Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6] / arch / powerpc / kernel / perf_counter.c
1 /*
2  * Performance counter support - powerpc architecture code
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_counter.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
21
22 struct cpu_hw_counters {
23         int n_counters;
24         int n_percpu;
25         int disabled;
26         int n_added;
27         int n_limited;
28         u8  pmcs_enabled;
29         struct perf_counter *counter[MAX_HWCOUNTERS];
30         u64 events[MAX_HWCOUNTERS];
31         unsigned int flags[MAX_HWCOUNTERS];
32         unsigned long mmcr[3];
33         struct perf_counter *limited_counter[MAX_LIMITED_HWCOUNTERS];
34         u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 };
36 DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
37
38 struct power_pmu *ppmu;
39
40 /*
41  * Normally, to ignore kernel events we set the FCS (freeze counters
42  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
43  * hypervisor bit set in the MSR, or if we are running on a processor
44  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
45  * then we need to use the FCHV bit to ignore kernel events.
46  */
47 static unsigned int freeze_counters_kernel = MMCR0_FCS;
48
49 /*
50  * 32-bit doesn't have MMCRA but does have an MMCR2,
51  * and a few other names are different.
52  */
53 #ifdef CONFIG_PPC32
54
55 #define MMCR0_FCHV              0
56 #define MMCR0_PMCjCE            MMCR0_PMCnCE
57
58 #define SPRN_MMCRA              SPRN_MMCR2
59 #define MMCRA_SAMPLE_ENABLE     0
60
61 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
62 {
63         return 0;
64 }
65 static inline void perf_set_pmu_inuse(int inuse) { }
66 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
67 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
68 {
69         return 0;
70 }
71 static inline void perf_read_regs(struct pt_regs *regs) { }
72 static inline int perf_intr_is_nmi(struct pt_regs *regs)
73 {
74         return 0;
75 }
76
77 #endif /* CONFIG_PPC32 */
78
79 /*
80  * Things that are specific to 64-bit implementations.
81  */
82 #ifdef CONFIG_PPC64
83
84 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
85 {
86         unsigned long mmcra = regs->dsisr;
87
88         if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
89                 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
90                 if (slot > 1)
91                         return 4 * (slot - 1);
92         }
93         return 0;
94 }
95
96 static inline void perf_set_pmu_inuse(int inuse)
97 {
98         get_lppaca()->pmcregs_in_use = inuse;
99 }
100
101 /*
102  * The user wants a data address recorded.
103  * If we're not doing instruction sampling, give them the SDAR
104  * (sampled data address).  If we are doing instruction sampling, then
105  * only give them the SDAR if it corresponds to the instruction
106  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC
107  * bit in MMCRA.
108  */
109 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
110 {
111         unsigned long mmcra = regs->dsisr;
112         unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
113                 POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
114
115         if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
116                 *addrp = mfspr(SPRN_SDAR);
117 }
118
119 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
120 {
121         unsigned long mmcra = regs->dsisr;
122
123         if (TRAP(regs) != 0xf00)
124                 return 0;       /* not a PMU interrupt */
125
126         if (ppmu->flags & PPMU_ALT_SIPR) {
127                 if (mmcra & POWER6_MMCRA_SIHV)
128                         return PERF_EVENT_MISC_HYPERVISOR;
129                 return (mmcra & POWER6_MMCRA_SIPR) ?
130                         PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
131         }
132         if (mmcra & MMCRA_SIHV)
133                 return PERF_EVENT_MISC_HYPERVISOR;
134         return (mmcra & MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
135                 PERF_EVENT_MISC_KERNEL;
136 }
137
138 /*
139  * Overload regs->dsisr to store MMCRA so we only need to read it once
140  * on each interrupt.
141  */
142 static inline void perf_read_regs(struct pt_regs *regs)
143 {
144         regs->dsisr = mfspr(SPRN_MMCRA);
145 }
146
147 /*
148  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
149  * it as an NMI.
150  */
151 static inline int perf_intr_is_nmi(struct pt_regs *regs)
152 {
153         return !regs->softe;
154 }
155
156 #endif /* CONFIG_PPC64 */
157
158 static void perf_counter_interrupt(struct pt_regs *regs);
159
160 void perf_counter_print_debug(void)
161 {
162 }
163
164 /*
165  * Read one performance monitor counter (PMC).
166  */
167 static unsigned long read_pmc(int idx)
168 {
169         unsigned long val;
170
171         switch (idx) {
172         case 1:
173                 val = mfspr(SPRN_PMC1);
174                 break;
175         case 2:
176                 val = mfspr(SPRN_PMC2);
177                 break;
178         case 3:
179                 val = mfspr(SPRN_PMC3);
180                 break;
181         case 4:
182                 val = mfspr(SPRN_PMC4);
183                 break;
184         case 5:
185                 val = mfspr(SPRN_PMC5);
186                 break;
187         case 6:
188                 val = mfspr(SPRN_PMC6);
189                 break;
190 #ifdef CONFIG_PPC64
191         case 7:
192                 val = mfspr(SPRN_PMC7);
193                 break;
194         case 8:
195                 val = mfspr(SPRN_PMC8);
196                 break;
197 #endif /* CONFIG_PPC64 */
198         default:
199                 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
200                 val = 0;
201         }
202         return val;
203 }
204
205 /*
206  * Write one PMC.
