Merge ../linux-2.6
[linux-2.6] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <sound/driver.h>
24 #include <linux/slab.h>
25 #include <linux/time.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44         struct snd_pcm_runtime *runtime = substream->runtime;
45         snd_pcm_uframes_t frames, ofs, transfer;
46
47         if (runtime->silence_size < runtime->boundary) {
48                 snd_pcm_sframes_t noise_dist, n;
49                 if (runtime->silence_start != runtime->control->appl_ptr) {
50                         n = runtime->control->appl_ptr - runtime->silence_start;
51                         if (n < 0)
52                                 n += runtime->boundary;
53                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54                                 runtime->silence_filled -= n;
55                         else
56                                 runtime->silence_filled = 0;
57                         runtime->silence_start = runtime->control->appl_ptr;
58                 }
59                 if (runtime->silence_filled >= runtime->buffer_size)
60                         return;
61                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63                         return;
64                 frames = runtime->silence_threshold - noise_dist;
65                 if (frames > runtime->silence_size)
66                         frames = runtime->silence_size;
67         } else {
68                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
69                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70                         runtime->silence_filled = avail > 0 ? avail : 0;
71                         runtime->silence_start = (runtime->status->hw_ptr +
72                                                   runtime->silence_filled) %
73                                                  runtime->boundary;
74                 } else {
75                         ofs = runtime->status->hw_ptr;
76                         frames = new_hw_ptr - ofs;
77                         if ((snd_pcm_sframes_t)frames < 0)
78                                 frames += runtime->boundary;
79                         runtime->silence_filled -= frames;
80                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
81                                 runtime->silence_filled = 0;
82                                 runtime->silence_start = (ofs + frames) - runtime->buffer_size;
83                         } else {
84                                 runtime->silence_start = ofs - runtime->silence_filled;
85                         }
86                         if ((snd_pcm_sframes_t)runtime->silence_start < 0)
87                                 runtime->silence_start += runtime->boundary;
88                 }
89                 frames = runtime->buffer_size - runtime->silence_filled;
90         }
91         snd_assert(frames <= runtime->buffer_size, return);
92         if (frames == 0)
93                 return;
94         ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
95         while (frames > 0) {
96                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
97                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
98                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
99                         if (substream->ops->silence) {
100                                 int err;
101                                 err = substream->ops->silence(substream, -1, ofs, transfer);
102                                 snd_assert(err >= 0, );
103                         } else {
104                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
105                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
106                         }
107                 } else {
108                         unsigned int c;
109                         unsigned int channels = runtime->channels;
110                         if (substream->ops->silence) {
111                                 for (c = 0; c < channels; ++c) {
112                                         int err;
113                                         err = substream->ops->silence(substream, c, ofs, transfer);
114                                         snd_assert(err >= 0, );
115                                 }
116                         } else {
117                                 size_t dma_csize = runtime->dma_bytes / channels;
118                                 for (c = 0; c < channels; ++c) {
119                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
120                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
121                                 }
122                         }
123                 }
124                 runtime->silence_filled += transfer;
125                 frames -= transfer;
126                 ofs = 0;
127         }
128 }
129
130 static void xrun(struct snd_pcm_substream *substream)
131 {
132         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
133 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
134         if (substream->pstr->xrun_debug) {
135                 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
136                            substream->pcm->card->number,
137                            substream->pcm->device,
138                            substream->stream ? 'c' : 'p');
139                 if (substream->pstr->xrun_debug > 1)
140                         dump_stack();
141         }
142 #endif
143 }
144
145 static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
146                                                           struct snd_pcm_runtime *runtime)
147 {
148         snd_pcm_uframes_t pos;
149
150         pos = substream->ops->pointer(substream);
151         if (pos == SNDRV_PCM_POS_XRUN)
152                 return pos; /* XRUN */
153         if (runtime->tstamp_mode & SNDRV_PCM_TSTAMP_MMAP)
154                 getnstimeofday((struct timespec *)&runtime->status->tstamp);
155 #ifdef CONFIG_SND_DEBUG
156         if (pos >= runtime->buffer_size) {
157                 snd_printk(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size);
158         }
159 #endif
160         pos -= pos % runtime->min_align;
161         return pos;
162 }
163
164 static inline int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
165                                              struct snd_pcm_runtime *runtime)
166 {
167         snd_pcm_uframes_t avail;
168
169         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
170                 avail = snd_pcm_playback_avail(runtime);
171         else
172                 avail = snd_pcm_capture_avail(runtime);
173         if (avail > runtime->avail_max)
174                 runtime->avail_max = avail;
175         if (avail >= runtime->stop_threshold) {
176                 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
177                         snd_pcm_drain_done(substream);
178                 else
179                         xrun(substream);
180                 return -EPIPE;
181         }
182         if (avail >= runtime->control->avail_min)
183                 wake_up(&runtime->sleep);
184         return 0;
185 }
186
187 static inline int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
188 {
189         struct snd_pcm_runtime *runtime = substream->runtime;
190         snd_pcm_uframes_t pos;
191         snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt;
192         snd_pcm_sframes_t delta;
193
194         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
195         if (pos == SNDRV_PCM_POS_XRUN) {
196                 xrun(substream);
197                 return -EPIPE;
198         }
199         if (runtime->period_size == runtime->buffer_size)
200                 goto __next_buf;
201         new_hw_ptr = runtime->hw_ptr_base + pos;
202         hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
203
204         delta = hw_ptr_interrupt - new_hw_ptr;
205         if (delta > 0) {
206                 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
207 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
208                         if (runtime->periods > 1 && substream->pstr->xrun_debug) {
209                                 snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
210                                 if (substream->pstr->xrun_debug > 1)
211                                         dump_stack();
212                         }
213 #endif
214                         return 0;
215                 }
216               __next_buf:
217                 runtime->hw_ptr_base += runtime->buffer_size;
218                 if (runtime->hw_ptr_base == runtime->boundary)
219                         runtime->hw_ptr_base = 0;
220                 new_hw_ptr = runtime->hw_ptr_base + pos;
221         }
222
223         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
224             runtime->silence_size > 0)
225                 snd_pcm_playback_silence(substream, new_hw_ptr);
226
227         runtime->status->hw_ptr = new_hw_ptr;
228         runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size;
229
230         return snd_pcm_update_hw_ptr_post(substream, runtime);
231 }
232
233 /* CAUTION: call it with irq disabled */
234 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
235 {
236         struct snd_pcm_runtime *runtime = substream->runtime;
237         snd_pcm_uframes_t pos;
238         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr;
239         snd_pcm_sframes_t delta;
240
241         old_hw_ptr = runtime->status->hw_ptr;
242         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
243         if (pos == SNDRV_PCM_POS_XRUN) {
244                 xrun(substream);
245                 return -EPIPE;
246         }
247         new_hw_ptr = runtime->hw_ptr_base + pos;
248
249         delta = old_hw_ptr - new_hw_ptr;
250         if (delta > 0) {
251                 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
252 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
253                         if (runtime->periods > 2 && substream->pstr->xrun_debug) {
254                                 snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
255                                 if (substream->pstr->xrun_debug > 1)
256                                         dump_stack();
257                         }
258 #endif
259                         return 0;
260                 }
261                 runtime->hw_ptr_base += runtime->buffer_size;
262                 if (runtime->hw_ptr_base == runtime->boundary)
263                         runtime->hw_ptr_base = 0;
264                 new_hw_ptr = runtime->hw_ptr_base + pos;
265         }
266         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
267             runtime->silence_size > 0)
268                 snd_pcm_playback_silence(substream, new_hw_ptr);
269
270         runtime->status->hw_ptr = new_hw_ptr;
271
272         return snd_pcm_update_hw_ptr_post(substream, runtime);
273 }
274
275 /**
276  * snd_pcm_set_ops - set the PCM operators
277  * @pcm: the pcm instance
278  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
279  * @ops: the operator table
280  *
281  * Sets the given PCM operators to the pcm instance.
