2749                 free_irq(dev->irq, dev->name);
2750                 tasklet_kill(&dev->tasklet);
2751
2752                 hifn_flush(dev);
2753
2754                 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2755                                 dev->desc_virt, dev->desc_dma);
2756                 pci_unmap_single(pdev, dev->dst,
2757                                 PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
2758                                 PCI_DMA_FROMDEVICE);
2759                 free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
2760                 for (i=0; i<3; ++i)
2761                         if (dev->bar[i])
2762                                 iounmap(dev->bar[i]);
2763
2764                 kfree(dev);
2765         }
2766
2767         pci_release_regions(pdev);
2768         pci_disable_device(pdev);
2769 }
2770
2771 static struct pci_device_id hifn_pci_tbl[] = {
2772         { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2773         { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2774         { 0 }
2775 };
2776 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2777
2778 static struct pci_driver hifn_pci_driver = {
2779         .name     = "hifn795x",
2780         .id_table = hifn_pci_tbl,
2781         .probe    = hifn_probe,
2782         .remove   = __devexit_p(hifn_remove),
2783 };
2784
2785 static int __devinit hifn_init(void)
2786 {
2787         unsigned int freq;
2788         int err;
2789
2790         if (strncmp(hifn_pll_ref, "ext", 3) &&
2791             strncmp(hifn_pll_ref, "pci", 3)) {
2792                 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
2793                                 "must be pci or ext");
2794                 return -EINVAL;
2795         }
2796
2797         /*
2798          * For the 7955/7956 the reference clock frequency must be in the
2799          * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2800          * but this chip is currently not supported.
2801          */
2802         if (hifn_pll_ref[3] != '\0') {
2803                 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2804                 if (freq < 20 || freq > 100) {
2805                         printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
2806                                         "frequency, must be in the range "
2807                                         "of 20-100");
2808                         return -EINVAL;
2809                 }
2810         }
2811
2812         err = pci_register_driver(&hifn_pci_driver);
2813         if (err < 0) {
2814                 dprintk("Failed to register PCI driver for %s device.\n",
2815                                 hifn_pci_driver.name);
2816                 return -ENODEV;
2817         }
2818
2819         printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2820                         "has been successfully registered.\n");
2821
2822         return 0;
2823 }
2824
2825 static void __devexit hifn_fini(void)
2826 {
2827         pci_unregister_driver(&hifn_pci_driver);
2828
2829         printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2830                         "has been successfully unregistered.\n");
2831 }
2832
2833 module_init(hifn_init);
2834 module_exit(hifn_fini);
2835
2836 MODULE_LICENSE("GPL");
2837 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2838 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");