207  */
208 static void write_pmc(int idx, unsigned long val)
209 {
210         switch (idx) {
211         case 1:
212                 mtspr(SPRN_PMC1, val);
213                 break;
214         case 2:
215                 mtspr(SPRN_PMC2, val);
216                 break;
217         case 3:
218                 mtspr(SPRN_PMC3, val);
219                 break;
220         case 4:
221                 mtspr(SPRN_PMC4, val);
222                 break;
223         case 5:
224                 mtspr(SPRN_PMC5, val);
225                 break;
226         case 6:
227                 mtspr(SPRN_PMC6, val);
228                 break;
229 #ifdef CONFIG_PPC64
230         case 7:
231                 mtspr(SPRN_PMC7, val);
232                 break;
233         case 8:
234                 mtspr(SPRN_PMC8, val);
235                 break;
236 #endif /* CONFIG_PPC64 */
237         default:
238                 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
239         }
240 }
241
242 /*
243  * Check if a set of events can all go on the PMU at once.
244  * If they can't, this will look at alternative codes for the events
245  * and see if any combination of alternative codes is feasible.
246  * The feasible set is returned in event[].
247  */
248 static int power_check_constraints(u64 event[], unsigned int cflags[],
249                                    int n_ev)
250 {
251         unsigned long mask, value, nv;
252         u64 alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
253         unsigned long amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
254         unsigned long avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
255         unsigned long smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
256         int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
257         int i, j;
258         unsigned long addf = ppmu->add_fields;
259         unsigned long tadd = ppmu->test_adder;
260
261         if (n_ev > ppmu->n_counter)
262                 return -1;
263
264         /* First see if the events will go on as-is */
265         for (i = 0; i < n_ev; ++i) {
266                 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
267                     && !ppmu->limited_pmc_event(event[i])) {
268                         ppmu->get_alternatives(event[i], cflags[i],
269                                                alternatives[i]);
270                         event[i] = alternatives[i][0];
271                 }
272                 if (ppmu->get_constraint(event[i], &amasks[i][0],
273                                          &avalues[i][0]))
274                         return -1;
275         }
276         value = mask = 0;
277         for (i = 0; i < n_ev; ++i) {
278                 nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
279                 if ((((nv + tadd) ^ value) & mask) != 0 ||
280                     (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
281                         break;
282                 value = nv;
283                 mask |= amasks[i][0];
284         }
285         if (i == n_ev)
286                 return 0;       /* all OK */
287
288         /* doesn't work, gather alternatives... */
289         if (!ppmu->get_alternatives)
290                 return -1;
291         for (i = 0; i < n_ev; ++i) {
292                 choice[i] = 0;
293                 n_alt[i] = ppmu->get_alternatives(event[i], cflags[i],
294                                                   alternatives[i]);
295                 for (j = 1; j < n_alt[i]; ++j)
296                         ppmu->get_constraint(alternatives[i][j],
297                                              &amasks[i][j], &avalues[i][j]);
298         }
299
300         /* enumerate all possibilities and see if any will work */
301         i = 0;
302         j = -1;
303         value = mask = nv = 0;
304         while (i < n_ev) {
305                 if (j >= 0) {
306                         /* we're backtracking, restore context */
307                         value = svalues[i];
308                         mask = smasks[i];
309                         j = choice[i];
310                 }
311                 /*
312                  * See if any alternative k for event i,
313                  * where k > j, will satisfy the constraints.
314                  */
315                 while (++j < n_alt[i]) {
316                         nv = (value | avalues[i][j]) +
317                                 (value & avalues[i][j] & addf);
318                         if ((((nv + tadd) ^ value) & mask) == 0 &&
319                             (((nv + tadd) ^ avalues[i][j])
320                              & amasks[i][j]) == 0)
321                                 break;
322                 }
323                 if (j >= n_alt[i]) {
324                         /*
325                          * No feasible alternative, backtrack
326                          * to event i-1 and continue enumerating its
327                          * alternatives from where we got up to.
328                          */
329                         if (--i < 0)
330                                 return -1;
331                 } else {
332                         /*
333                          * Found a feasible alternative for event i,
334                          * remember where we got up to with this event,
335                          * go on to the next event, and start with
336                          * the first alternative for it.
337                          */
338                         choice[i] = j;
339                         svalues[i] = value;
340                         smasks[i] = mask;
341                         value = nv;
342                         mask |= amasks[i][j];
343                         ++i;
344                         j = -1;
345                 }
346         }
347
348         /* OK, we have a feasible combination, tell the caller the solution */
349         for (i = 0; i < n_ev; ++i)
350                 event[i] = alternatives[i][choice[i]];
351         return 0;
352 }
353
354 /*
355  * Check if newly-added counters have consistent settings for
356  * exclude_{user,kernel,hv} with each other and any previously
357  * added counters.