282  */
283 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
284 {
285         struct snd_pcm_str *stream = &pcm->streams[direction];
286         struct snd_pcm_substream *substream;
287         
288         for (substream = stream->substream; substream != NULL; substream = substream->next)
289                 substream->ops = ops;
290 }
291
292 EXPORT_SYMBOL(snd_pcm_set_ops);
293
294 /**
295  * snd_pcm_sync - set the PCM sync id
296  * @substream: the pcm substream
297  *
298  * Sets the PCM sync identifier for the card.
299  */
300 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
301 {
302         struct snd_pcm_runtime *runtime = substream->runtime;
303         
304         runtime->sync.id32[0] = substream->pcm->card->number;
305         runtime->sync.id32[1] = -1;
306         runtime->sync.id32[2] = -1;
307         runtime->sync.id32[3] = -1;
308 }
309
310 EXPORT_SYMBOL(snd_pcm_set_sync);
311
312 /*
313  *  Standard ioctl routine
314  */
315
316 static inline unsigned int div32(unsigned int a, unsigned int b, 
317                                  unsigned int *r)
318 {
319         if (b == 0) {
320                 *r = 0;
321                 return UINT_MAX;
322         }
323         *r = a % b;
324         return a / b;
325 }
326
327 static inline unsigned int div_down(unsigned int a, unsigned int b)
328 {
329         if (b == 0)
330                 return UINT_MAX;
331         return a / b;
332 }
333
334 static inline unsigned int div_up(unsigned int a, unsigned int b)
335 {
336         unsigned int r;
337         unsigned int q;
338         if (b == 0)
339                 return UINT_MAX;
340         q = div32(a, b, &r);
341         if (r)
342                 ++q;
343         return q;
344 }
345
346 static inline unsigned int mul(unsigned int a, unsigned int b)
347 {
348         if (a == 0)
349                 return 0;
350         if (div_down(UINT_MAX, a) < b)
351                 return UINT_MAX;
352         return a * b;
353 }
354
355 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
356                                     unsigned int c, unsigned int *r)
357 {
358         u_int64_t n = (u_int64_t) a * b;
359         if (c == 0) {
360                 snd_assert(n > 0, );
361                 *r = 0;
362                 return UINT_MAX;
363         }
364         div64_32(&n, c, r);
365         if (n >= UINT_MAX) {
366                 *r = 0;
367                 return UINT_MAX;
368         }
369         return n;
370 }
371
372 /**
373  * snd_interval_refine - refine the interval value of configurator
374  * @i: the interval value to refine
375  * @v: the interval value to refer to
376  *
377  * Refines the interval value with the reference value.
378  * The interval is changed to the range satisfying both intervals.
379  * The interval status (min, max, integer, etc.) are evaluated.
380  *
381  * Returns non-zero if the value is changed, zero if not changed.
382  */
383 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
384 {
385         int changed = 0;
386         snd_assert(!snd_interval_empty(i), return -EINVAL);
387         if (i->min < v->min) {
388                 i->min = v->min;
389                 i->openmin = v->openmin;
390                 changed = 1;
391         } else if (i->min == v->min && !i->openmin && v->openmin) {
392                 i->openmin = 1;
393                 changed = 1;
394         }
395         if (i->max > v->max) {
396                 i->max = v->max;
397                 i->openmax = v->openmax;
398                 changed = 1;
399         } else if (i->max == v->max && !i->openmax && v->openmax) {
400                 i->openmax = 1;
401                 changed = 1;
402         }
403         if (!i->integer && v->integer) {
404                 i->integer = 1;
405                 changed = 1;
406         }
407         if (i->integer) {
408                 if (i->openmin) {
409                         i->min++;
410                         i->openmin = 0;
411                 }
412                 if (i->openmax) {
413                         i->max--;
414                         i->openmax = 0;
415                 }
416         } else if (!i->openmin && !i->openmax && i->min == i->max)
417                 i->integer = 1;
418         if (snd_interval_checkempty(i)) {
419                 snd_interval_none(i);
420                 return -EINVAL;
421         }
422         return changed;
423 }
424
425 EXPORT_SYMBOL(snd_interval_refine);
426
427 static int snd_interval_refine_first(struct snd_interval *i)
428 {
429         snd_assert(!snd_interval_empty(i), return -EINVAL);
430         if (snd_interval_single(i))
431                 return 0;
432         i->max = i->min;
433         i->openmax = i->openmin;
434         if (i->openmax)
435                 i->max++;
436         return 1;
437 }
438
439 static int snd_interval_refine_last(struct snd_interval *i)
440 {
441         snd_assert(!snd_interval_empty(i), return -EINVAL);
442         if (snd_interval_single(i))
443                 return 0;
444         i->min = i->max;
445         i->openmin = i->openmax;
446         if (i->openmin)
447                 i->min--;
448         return 1;
449 }
450
451 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
452 {
453         if (a->empty || b->empty) {
454                 snd_interval_none(c);
455                 return;
456         }
457         c->empty = 0;
458         c->min = mul(a->min, b->min);
459         c->openmin = (a->openmin || b->openmin);
460         c->max = mul(a->max,  b->max);
461         c->openmax = (a->openmax || b->openmax);
462         c->integer = (a->integer && b->integer);
463 }
464
465 /**
466  * snd_interval_div - refine the interval value with division
467  * @a: dividend
468  * @b: divisor
469  * @c: quotient
470  *
471  * c = a / b
472  *
473  * Returns non-zero if the value is changed, zero if not changed.