358  */
359 static int check_excludes(struct perf_counter **ctrs, unsigned int cflags[],
360                           int n_prev, int n_new)
361 {
362         int eu = 0, ek = 0, eh = 0;
363         int i, n, first;
364         struct perf_counter *counter;
365
366         n = n_prev + n_new;
367         if (n <= 1)
368                 return 0;
369
370         first = 1;
371         for (i = 0; i < n; ++i) {
372                 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
373                         cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
374                         continue;
375                 }
376                 counter = ctrs[i];
377                 if (first) {
378                         eu = counter->attr.exclude_user;
379                         ek = counter->attr.exclude_kernel;
380                         eh = counter->attr.exclude_hv;
381                         first = 0;
382                 } else if (counter->attr.exclude_user != eu ||
383                            counter->attr.exclude_kernel != ek ||
384                            counter->attr.exclude_hv != eh) {
385                         return -EAGAIN;
386                 }
387         }
388
389         if (eu || ek || eh)
390                 for (i = 0; i < n; ++i)
391                         if (cflags[i] & PPMU_LIMITED_PMC_OK)
392                                 cflags[i] |= PPMU_LIMITED_PMC_REQD;
393
394         return 0;
395 }
396
397 static void power_pmu_read(struct perf_counter *counter)
398 {
399         s64 val, delta, prev;
400
401         if (!counter->hw.idx)
402                 return;
403         /*
404          * Performance monitor interrupts come even when interrupts
405          * are soft-disabled, as long as interrupts are hard-enabled.
406          * Therefore we treat them like NMIs.
407          */
408         do {
409                 prev = atomic64_read(&counter->hw.prev_count);
410                 barrier();
411                 val = read_pmc(counter->hw.idx);
412         } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
413
414         /* The counters are only 32 bits wide */
415         delta = (val - prev) & 0xfffffffful;
416         atomic64_add(delta, &counter->count);
417         atomic64_sub(delta, &counter->hw.period_left);
418 }
419
420 /*
421  * On some machines, PMC5 and PMC6 can't be written, don't respect
422  * the freeze conditions, and don't generate interrupts.  This tells
423  * us if `counter' is using such a PMC.
424  */
425 static int is_limited_pmc(int pmcnum)
426 {
427         return (ppmu->flags & PPMU_LIMITED_PMC5_6)
428                 && (pmcnum == 5 || pmcnum == 6);
429 }
430
431 static void freeze_limited_counters(struct cpu_hw_counters *cpuhw,
432                                     unsigned long pmc5, unsigned long pmc6)
433 {
434         struct perf_counter *counter;
435         u64 val, prev, delta;
436         int i;
437
438         for (i = 0; i < cpuhw->n_limited; ++i) {
439                 counter = cpuhw->limited_counter[i];
440                 if (!counter->hw.idx)
441                         continue;
442                 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
443                 prev = atomic64_read(&counter->hw.prev_count);
444                 counter->hw.idx = 0;
445                 delta = (val - prev) & 0xfffffffful;
446                 atomic64_add(delta, &counter->count);
447         }
448 }
449
450 static void thaw_limited_counters(struct cpu_hw_counters *cpuhw,
451                                   unsigned long pmc5, unsigned long pmc6)
452 {
453         struct perf_counter *counter;
454         u64 val;
455         int i;
456
457         for (i = 0; i < cpuhw->n_limited; ++i) {
458                 counter = cpuhw->limited_counter[i];
459                 counter->hw.idx = cpuhw->limited_hwidx[i];
460                 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
461                 atomic64_set(&counter->hw.prev_count, val);
462                 perf_counter_update_userpage(counter);
463         }
464 }
465
466 /*
467  * Since limited counters don't respect the freeze conditions, we
468  * have to read them immediately after freezing or unfreezing the
469  * other counters.  We try to keep the values from the limited
470  * counters as consistent as possible by keeping the delay (in
471  * cycles and instructions) between freezing/unfreezing and reading
472  * the limited counters as small and consistent as possible.
473  * Therefore, if any limited counters are in use, we read them
474  * both, and always in the same order, to minimize variability,
475  * and do it inside the same asm that writes MMCR0.
476  */
477 static void write_mmcr0(struct cpu_hw_counters *cpuhw, unsigned long mmcr0)
478 {
479         unsigned long pmc5, pmc6;
480
481         if (!cpuhw->n_limited) {
482                 mtspr(SPRN_MMCR0, mmcr0);
483                 return;
484         }
485
486         /*
487          * Write MMCR0, then read PMC5 and PMC6 immediately.
488          * To ensure we don't get a performance monitor interrupt
489          * between writing MMCR0 and freezing/thawing the limited
490          * counters, we first write MMCR0 with the counter overflow
491          * interrupt enable bits turned off.
492          */
493         asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
494                      : "=&r" (pmc5), "=&r" (pmc6)
495                      : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
496                        "i" (SPRN_MMCR0),
497                        "i" (SPRN_PMC5), "i" (SPRN_PMC6));
498
499         if (mmcr0 & MMCR0_FC)
500                 freeze_limited_counters(cpuhw, pmc5, pmc6);
501         else
502                 thaw_limited_counters(cpuhw, pmc5, pmc6);
503
504         /*
505          * Write the full MMCR0 including the counter overflow interrupt
506          * enable bits, if necessary.
507          */
508         if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
509                 mtspr(SPRN_MMCR0, mmcr0);
510 }
511
512 /*
513  * Disable all counters to prevent PMU interrupts and to allow
514  * counters to be added or removed.