474  */
475 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
476 {
477         unsigned int r;
478         if (a->empty || b->empty) {
479                 snd_interval_none(c);
480                 return;
481         }
482         c->empty = 0;
483         c->min = div32(a->min, b->max, &r);
484         c->openmin = (r || a->openmin || b->openmax);
485         if (b->min > 0) {
486                 c->max = div32(a->max, b->min, &r);
487                 if (r) {
488                         c->max++;
489                         c->openmax = 1;
490                 } else
491                         c->openmax = (a->openmax || b->openmin);
492         } else {
493                 c->max = UINT_MAX;
494                 c->openmax = 0;
495         }
496         c->integer = 0;
497 }
498
499 /**
500  * snd_interval_muldivk - refine the interval value
501  * @a: dividend 1
502  * @b: dividend 2
503  * @k: divisor (as integer)
504  * @c: result
505   *
506  * c = a * b / k
507  *
508  * Returns non-zero if the value is changed, zero if not changed.
509  */
510 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
511                       unsigned int k, struct snd_interval *c)
512 {
513         unsigned int r;
514         if (a->empty || b->empty) {
515                 snd_interval_none(c);
516                 return;
517         }
518         c->empty = 0;
519         c->min = muldiv32(a->min, b->min, k, &r);
520         c->openmin = (r || a->openmin || b->openmin);
521         c->max = muldiv32(a->max, b->max, k, &r);
522         if (r) {
523                 c->max++;
524                 c->openmax = 1;
525         } else
526                 c->openmax = (a->openmax || b->openmax);
527         c->integer = 0;
528 }
529
530 /**
531  * snd_interval_mulkdiv - refine the interval value
532  * @a: dividend 1
533  * @k: dividend 2 (as integer)
534  * @b: divisor
535  * @c: result
536  *
537  * c = a * k / b
538  *
539  * Returns non-zero if the value is changed, zero if not changed.
540  */
541 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
542                       const struct snd_interval *b, struct snd_interval *c)
543 {
544         unsigned int r;
545         if (a->empty || b->empty) {
546                 snd_interval_none(c);
547                 return;
548         }
549         c->empty = 0;
550         c->min = muldiv32(a->min, k, b->max, &r);
551         c->openmin = (r || a->openmin || b->openmax);
552         if (b->min > 0) {
553                 c->max = muldiv32(a->max, k, b->min, &r);
554                 if (r) {
555                         c->max++;
556                         c->openmax = 1;
557                 } else
558                         c->openmax = (a->openmax || b->openmin);
559         } else {
560                 c->max = UINT_MAX;
561                 c->openmax = 0;
562         }
563         c->integer = 0;
564 }
565
566 /* ---- */
567
568
569 /**
570  * snd_interval_ratnum - refine the interval value
571  * @i: interval to refine
572  * @rats_count: number of ratnum_t 
573  * @rats: ratnum_t array
574  * @nump: pointer to store the resultant numerator
575  * @denp: pointer to store the resultant denominator
576  *
577  * Returns non-zero if the value is changed, zero if not changed.
578  */
579 int snd_interval_ratnum(struct snd_interval *i,
580                         unsigned int rats_count, struct snd_ratnum *rats,
581                         unsigned int *nump, unsigned int *denp)
582 {
583         unsigned int best_num, best_diff, best_den;
584         unsigned int k;
585         struct snd_interval t;
586         int err;
587
588         best_num = best_den = best_diff = 0;
589         for (k = 0; k < rats_count; ++k) {
590                 unsigned int num = rats[k].num;
591                 unsigned int den;
592                 unsigned int q = i->min;
593                 int diff;
594                 if (q == 0)
595                         q = 1;
596                 den = div_down(num, q);
597                 if (den < rats[k].den_min)
598                         continue;
599                 if (den > rats[k].den_max)
600                         den = rats[k].den_max;
601                 else {
602                         unsigned int r;
603                         r = (den - rats[k].den_min) % rats[k].den_step;
604                         if (r != 0)
605                                 den -= r;
606                 }
607                 diff = num - q * den;
608                 if (best_num == 0 ||
609                     diff * best_den < best_diff * den) {
610                         best_diff = diff;
611                         best_den = den;
612                         best_num = num;
613                 }
614         }
615         if (best_den == 0) {
616                 i->empty = 1;
617                 return -EINVAL;
618         }
619         t.min = div_down(best_num, best_den);
620         t.openmin = !!(best_num % best_den);
621         
622         best_num = best_den = best_diff = 0;
623         for (k = 0; k < rats_count; ++k) {
624                 unsigned int num = rats[k].num;
625                 unsigned int den;
626                 unsigned int q = i->max;
627                 int diff;
628                 if (q == 0) {
629                         i->empty = 1;
630                         return -EINVAL;
631                 }
632                 den = div_up(num, q);
633                 if (den > rats[k].den_max)
634                         continue;
635                 if (den < rats[k].den_min)
636                         den = rats[k].den_min;
637                 else {
638                         unsigned int r;
639                         r = (den - rats[k].den_min) % rats[k].den_step;
640                         if (r != 0)
641                                 den += rats[k].den_step - r;
642                 }
643                 diff = q * den - num;
644                 if (best_num == 0 ||
645                     diff * best_den < best_diff * den) {
646                         best_diff = diff;
647                         best_den = den;
648                         best_num = num;
649                 }
650         }
651         if (best_den == 0) {
652                 i->empty = 1;
653                 return -EINVAL;
654         }
655         t.max = div_up(best_num, best_den);
656         t.openmax = !!(best_num % best_den);
657         t.integer = 0;
658         err = snd_interval_refine(i, &t);
659         if (err < 0)
660                 return err;
661
662         if (snd_interval_single(i)) {
663                 if (nump)
664                         *nump = best_num;
665                 if (denp)
666                         *denp = best_den;
667         }
668         return err;
669 }
670
671 EXPORT_SYMBOL(snd_interval_ratnum);
672
673 /**
674  * snd_interval_ratden - refine the interval value
675  * @i: interval to refine
676  * @rats_count: number of struct ratden
677  * @rats: struct ratden array
678  * @nump: pointer to store the resultant numerator
679  * @denp: pointer to store the resultant denominator
680  *
681  * Returns non-zero if the value is changed, zero if not changed.
682  */
683 static int snd_interval_ratden(struct snd_interval *i,
684                                unsigned int rats_count, struct snd_ratden *rats,
685                                unsigned int *nump, unsigned int *denp)
686 {
687         unsigned int best_num, best_diff, best_den;
688         unsigned int k;
689         struct snd_interval t;
690         int err;
691
692         best_num = best_den = best_diff = 0;
693         for (k = 0; k < rats_count; ++k) {
694                 unsigned int num;
695                 unsigned int den = rats[k].den;
696                 unsigned int q = i->min;
697                 int diff;
698                 num = mul(q, den);
699                 if (num > rats[k].num_max)
700                         continue;
701                 if (num < rats[k].num_min)
702                         num = rats[k].num_max;
703                 else {
704                         unsigned int r;
705                         r = (num - rats[k].num_min) % rats[k].num_step;
706                         if (r != 0)
707                                 num += rats[k].num_step - r;
708                 }
709                 diff = num - q * den;
710                 if (best_num == 0 ||
711                     diff * best_den < best_diff * den) {
712                         best_diff = diff;
713                         best_den = den;
714                         best_num = num;
715                 }
716         }
717         if (best_den == 0) {
718                 i->empty = 1;
719                 return -EINVAL;
720         }
721         t.min = div_down(best_num, best_den);
722         t.openmin = !!(best_num % best_den);
723         
724         best_num = best_den = best_diff = 0;
725         for (k = 0; k < rats_count; ++k) {
726                 unsigned int num;
727                 unsigned int den = rats[k].den;
728                 unsigned int q = i->max;
729                 int diff;
730                 num = mul(q, den);
731                 if (num < rats[k].num_min)
732                         continue;
733                 if (num > rats[k].num_max)
734                         num = rats[k].num_max;
735                 else {
736                         unsigned int r;
737                         r = (num - rats[k].num_min) % rats[k].num_step;
738                         if (r != 0)
739                                 num -= r;
740                 }
741                 diff = q * den - num;
742                 if (best_num == 0 ||
743                     diff * best_den < best_diff * den) {
744                         best_diff = diff;
745                         best_den = den;
746                         best_num = num;
747                 }
748         }
749         if (best_den == 0) {
750                 i->empty = 1;
751                 return -EINVAL;
752         }
753         t.max = div_up(best_num, best_den);
754         t.openmax = !!(best_num % best_den);
755         t.integer = 0;
756         err = snd_interval_refine(i, &t);
757         if (err < 0)
758                 return err;
759
760         if (snd_interval_single(i)) {
761                 if (nump)
762                         *nump = best_num;
763                 if (denp)
764                         *denp = best_den;
765         }
766         return err;
767 }
768
769 /**
770  * snd_interval_list - refine the interval value from the list
771  * @i: the interval value to refine
772  * @count: the number of elements in the list
773  * @list: the value list
774  * @mask: the bit-mask to evaluate
775  *
776  * Refines the interval value from the list.
777  * When mask is non-zero, only the elements corresponding to bit 1 are
778  * evaluated.
779  *
780  * Returns non-zero if the value is changed, zero if not changed.
781  */
782 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
783 {
784         unsigned int k;
785         int changed = 0;
786         for (k = 0; k < count; k++) {
787                 if (mask && !(mask & (1 << k)))
788                         continue;
789                 if (i->min == list[k] && !i->openmin)
790                         goto _l1;
791                 if (i->min < list[k]) {
792                         i->min = list[k];
793                         i->openmin = 0;
794                         changed = 1;
795                         goto _l1;
796                 }
797         }
798         i->empty = 1;
799         return -EINVAL;
800  _l1:
801         for (k = count; k-- > 0;) {
802                 if (mask && !(mask & (1 << k)))
803                         continue;
804                 if (i->max == list[k] && !i->openmax)
805                         goto _l2;
806                 if (i->max > list[k]) {
807                         i->max = list[k];
808                         i->openmax = 0;
809                         changed = 1;
810                         goto _l2;
811                 }
812         }
813         i->empty = 1;
814         return -EINVAL;
815  _l2:
816         if (snd_interval_checkempty(i)) {
817                 i->empty = 1;
818                 return -EINVAL;
819         }
820         return changed;
821 }
822
823 EXPORT_SYMBOL(snd_interval_list);
824
825 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
826 {
827         unsigned int n;
828         int changed = 0;
829         n = (i->min - min) % step;
830         if (n != 0 || i->openmin) {
831                 i->min += step - n;
832                 changed = 1;
833         }
834         n = (i->max - min) % step;
835         if (n != 0 || i->openmax) {
836                 i->max -= n;
837                 changed = 1;
838         }
839         if (snd_interval_checkempty(i)) {
840                 i->empty = 1;
841                 return -EINVAL;
842         }
843         return changed;
844 }
845
846 /* Info constraints helpers */
847
848 /**
849  * snd_pcm_hw_rule_add - add the hw-constraint rule
850  * @runtime: the pcm runtime instance
851  * @cond: condition bits
852  * @var: the variable to evaluate
853  * @func: the evaluation function
854  * @private: the private data pointer passed to function
855  * @dep: the dependent variables
856  *
857  * Returns zero if successful, or a negative error code on failure.
858  */
859 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
860                         int var,
861                         snd_pcm_hw_rule_func_t func, void *private,
862                         int dep, ...)
863 {
864         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
865         struct snd_pcm_hw_rule *c;
866         unsigned int k;
867         va_list args;
868         va_start(args, dep);
869         if (constrs->rules_num >= constrs->rules_all) {
870                 struct snd_pcm_hw_rule *new;
871                 unsigned int new_rules = constrs->rules_all + 16;
872                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
873                 if (!new)
874                         return -ENOMEM;
875                 if (constrs->rules) {
876                         memcpy(new, constrs->rules,
877                                constrs->rules_num * sizeof(*c));
878                         kfree(constrs->rules);
879                 }
880                 constrs->rules = new;
881                 constrs->rules_all = new_rules;
882         }
883         c = &constrs->rules[constrs->rules_num];
884         c->cond = cond;
885         c->func = func;
886         c->var = var;
887         c->private = private;
888         k = 0;
889         while (1) {
890                 snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL);
891                 c->deps[k++] = dep;
892                 if (dep < 0)
893                         break;
894                 dep = va_arg(args, int);
895         }
896         constrs->rules_num++;
897         va_end(args);
898         return 0;
899 }                                   
900
901 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
902
903 /**
904  * snd_pcm_hw_constraint_mask
905  * @runtime: PCM runtime instance
906  * @var: hw_params variable to apply the mask
907  * @mask: the bitmap mask
908  *
909  * Apply the constraint of the given bitmap mask to a mask parameter.