515  */
516 void hw_perf_disable(void)
517 {
518         struct cpu_hw_counters *cpuhw;
519         unsigned long flags;
520
521         local_irq_save(flags);
522         cpuhw = &__get_cpu_var(cpu_hw_counters);
523
524         if (!cpuhw->disabled) {
525                 cpuhw->disabled = 1;
526                 cpuhw->n_added = 0;
527
528                 /*
529                  * Check if we ever enabled the PMU on this cpu.
530                  */
531                 if (!cpuhw->pmcs_enabled) {
532                         if (ppc_md.enable_pmcs)
533                                 ppc_md.enable_pmcs();
534                         cpuhw->pmcs_enabled = 1;
535                 }
536
537                 /*
538                  * Disable instruction sampling if it was enabled
539                  */
540                 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
541                         mtspr(SPRN_MMCRA,
542                               cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
543                         mb();
544                 }
545
546                 /*
547                  * Set the 'freeze counters' bit.
548                  * The barrier is to make sure the mtspr has been
549                  * executed and the PMU has frozen the counters
550                  * before we return.
551                  */
552                 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
553                 mb();
554         }
555         local_irq_restore(flags);
556 }
557
558 /*
559  * Re-enable all counters if disable == 0.
560  * If we were previously disabled and counters were added, then
561  * put the new config on the PMU.
562  */
563 void hw_perf_enable(void)
564 {
565         struct perf_counter *counter;
566         struct cpu_hw_counters *cpuhw;
567         unsigned long flags;
568         long i;
569         unsigned long val;
570         s64 left;
571         unsigned int hwc_index[MAX_HWCOUNTERS];
572         int n_lim;
573         int idx;
574
575         local_irq_save(flags);
576         cpuhw = &__get_cpu_var(cpu_hw_counters);
577         if (!cpuhw->disabled) {
578                 local_irq_restore(flags);
579                 return;
580         }
581         cpuhw->disabled = 0;
582
583         /*
584          * If we didn't change anything, or only removed counters,
585          * no need to recalculate MMCR* settings and reset the PMCs.
586          * Just reenable the PMU with the current MMCR* settings
587          * (possibly updated for removal of counters).
588          */
589         if (!cpuhw->n_added) {
590                 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
591                 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
592                 if (cpuhw->n_counters == 0)
593                         perf_set_pmu_inuse(0);
594                 goto out_enable;
595         }
596
597         /*
598          * Compute MMCR* values for the new set of counters
599          */
600         if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
601                                cpuhw->mmcr)) {
602                 /* shouldn't ever get here */
603                 printk(KERN_ERR "oops compute_mmcr failed\n");
604                 goto out;
605         }
606
607         /*
608          * Add in MMCR0 freeze bits corresponding to the
609          * attr.exclude_* bits for the first counter.
610          * We have already checked that all counters have the
611          * same values for these bits as the first counter.
612          */
613         counter = cpuhw->counter[0];
614         if (counter->attr.exclude_user)
615                 cpuhw->mmcr[0] |= MMCR0_FCP;
616         if (counter->attr.exclude_kernel)
617                 cpuhw->mmcr[0] |= freeze_counters_kernel;
618         if (counter->attr.exclude_hv)
619                 cpuhw->mmcr[0] |= MMCR0_FCHV;
620
621         /*
622          * Write the new configuration to MMCR* with the freeze
623          * bit set and set the hardware counters to their initial values.
624          * Then unfreeze the counters.
625          */
626         perf_set_pmu_inuse(1);
627         mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
628         mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
629         mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
630                                 | MMCR0_FC);
631
632         /*
633          * Read off any pre-existing counters that need to move
634          * to another PMC.
635          */
636         for (i = 0; i < cpuhw->n_counters; ++i) {
637                 counter = cpuhw->counter[i];
638                 if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
639                         power_pmu_read(counter);
640                         write_pmc(counter->hw.idx, 0);
641                         counter->hw.idx = 0;
642                 }
643         }
644
645         /*
646          * Initialize the PMCs for all the new and moved counters.