910  */
911 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
912                                u_int32_t mask)
913 {
914         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
915         struct snd_mask *maskp = constrs_mask(constrs, var);
916         *maskp->bits &= mask;
917         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
918         if (*maskp->bits == 0)
919                 return -EINVAL;
920         return 0;
921 }
922
923 /**
924  * snd_pcm_hw_constraint_mask64
925  * @runtime: PCM runtime instance
926  * @var: hw_params variable to apply the mask
927  * @mask: the 64bit bitmap mask
928  *
929  * Apply the constraint of the given bitmap mask to a mask parameter.
930  */
931 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
932                                  u_int64_t mask)
933 {
934         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
935         struct snd_mask *maskp = constrs_mask(constrs, var);
936         maskp->bits[0] &= (u_int32_t)mask;
937         maskp->bits[1] &= (u_int32_t)(mask >> 32);
938         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
939         if (! maskp->bits[0] && ! maskp->bits[1])
940                 return -EINVAL;
941         return 0;
942 }
943
944 /**
945  * snd_pcm_hw_constraint_integer
946  * @runtime: PCM runtime instance
947  * @var: hw_params variable to apply the integer constraint
948  *
949  * Apply the constraint of integer to an interval parameter.
950  */
951 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
952 {
953         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
954         return snd_interval_setinteger(constrs_interval(constrs, var));
955 }
956
957 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
958
959 /**
960  * snd_pcm_hw_constraint_minmax
961  * @runtime: PCM runtime instance
962  * @var: hw_params variable to apply the range
963  * @min: the minimal value
964  * @max: the maximal value
965  * 
966  * Apply the min/max range constraint to an interval parameter.
967  */
968 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
969                                  unsigned int min, unsigned int max)
970 {
971         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
972         struct snd_interval t;
973         t.min = min;
974         t.max = max;
975         t.openmin = t.openmax = 0;
976         t.integer = 0;
977         return snd_interval_refine(constrs_interval(constrs, var), &t);
978 }
979
980 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
981
982 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
983                                 struct snd_pcm_hw_rule *rule)
984 {
985         struct snd_pcm_hw_constraint_list *list = rule->private;
986         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
987 }               
988
989
990 /**
991  * snd_pcm_hw_constraint_list
992  * @runtime: PCM runtime instance
993  * @cond: condition bits
994  * @var: hw_params variable to apply the list constraint
995  * @l: list
996  * 
997  * Apply the list of constraints to an interval parameter.
998  */
999 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1000                                unsigned int cond,
1001                                snd_pcm_hw_param_t var,
1002                                struct snd_pcm_hw_constraint_list *l)
1003 {
1004         return snd_pcm_hw_rule_add(runtime, cond, var,
1005                                    snd_pcm_hw_rule_list, l,
1006                                    var, -1);
1007 }
1008
1009 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1010
1011 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1012                                    struct snd_pcm_hw_rule *rule)
1013 {
1014         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1015         unsigned int num = 0, den = 0;
1016         int err;
1017         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1018                                   r->nrats, r->rats, &num, &den);
1019         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1020                 params->rate_num = num;
1021                 params->rate_den = den;
1022         }
1023         return err;
1024 }
1025
1026 /**
1027  * snd_pcm_hw_constraint_ratnums
1028  * @runtime: PCM runtime instance
1029  * @cond: condition bits
1030  * @var: hw_params variable to apply the ratnums constraint
1031  * @r: struct snd_ratnums constriants
1032  */
1033 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1034                                   unsigned int cond,
1035                                   snd_pcm_hw_param_t var,
1036                                   struct snd_pcm_hw_constraint_ratnums *r)
1037 {
1038         return snd_pcm_hw_rule_add(runtime, cond, var,
1039                                    snd_pcm_hw_rule_ratnums, r,
1040                                    var, -1);
1041 }
1042
1043 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1044
1045 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1046                                    struct snd_pcm_hw_rule *rule)
1047 {
1048         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1049         unsigned int num = 0, den = 0;
1050         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1051                                   r->nrats, r->rats, &num, &den);
1052         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1053                 params->rate_num = num;
1054                 params->rate_den = den;
1055         }
1056         return err;
1057 }
1058
1059 /**
1060  * snd_pcm_hw_constraint_ratdens
1061  * @runtime: PCM runtime instance
1062  * @cond: condition bits
1063  * @var: hw_params variable to apply the ratdens constraint
1064  * @r: struct snd_ratdens constriants
1065  */
1066 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1067                                   unsigned int cond,
1068                                   snd_pcm_hw_param_t var,
1069                                   struct snd_pcm_hw_constraint_ratdens *r)
1070 {
1071         return snd_pcm_hw_rule_add(runtime, cond, var,
1072                                    snd_pcm_hw_rule_ratdens, r,
1073                                    var, -1);
1074 }
1075
1076 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1077
1078 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1079                                   struct snd_pcm_hw_rule *rule)
1080 {
1081         unsigned int l = (unsigned long) rule->private;
1082         int width = l & 0xffff;
1083         unsigned int msbits = l >> 16;
1084         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1085         if (snd_interval_single(i) && snd_interval_value(i) == width)
1086                 params->msbits = msbits;
1087         return 0;
1088 }
1089
1090 /**
1091  * snd_pcm_hw_constraint_msbits
1092  * @runtime: PCM runtime instance
1093  * @cond: condition bits
1094  * @width: sample bits width
1095  * @msbits: msbits width
1096  */
1097 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1098                                  unsigned int cond,
1099                                  unsigned int width,
1100                                  unsigned int msbits)
1101 {
1102         unsigned long l = (msbits << 16) | width;
1103         return snd_pcm_hw_rule_add(runtime, cond, -1,
1104                                     snd_pcm_hw_rule_msbits,
1105                                     (void*) l,
1106                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1107 }
1108
1109 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1110
1111 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1112                                 struct snd_pcm_hw_rule *rule)
1113 {