647          */
648         cpuhw->n_limited = n_lim = 0;
649         for (i = 0; i < cpuhw->n_counters; ++i) {
650                 counter = cpuhw->counter[i];
651                 if (counter->hw.idx)
652                         continue;
653                 idx = hwc_index[i] + 1;
654                 if (is_limited_pmc(idx)) {
655                         cpuhw->limited_counter[n_lim] = counter;
656                         cpuhw->limited_hwidx[n_lim] = idx;
657                         ++n_lim;
658                         continue;
659                 }
660                 val = 0;
661                 if (counter->hw.sample_period) {
662                         left = atomic64_read(&counter->hw.period_left);
663                         if (left < 0x80000000L)
664                                 val = 0x80000000L - left;
665                 }
666                 atomic64_set(&counter->hw.prev_count, val);
667                 counter->hw.idx = idx;
668                 write_pmc(idx, val);
669                 perf_counter_update_userpage(counter);
670         }
671         cpuhw->n_limited = n_lim;
672         cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
673
674  out_enable:
675         mb();
676         write_mmcr0(cpuhw, cpuhw->mmcr[0]);
677
678         /*
679          * Enable instruction sampling if necessary
680          */
681         if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
682                 mb();
683                 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
684         }
685
686  out:
687         local_irq_restore(flags);
688 }
689
690 static int collect_events(struct perf_counter *group, int max_count,
691                           struct perf_counter *ctrs[], u64 *events,
692                           unsigned int *flags)
693 {
694         int n = 0;
695         struct perf_counter *counter;
696
697         if (!is_software_counter(group)) {
698                 if (n >= max_count)
699                         return -1;
700                 ctrs[n] = group;
701                 flags[n] = group->hw.counter_base;
702                 events[n++] = group->hw.config;
703         }
704         list_for_each_entry(counter, &group->sibling_list, list_entry) {
705                 if (!is_software_counter(counter) &&
706                     counter->state != PERF_COUNTER_STATE_OFF) {
707                         if (n >= max_count)
708                                 return -1;
709                         ctrs[n] = counter;
710                         flags[n] = counter->hw.counter_base;
711                         events[n++] = counter->hw.config;
712                 }
713         }
714         return n;
715 }
716
717 static void counter_sched_in(struct perf_counter *counter, int cpu)
718 {
719         counter->state = PERF_COUNTER_STATE_ACTIVE;
720         counter->oncpu = cpu;
721         counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped;
722         if (is_software_counter(counter))
723                 counter->pmu->enable(counter);
724 }
725
726 /*
727  * Called to enable a whole group of counters.
728  * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
729  * Assumes the caller has disabled interrupts and has
730  * frozen the PMU with hw_perf_save_disable.
731  */
732 int hw_perf_group_sched_in(struct perf_counter *group_leader,
733                struct perf_cpu_context *cpuctx,
734                struct perf_counter_context *ctx, int cpu)
735 {
736         struct cpu_hw_counters *cpuhw;
737         long i, n, n0;
738         struct perf_counter *sub;
739
740         cpuhw = &__get_cpu_var(cpu_hw_counters);
741         n0 = cpuhw->n_counters;
742         n = collect_events(group_leader, ppmu->n_counter - n0,
743                            &cpuhw->counter[n0], &cpuhw->events[n0],
744                            &cpuhw->flags[n0]);
745         if (n < 0)
746                 return -EAGAIN;
747         if (check_excludes(cpuhw->counter, cpuhw->flags, n0, n))
748                 return -EAGAIN;
749         i = power_check_constraints(cpuhw->events, cpuhw->flags, n + n0);
750         if (i < 0)
751                 return -EAGAIN;
752         cpuhw->n_counters = n0 + n;
753         cpuhw->n_added += n;
754
755         /*
756          * OK, this group can go on; update counter states etc.,
757          * and enable any software counters
758          */
759         for (i = n0; i < n0 + n; ++i)
760                 cpuhw->counter[i]->hw.config = cpuhw->events[i];
761         cpuctx->active_oncpu += n;
762         n = 1;
763         counter_sched_in(group_leader, cpu);
764         list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
765                 if (sub->state != PERF_COUNTER_STATE_OFF) {
766                         counter_sched_in(sub, cpu);
767                         ++n;
768                 }
769         }
770         ctx->nr_active += n;
771
772         return 1;
773 }
774
775 /*
776  * Add a counter to the PMU.
777  * If all counters are not already frozen, then we disable and
778  * re-enable the PMU in order to get hw_perf_enable to do the
779  * actual work of reconfiguring the PMU.
780  */
781 static int power_pmu_enable(struct perf_counter *counter)
782 {
783         struct cpu_hw_counters *cpuhw;
784         unsigned long flags;
785         int n0;
786         int ret = -EAGAIN;
787
788         local_irq_save(flags);
789         perf_disable();
790
791         /*
792          * Add the counter to the list (if there is room)
793          * and check whether the total set is still feasible.
794          */
795         cpuhw = &__get_cpu_var(cpu_hw_counters);
796         n0 = cpuhw->n_counters;
797         if (n0 >= ppmu->n_counter)
798                 goto out;
799         cpuhw->counter[n0] = counter;
800         cpuhw->events[n0] = counter->hw.config;
801         cpuhw->flags[n0] = counter->hw.counter_base;
802         if (check_excludes(cpuhw->counter, cpuhw->flags, n0, 1))
803                 goto out;
804         if (power_check_constraints(cpuhw->events, cpuhw->flags, n0 + 1))
805                 goto out;
806
807         counter->hw.config = cpuhw->events[n0];
808         ++cpuhw->n_counters;
809         ++cpuhw->n_added;
810
811         ret = 0;
812  out:
813         perf_enable();
814         local_irq_restore(flags);
815         return ret;
816 }
817
818 /*
819  * Remove a counter from the PMU.