1114         unsigned long step = (unsigned long) rule->private;
1115         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1116 }
1117
1118 /**
1119  * snd_pcm_hw_constraint_step
1120  * @runtime: PCM runtime instance
1121  * @cond: condition bits
1122  * @var: hw_params variable to apply the step constraint
1123  * @step: step size
1124  */
1125 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1126                                unsigned int cond,
1127                                snd_pcm_hw_param_t var,
1128                                unsigned long step)
1129 {
1130         return snd_pcm_hw_rule_add(runtime, cond, var, 
1131                                    snd_pcm_hw_rule_step, (void *) step,
1132                                    var, -1);
1133 }
1134
1135 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1136
1137 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1138 {
1139         static int pow2_sizes[] = {
1140                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1141                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1142                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1143                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1144         };
1145         return snd_interval_list(hw_param_interval(params, rule->var),
1146                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1147 }               
1148
1149 /**
1150  * snd_pcm_hw_constraint_pow2
1151  * @runtime: PCM runtime instance
1152  * @cond: condition bits
1153  * @var: hw_params variable to apply the power-of-2 constraint
1154  */
1155 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1156                                unsigned int cond,
1157                                snd_pcm_hw_param_t var)
1158 {
1159         return snd_pcm_hw_rule_add(runtime, cond, var, 
1160                                    snd_pcm_hw_rule_pow2, NULL,
1161                                    var, -1);
1162 }
1163
1164 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1165
1166 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1167                                   snd_pcm_hw_param_t var)
1168 {
1169         if (hw_is_mask(var)) {
1170                 snd_mask_any(hw_param_mask(params, var));
1171                 params->cmask |= 1 << var;
1172                 params->rmask |= 1 << var;
1173                 return;
1174         }
1175         if (hw_is_interval(var)) {
1176                 snd_interval_any(hw_param_interval(params, var));
1177                 params->cmask |= 1 << var;
1178                 params->rmask |= 1 << var;
1179                 return;
1180         }
1181         snd_BUG();
1182 }
1183
1184 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1185 {
1186         unsigned int k;
1187         memset(params, 0, sizeof(*params));
1188         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1189                 _snd_pcm_hw_param_any(params, k);
1190         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1191                 _snd_pcm_hw_param_any(params, k);
1192         params->info = ~0U;
1193 }
1194
1195 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1196
1197 /**
1198  * snd_pcm_hw_param_value
1199  * @params: the hw_params instance
1200  * @var: parameter to retrieve
1201  * @dir: pointer to the direction (-1,0,1) or NULL
1202  *
1203  * Return the value for field PAR if it's fixed in configuration space 
1204  *  defined by PARAMS. Return -EINVAL otherwise
1205  */
1206 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1207                            snd_pcm_hw_param_t var, int *dir)
1208 {
1209         if (hw_is_mask(var)) {
1210                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1211                 if (!snd_mask_single(mask))
1212                         return -EINVAL;
1213                 if (dir)
1214                         *dir = 0;
1215                 return snd_mask_value(mask);
1216         }
1217         if (hw_is_interval(var)) {
1218                 const struct snd_interval *i = hw_param_interval_c(params, var);
1219                 if (!snd_interval_single(i))
1220                         return -EINVAL;
1221                 if (dir)
1222                         *dir = i->openmin;
1223                 return snd_interval_value(i);
1224         }
1225         return -EINVAL;
1226 }
1227
1228 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1229
1230 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1231                                 snd_pcm_hw_param_t var)
1232 {
1233         if (hw_is_mask(var)) {
1234                 snd_mask_none(hw_param_mask(params, var));
1235                 params->cmask |= 1 << var;
1236                 params->rmask |= 1 << var;
1237         } else if (hw_is_interval(var)) {
1238                 snd_interval_none(hw_param_interval(params, var));
1239                 params->cmask |= 1 << var;
1240                 params->rmask |= 1 << var;
1241         } else {
1242                 snd_BUG();
1243         }
1244 }
1245
1246 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1247
1248 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1249                                    snd_pcm_hw_param_t var)
1250 {
1251         int changed;
1252         if (hw_is_mask(var))
1253                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1254         else if (hw_is_interval(var))
1255                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1256         else
1257                 return -EINVAL;
1258         if (changed) {
1259                 params->cmask |= 1 << var;
1260                 params->rmask |= 1 << var;
1261         }
1262         return changed;
1263 }
1264
1265
1266 /**
1267  * snd_pcm_hw_param_first
1268  * @pcm: PCM instance
1269  * @params: the hw_params instance
1270  * @var: parameter to retrieve
1271  * @dir: pointer to the direction (-1,0,1) or NULL
1272  *
1273  * Inside configuration space defined by PARAMS remove from PAR all 
1274  * values > minimum. Reduce configuration space accordingly.
1275  * Return the minimum.
1276  */
1277 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1278                            struct snd_pcm_hw_params *params, 
1279                            snd_pcm_hw_param_t var, int *dir)
1280 {
1281         int changed = _snd_pcm_hw_param_first(params, var);
1282         if (changed < 0)
1283                 return changed;
1284         if (params->rmask) {
1285                 int err = snd_pcm_hw_refine(pcm, params);
1286                 snd_assert(err >= 0, return err);
1287         }
1288         return snd_pcm_hw_param_value(params, var, dir);
1289 }
1290
1291 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1292
1293 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1294                                   snd_pcm_hw_param_t var)
1295 {
1296         int changed;
1297         if (hw_is_mask(var))
1298                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1299         else if (hw_is_interval(var))
1300                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1301         else
1302                 return -EINVAL;
1303         if (changed) {
1304                 params->cmask |= 1 << var;
1305                 params->rmask |= 1 << var;
1306         }
1307         return changed;
1308 }
1309
1310
1311 /**
1312  * snd_pcm_hw_param_last
1313  * @pcm: PCM instance
1314  * @params: the hw_params instance
1315  * @var: parameter to retrieve
1316  * @dir: pointer to the direction (-1,0,1) or NULL
1317  *
1318  * Inside configuration space defined by PARAMS remove from PAR all 
1319  * values < maximum. Reduce configuration space accordingly.
1320  * Return the maximum.