820  */
821 static void power_pmu_disable(struct perf_counter *counter)
822 {
823         struct cpu_hw_counters *cpuhw;
824         long i;
825         unsigned long flags;
826
827         local_irq_save(flags);
828         perf_disable();
829
830         power_pmu_read(counter);
831
832         cpuhw = &__get_cpu_var(cpu_hw_counters);
833         for (i = 0; i < cpuhw->n_counters; ++i) {
834                 if (counter == cpuhw->counter[i]) {
835                         while (++i < cpuhw->n_counters)
836                                 cpuhw->counter[i-1] = cpuhw->counter[i];
837                         --cpuhw->n_counters;
838                         ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
839                         if (counter->hw.idx) {
840                                 write_pmc(counter->hw.idx, 0);
841                                 counter->hw.idx = 0;
842                         }
843                         perf_counter_update_userpage(counter);
844                         break;
845                 }
846         }
847         for (i = 0; i < cpuhw->n_limited; ++i)
848                 if (counter == cpuhw->limited_counter[i])
849                         break;
850         if (i < cpuhw->n_limited) {
851                 while (++i < cpuhw->n_limited) {
852                         cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
853                         cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
854                 }
855                 --cpuhw->n_limited;
856         }
857         if (cpuhw->n_counters == 0) {
858                 /* disable exceptions if no counters are running */
859                 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
860         }
861
862         perf_enable();
863         local_irq_restore(flags);
864 }
865
866 /*
867  * Re-enable interrupts on a counter after they were throttled
868  * because they were coming too fast.
869  */
870 static void power_pmu_unthrottle(struct perf_counter *counter)
871 {
872         s64 val, left;
873         unsigned long flags;
874
875         if (!counter->hw.idx || !counter->hw.sample_period)
876                 return;
877         local_irq_save(flags);
878         perf_disable();
879         power_pmu_read(counter);
880         left = counter->hw.sample_period;
881         counter->hw.last_period = left;
882         val = 0;
883         if (left < 0x80000000L)
884                 val = 0x80000000L - left;
885         write_pmc(counter->hw.idx, val);
886         atomic64_set(&counter->hw.prev_count, val);
887         atomic64_set(&counter->hw.period_left, left);
888         perf_counter_update_userpage(counter);
889         perf_enable();
890         local_irq_restore(flags);
891 }
892
893 struct pmu power_pmu = {
894         .enable         = power_pmu_enable,
895         .disable        = power_pmu_disable,
896         .read           = power_pmu_read,
897         .unthrottle     = power_pmu_unthrottle,
898 };
899
900 /*
901  * Return 1 if we might be able to put counter on a limited PMC,
902  * or 0 if not.
903  * A counter can only go on a limited PMC if it counts something
904  * that a limited PMC can count, doesn't require interrupts, and
905  * doesn't exclude any processor mode.
906  */
907 static int can_go_on_limited_pmc(struct perf_counter *counter, u64 ev,
908                                  unsigned int flags)
909 {
910         int n;
911         u64 alt[MAX_EVENT_ALTERNATIVES];
912
913         if (counter->attr.exclude_user
914             || counter->attr.exclude_kernel
915             || counter->attr.exclude_hv
916             || counter->attr.sample_period)
917                 return 0;
918
919         if (ppmu->limited_pmc_event(ev))
920                 return 1;
921
922         /*
923          * The requested event isn't on a limited PMC already;
924          * see if any alternative code goes on a limited PMC.
925          */
926         if (!ppmu->get_alternatives)
927                 return 0;
928
929         flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
930         n = ppmu->get_alternatives(ev, flags, alt);
931
932         return n > 0;
933 }
934
935 /*
936  * Find an alternative event that goes on a normal PMC, if possible,
937  * and return the event code, or 0 if there is no such alternative.
938  * (Note: event code 0 is "don't count" on all machines.)
939  */
940 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
941 {
942         u64 alt[MAX_EVENT_ALTERNATIVES];
943         int n;
944
945         flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
946         n = ppmu->get_alternatives(ev, flags, alt);
947         if (!n)
948                 return 0;
949         return alt[0];
950 }
951
952 /* Number of perf_counters counting hardware events */
953 static atomic_t num_counters;
954 /* Used to avoid races in calling reserve/release_pmc_hardware */
955 static DEFINE_MUTEX(pmc_reserve_mutex);
956
957 /*
958  * Release the PMU if this is the last perf_counter.
959  */
960 static void hw_perf_counter_destroy(struct perf_counter *counter)
961 {
962         if (!atomic_add_unless(&num_counters, -1, 1)) {
963                 mutex_lock(&pmc_reserve_mutex);
964                 if (atomic_dec_return(&num_counters) == 0)
965                         release_pmc_hardware();
966                 mutex_unlock(&pmc_reserve_mutex);
967         }
968 }
969
970 /*
971  * Translate a generic cache event config to a raw event code.