1321  */
1322 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1323                           struct snd_pcm_hw_params *params,
1324                           snd_pcm_hw_param_t var, int *dir)
1325 {
1326         int changed = _snd_pcm_hw_param_last(params, var);
1327         if (changed < 0)
1328                 return changed;
1329         if (params->rmask) {
1330                 int err = snd_pcm_hw_refine(pcm, params);
1331                 snd_assert(err >= 0, return err);
1332         }
1333         return snd_pcm_hw_param_value(params, var, dir);
1334 }
1335
1336 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1337
1338 /**
1339  * snd_pcm_hw_param_choose
1340  * @pcm: PCM instance
1341  * @params: the hw_params instance
1342  *
1343  * Choose one configuration from configuration space defined by PARAMS
1344  * The configuration chosen is that obtained fixing in this order:
1345  * first access, first format, first subformat, min channels,
1346  * min rate, min period time, max buffer size, min tick time
1347  */
1348 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1349                              struct snd_pcm_hw_params *params)
1350 {
1351         static int vars[] = {
1352                 SNDRV_PCM_HW_PARAM_ACCESS,
1353                 SNDRV_PCM_HW_PARAM_FORMAT,
1354                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1355                 SNDRV_PCM_HW_PARAM_CHANNELS,
1356                 SNDRV_PCM_HW_PARAM_RATE,
1357                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1358                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1359                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1360                 -1
1361         };
1362         int err, *v;
1363
1364         for (v = vars; *v != -1; v++) {
1365                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1366                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1367                 else
1368                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1369                 snd_assert(err >= 0, return err);
1370         }
1371         return 0;
1372 }
1373
1374 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1375                                    void *arg)
1376 {
1377         struct snd_pcm_runtime *runtime = substream->runtime;
1378         unsigned long flags;
1379         snd_pcm_stream_lock_irqsave(substream, flags);
1380         if (snd_pcm_running(substream) &&
1381             snd_pcm_update_hw_ptr(substream) >= 0)
1382                 runtime->status->hw_ptr %= runtime->buffer_size;
1383         else
1384                 runtime->status->hw_ptr = 0;
1385         snd_pcm_stream_unlock_irqrestore(substream, flags);
1386         return 0;
1387 }
1388
1389 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1390                                           void *arg)
1391 {
1392         struct snd_pcm_channel_info *info = arg;
1393         struct snd_pcm_runtime *runtime = substream->runtime;
1394         int width;
1395         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1396                 info->offset = -1;
1397                 return 0;
1398         }
1399         width = snd_pcm_format_physical_width(runtime->format);
1400         if (width < 0)
1401                 return width;
1402         info->offset = 0;
1403         switch (runtime->access) {
1404         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1405         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1406                 info->first = info->channel * width;
1407                 info->step = runtime->channels * width;
1408                 break;
1409         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1410         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1411         {
1412                 size_t size = runtime->dma_bytes / runtime->channels;
1413                 info->first = info->channel * size * 8;
1414                 info->step = width;
1415                 break;
1416         }
1417         default:
1418                 snd_BUG();
1419                 break;
1420         }
1421         return 0;
1422 }
1423
1424 /**
1425  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1426  * @substream: the pcm substream instance
1427  * @cmd: ioctl command
1428  * @arg: ioctl argument
1429  *
1430  * Processes the generic ioctl commands for PCM.
1431  * Can be passed as the ioctl callback for PCM ops.
1432  *
1433  * Returns zero if successful, or a negative error code on failure.
1434  */
1435 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1436                       unsigned int cmd, void *arg)
1437 {
1438         switch (cmd) {
1439         case SNDRV_PCM_IOCTL1_INFO:
1440                 return 0;
1441         case SNDRV_PCM_IOCTL1_RESET:
1442                 return snd_pcm_lib_ioctl_reset(substream, arg);
1443         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1444                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1445         }
1446         return -ENXIO;
1447 }
1448
1449 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1450
1451 /*
1452  *  Conditions
1453  */
1454
1455 static void snd_pcm_system_tick_set(struct snd_pcm_substream *substream, 
1456                                     unsigned long ticks)
1457 {
1458         struct snd_pcm_runtime *runtime = substream->runtime;
1459         if (ticks == 0)
1460                 del_timer(&runtime->tick_timer);
1461         else {
1462                 ticks += (1000000 / HZ) - 1;
1463                 ticks /= (1000000 / HZ);
1464                 mod_timer(&runtime->tick_timer, jiffies + ticks);
1465         }
1466 }
1467
1468 /* Temporary alias */
1469 void snd_pcm_tick_set(struct snd_pcm_substream *substream, unsigned long ticks)
1470 {
1471         snd_pcm_system_tick_set(substream, ticks);
1472 }
1473
1474 void snd_pcm_tick_prepare(struct snd_pcm_substream *substream)
1475 {
1476         struct snd_pcm_runtime *runtime = substream->runtime;
1477         snd_pcm_uframes_t frames = ULONG_MAX;
1478         snd_pcm_uframes_t avail, dist;
1479         unsigned int ticks;
1480         u_int64_t n;
1481         u_int32_t r;
1482         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1483                 if (runtime->silence_size >= runtime->boundary) {
1484                         frames = 1;
1485                 } else if (runtime->silence_size > 0 &&
1486                            runtime->silence_filled < runtime->buffer_size) {
1487                         snd_pcm_sframes_t noise_dist;
1488                         noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
1489                         if (noise_dist > (snd_pcm_sframes_t)runtime->silence_threshold)
1490                                 frames = noise_dist - runtime->silence_threshold;
1491                 }
1492                 avail = snd_pcm_playback_avail(runtime);
1493         } else {
1494                 avail = snd_pcm_capture_avail(runtime);
1495         }
1496         if (avail < runtime->control->avail_min) {
1497                 snd_pcm_sframes_t n = runtime->control->avail_min - avail;
1498                 if (n > 0 && frames > (snd_pcm_uframes_t)n)
1499                         frames = n;
1500         }
1501         if (avail < runtime->buffer_size) {
1502                 snd_pcm_sframes_t n = runtime->buffer_size - avail;
1503                 if (n > 0 && frames > (snd_pcm_uframes_t)n)
1504                         frames = n;
1505         }
1506         if (frames == ULONG_MAX) {
1507                 snd_pcm_tick_set(substream, 0);
1508                 return;
1509         }
1510         dist = runtime->status->hw_ptr - runtime->hw_ptr_base;
1511         /* Distance to next interrupt */
1512         dist = runtime->period_size - dist % runtime->period_size;
1513         if (dist <= frames) {
1514                 snd_pcm_tick_set(substream, 0);
1515                 return;
1516         }
1517         /* the base time is us */
1518         n = frames;
1519         n *= 1000000;
1520         div64_32(&n, runtime->tick_time * runtime->rate, &r);
1521         ticks = n + (r > 0 ? 1 : 0);
1522         if (ticks < runtime->sleep_min)
1523                 ticks = runtime->sleep_min;
1524         snd_pcm_tick_set(substream, (unsigned long) ticks);
1525 }
1526
1527 void snd_pcm_tick_elapsed(struct snd_pcm_substream *substream)
1528 {
1529         struct snd_pcm_runtime *runtime;
1530         unsigned long flags;
1531         
1532         snd_assert(substream != NULL, return);
1533         runtime = substream->runtime;
1534         snd_assert(runtime != NULL, return);
1535
1536         snd_pcm_stream_lock_irqsave(substream, flags);
1537         if (!snd_pcm_running(substream) ||
1538             snd_pcm_update_hw_ptr(substream) < 0)
1539                 goto _end;
1540         if (runtime->sleep_min)
1541                 snd_pcm_tick_prepare(substream);
1542  _end:
1543         snd_pcm_stream_unlock_irqrestore(substream, flags);
1544 }
1545
1546 /**
1547  * snd_pcm_period_elapsed - update the pcm status for the next period
1548  * @substream: the pcm substream instance
1549  *
1550  * This function is called from the interrupt handler when the
1551  * PCM has processed the period size.  It will update the current
1552  * pointer, set up the tick, wake up sleepers, etc.