972  */
973 static int hw_perf_cache_event(u64 config, u64 *eventp)
974 {
975         unsigned long type, op, result;
976         int ev;
977
978         if (!ppmu->cache_events)
979                 return -EINVAL;
980
981         /* unpack config */
982         type = config & 0xff;
983         op = (config >> 8) & 0xff;
984         result = (config >> 16) & 0xff;
985
986         if (type >= PERF_COUNT_HW_CACHE_MAX ||
987             op >= PERF_COUNT_HW_CACHE_OP_MAX ||
988             result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
989                 return -EINVAL;
990
991         ev = (*ppmu->cache_events)[type][op][result];
992         if (ev == 0)
993                 return -EOPNOTSUPP;
994         if (ev == -1)
995                 return -EINVAL;
996         *eventp = ev;
997         return 0;
998 }
999
1000 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
1001 {
1002         u64 ev;
1003         unsigned long flags;
1004         struct perf_counter *ctrs[MAX_HWCOUNTERS];
1005         u64 events[MAX_HWCOUNTERS];
1006         unsigned int cflags[MAX_HWCOUNTERS];
1007         int n;
1008         int err;
1009
1010         if (!ppmu)
1011                 return ERR_PTR(-ENXIO);
1012         switch (counter->attr.type) {
1013         case PERF_TYPE_HARDWARE:
1014                 ev = counter->attr.config;
1015                 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1016                         return ERR_PTR(-EOPNOTSUPP);
1017                 ev = ppmu->generic_events[ev];
1018                 break;
1019         case PERF_TYPE_HW_CACHE:
1020                 err = hw_perf_cache_event(counter->attr.config, &ev);
1021                 if (err)
1022                         return ERR_PTR(err);
1023                 break;
1024         case PERF_TYPE_RAW:
1025                 ev = counter->attr.config;
1026                 break;
1027         default:
1028                 return ERR_PTR(-EINVAL);
1029         }
1030         counter->hw.config_base = ev;
1031         counter->hw.idx = 0;
1032
1033         /*
1034          * If we are not running on a hypervisor, force the
1035          * exclude_hv bit to 0 so that we don't care what
1036          * the user set it to.
1037          */
1038         if (!firmware_has_feature(FW_FEATURE_LPAR))
1039                 counter->attr.exclude_hv = 0;
1040
1041         /*
1042          * If this is a per-task counter, then we can use
1043          * PM_RUN_* events interchangeably with their non RUN_*
1044          * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1045          * XXX we should check if the task is an idle task.
1046          */
1047         flags = 0;
1048         if (counter->ctx->task)
1049                 flags |= PPMU_ONLY_COUNT_RUN;
1050
1051         /*
1052          * If this machine has limited counters, check whether this
1053          * event could go on a limited counter.
1054          */
1055         if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1056                 if (can_go_on_limited_pmc(counter, ev, flags)) {
1057                         flags |= PPMU_LIMITED_PMC_OK;
1058                 } else if (ppmu->limited_pmc_event(ev)) {
1059                         /*
1060                          * The requested event is on a limited PMC,
1061                          * but we can't use a limited PMC; see if any
1062                          * alternative goes on a normal PMC.
1063                          */
1064                         ev = normal_pmc_alternative(ev, flags);
1065                         if (!ev)
1066                                 return ERR_PTR(-EINVAL);
1067                 }
1068         }
1069
1070         /*
1071          * If this is in a group, check if it can go on with all the
1072          * other hardware counters in the group.  We assume the counter
1073          * hasn't been linked into its leader's sibling list at this point.
1074          */
1075         n = 0;
1076         if (counter->group_leader != counter) {
1077                 n = collect_events(counter->group_leader, ppmu->n_counter - 1,
1078                                    ctrs, events, cflags);
1079                 if (n < 0)
1080                         return ERR_PTR(-EINVAL);
1081         }
1082         events[n] = ev;
1083         ctrs[n] = counter;
1084         cflags[n] = flags;
1085         if (check_excludes(ctrs, cflags, n, 1))
1086                 return ERR_PTR(-EINVAL);
1087         if (power_check_constraints(events, cflags, n + 1))
1088                 return ERR_PTR(-EINVAL);
1089
1090         counter->hw.config = events[n];
1091         counter->hw.counter_base = cflags[n];
1092         counter->hw.last_period = counter->hw.sample_period;
1093         atomic64_set(&counter->hw.period_left, counter->hw.last_period);
1094
1095         /*
1096          * See if we need to reserve the PMU.
1097          * If no counters are currently in use, then we have to take a
1098          * mutex to ensure that we don't race with another task doing
1099          * reserve_pmc_hardware or release_pmc_hardware.
1100          */
1101         err = 0;
1102         if (!atomic_inc_not_zero(&num_counters)) {
1103                 mutex_lock(&pmc_reserve_mutex);
1104                 if (atomic_read(&num_counters) == 0 &&
1105                     reserve_pmc_hardware(perf_counter_interrupt))
1106                         err = -EBUSY;
1107                 else
1108                         atomic_inc(&num_counters);
1109                 mutex_unlock(&pmc_reserve_mutex);
1110         }
1111         counter->destroy = hw_perf_counter_destroy;
1112
1113         if (err)
1114                 return ERR_PTR(err);
1115         return &power_pmu;
1116 }
1117
1118 /*
1119  * A counter has overflowed; update its count and record
1120  * things if requested.  Note that interrupts are hard-disabled
1121  * here so there is no possibility of being interrupted.
1122  */
1123 static void record_and_restart(struct perf_counter *counter, unsigned long val,
1124                                struct pt_regs *regs, int nmi)
1125 {
1126         u64 period = counter->hw.sample_period;
1127         s64 prev, delta, left;
1128         int record = 0;
1129
1130         /* we don't have to worry about interrupts here */
1131         prev = atomic64_read(&counter->hw.prev_count);
1132         delta = (val - prev) & 0xfffffffful;
1133         atomic64_add(delta, &counter->count);
1134
1135         /*
1136          * See if the total period for this counter has expired,
1137          * and update for the next period.
1138          */
1139         val = 0;
1140         left = atomic64_read(&counter->hw.period_left) - delta;
1141         if (period) {
1142                 if (left <= 0) {
1143                         left += period;
1144                         if (left <= 0)
1145                                 left = period;
1146                         record = 1;
1147                 }
1148                 if (left < 0x80000000LL)
1149                         val = 0x80000000LL - left;
1150         }
1151
1152         /*
1153          * Finally record data if requested.
1154          */
1155         if (record) {
1156                 struct perf_sample_data data = {
1157                         .regs   = regs,
1158                         .addr   = 0,
1159                         .period = counter->hw.last_period,
1160                 };
1161
1162                 if (counter->attr.sample_type & PERF_SAMPLE_ADDR)
1163                         perf_get_data_addr(regs, &data.addr);
1164
1165                 if (perf_counter_overflow(counter, nmi, &data)) {
1166                         /*
1167                          * Interrupts are coming too fast - throttle them
1168                          * by setting the counter to 0, so it will be
1169                          * at least 2^30 cycles until the next interrupt
1170                          * (assuming each counter counts at most 2 counts
1171                          * per cycle).
1172                          */
1173                         val = 0;
1174                         left = ~0ULL >> 1;
1175                 }
1176         }
1177
1178         write_pmc(counter->hw.idx, val);
1179         atomic64_set(&counter->hw.prev_count, val);
1180         atomic64_set(&counter->hw.period_left, left);
1181         perf_counter_update_userpage(counter);
1182 }
1183
1184 /*
1185  * Called from generic code to get the misc flags (i.e. processor mode)
1186  * for an event.
1187  */
1188 unsigned long perf_misc_flags(struct pt_regs *regs)
1189 {
1190         u32 flags = perf_get_misc_flags(regs);
1191
1192         if (flags)
1193                 return flags;
1194         return user_mode(regs) ? PERF_EVENT_MISC_USER :
1195                 PERF_EVENT_MISC_KERNEL;
1196 }
1197
1198 /*
1199  * Called from generic code to get the instruction pointer
1200  * for an event.
1201  */
1202 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1203 {
1204         unsigned long ip;
1205
1206         if (TRAP(regs) != 0xf00)
1207                 return regs->nip;       /* not a PMU interrupt */
1208
1209         ip = mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1210         return ip;
1211 }
1212
1213 /*
1214  * Performance monitor interrupt stuff
1215  */
1216 static void perf_counter_interrupt(struct pt_regs *regs)
1217 {
1218         int i;
1219         struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
1220         struct perf_counter *counter;
1221         unsigned long val;
1222         int found = 0;
1223         int nmi;
1224
1225         if (cpuhw->n_limited)
1226                 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1227                                         mfspr(SPRN_PMC6));
1228
1229         perf_read_regs(regs);
1230
1231         nmi = perf_intr_is_nmi(regs);
1232         if (nmi)
1233                 nmi_enter();
1234         else
1235                 irq_enter();
1236
1237         for (i = 0; i < cpuhw->n_counters; ++i) {
1238                 counter = cpuhw->counter[i];
1239                 if (!counter->hw.idx || is_limited_pmc(counter->hw.idx))
1240                         continue;
1241                 val = read_pmc(counter->hw.idx);
1242                 if ((int)val < 0) {
1243                         /* counter has overflowed */
1244                         found = 1;
1245                         record_and_restart(counter, val, regs, nmi);
1246                 }
1247         }
1248
1249         /*
1250          * In case we didn't find and reset the counter that caused
1251          * the interrupt, scan all counters and reset any that are
1252          * negative, to avoid getting continual interrupts.
1253          * Any that we processed in the previous loop will not be negative.
1254          */
1255         if (!found) {
1256                 for (i = 0; i < ppmu->n_counter; ++i) {
1257                         if (is_limited_pmc(i + 1))
1258                                 continue;
1259                         val = read_pmc(i + 1);
1260                         if ((int)val < 0)
1261                                 write_pmc(i + 1, 0);
1262                 }
1263         }
1264
1265         /*
1266          * Reset MMCR0 to its normal value.  This will set PMXE and
1267          * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1268          * and thus allow interrupts to occur again.
1269          * XXX might want to use MSR.PM to keep the counters frozen until
1270          * we get back out of this interrupt.
1271          */
1272         write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1273
1274         if (nmi)
1275                 nmi_exit();
1276         else
1277                 irq_exit();
1278 }
1279
1280 void hw_perf_counter_setup(int cpu)
1281 {
1282         struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);
1283
1284         memset(cpuhw, 0, sizeof(*cpuhw));
1285         cpuhw->mmcr[0] = MMCR0_FC;
1286 }
1287
1288 int register_power_pmu(struct power_pmu *pmu)
1289 {
1290         if (ppmu)
1291                 return -EBUSY;          /* something's already registered */
1292
1293         ppmu = pmu;
1294         pr_info("%s performance monitor hardware support registered\n",
1295                 pmu->name);
1296
1297 #ifdef MSR_HV
1298         /*
1299          * Use FCHV to ignore kernel events if MSR.HV is set.
1300          */
1301         if (mfmsr() & MSR_HV)
1302                 freeze_counters_kernel = MMCR0_FCHV;
1303 #endif /* CONFIG_PPC64 */
1304
1305         return 0;
1306 }