1553  *
1554  * Even if more than one periods have elapsed since the last call, you
1555  * have to call this only once.
1556  */
1557 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1558 {
1559         struct snd_pcm_runtime *runtime;
1560         unsigned long flags;
1561
1562         snd_assert(substream != NULL, return);
1563         runtime = substream->runtime;
1564         snd_assert(runtime != NULL, return);
1565
1566         if (runtime->transfer_ack_begin)
1567                 runtime->transfer_ack_begin(substream);
1568
1569         snd_pcm_stream_lock_irqsave(substream, flags);
1570         if (!snd_pcm_running(substream) ||
1571             snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1572                 goto _end;
1573
1574         if (substream->timer_running)
1575                 snd_timer_interrupt(substream->timer, 1);
1576         if (runtime->sleep_min)
1577                 snd_pcm_tick_prepare(substream);
1578  _end:
1579         snd_pcm_stream_unlock_irqrestore(substream, flags);
1580         if (runtime->transfer_ack_end)
1581                 runtime->transfer_ack_end(substream);
1582         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1583 }
1584
1585 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1586
1587 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1588                                       unsigned int hwoff,
1589                                       unsigned long data, unsigned int off,
1590                                       snd_pcm_uframes_t frames)
1591 {
1592         struct snd_pcm_runtime *runtime = substream->runtime;
1593         int err;
1594         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1595         if (substream->ops->copy) {
1596                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1597                         return err;
1598         } else {
1599                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1600                 snd_assert(runtime->dma_area, return -EFAULT);
1601                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1602                         return -EFAULT;
1603         }
1604         return 0;
1605 }
1606  
1607 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1608                           unsigned long data, unsigned int off,
1609                           snd_pcm_uframes_t size);
1610
1611 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1612                                             unsigned long data,
1613                                             snd_pcm_uframes_t size,
1614                                             int nonblock,
1615                                             transfer_f transfer)
1616 {
1617         struct snd_pcm_runtime *runtime = substream->runtime;
1618         snd_pcm_uframes_t xfer = 0;
1619         snd_pcm_uframes_t offset = 0;
1620         int err = 0;
1621
1622         if (size == 0)
1623                 return 0;
1624         if (size > runtime->xfer_align)
1625                 size -= size % runtime->xfer_align;
1626
1627         snd_pcm_stream_lock_irq(substream);
1628         switch (runtime->status->state) {
1629         case SNDRV_PCM_STATE_PREPARED:
1630         case SNDRV_PCM_STATE_RUNNING:
1631         case SNDRV_PCM_STATE_PAUSED:
1632                 break;
1633         case SNDRV_PCM_STATE_XRUN:
1634                 err = -EPIPE;
1635                 goto _end_unlock;
1636         case SNDRV_PCM_STATE_SUSPENDED:
1637                 err = -ESTRPIPE;
1638                 goto _end_unlock;
1639         default:
1640                 err = -EBADFD;
1641                 goto _end_unlock;
1642         }
1643
1644         while (size > 0) {
1645                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1646                 snd_pcm_uframes_t avail;
1647                 snd_pcm_uframes_t cont;
1648                 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1649                         snd_pcm_update_hw_ptr(substream);
1650                 avail = snd_pcm_playback_avail(runtime);
1651                 if (((avail < runtime->control->avail_min && size > avail) ||
1652                    (size >= runtime->xfer_align && avail < runtime->xfer_align))) {
1653                         wait_queue_t wait;
1654                         enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
1655                         long tout;
1656
1657                         if (nonblock) {
1658                                 err = -EAGAIN;
1659                                 goto _end_unlock;
1660                         }
1661
1662                         init_waitqueue_entry(&wait, current);
1663                         add_wait_queue(&runtime->sleep, &wait);
1664                         while (1) {
1665                                 if (signal_pending(current)) {
1666                                         state = SIGNALED;
1667                                         break;
1668                                 }
1669                                 set_current_state(TASK_INTERRUPTIBLE);
1670                                 snd_pcm_stream_unlock_irq(substream);
1671                                 tout = schedule_timeout(10 * HZ);
1672                                 snd_pcm_stream_lock_irq(substream);
1673                                 if (tout == 0) {
1674                                         if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
1675                                             runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
1676                                                 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
1677                                                 break;
1678                                         }
1679                                 }
1680                                 switch (runtime->status->state) {
1681                                 case SNDRV_PCM_STATE_XRUN:
1682                                 case SNDRV_PCM_STATE_DRAINING:
1683                                         state = ERROR;
1684                                         goto _end_loop;
1685                                 case SNDRV_PCM_STATE_SUSPENDED:
1686                                         state = SUSPENDED;
1687                                         goto _end_loop;
1688                                 case SNDRV_PCM_STATE_SETUP:
1689                                         state = DROPPED;
1690                                         goto _end_loop;
1691                                 default:
1692                                         break;
1693                                 }
1694                                 avail = snd_pcm_playback_avail(runtime);
1695                                 if (avail >= runtime->control->avail_min) {
1696                                         state = READY;
1697                                         break;
1698                                 }
1699                         }
1700                        _end_loop:
1701                         remove_wait_queue(&runtime->sleep, &wait);
1702
1703                         switch (state) {
1704                         case ERROR:
1705                                 err = -EPIPE;
1706                                 goto _end_unlock;
1707                         case SUSPENDED:
1708                                 err = -ESTRPIPE;
1709                                 goto _end_unlock;
1710                         case SIGNALED:
1711                                 err = -ERESTARTSYS;
1712                                 goto _end_unlock;
1713                         case EXPIRED:
1714                                 snd_printd("playback write error (DMA or IRQ trouble?)\n");
1715                                 err = -EIO;
1716                                 goto _end_unlock;
1717                         case DROPPED:
1718                                 err = -EBADFD;
1719                                 goto _end_unlock;
1720                         default:
1721                                 break;
1722                         }
1723                 }
1724                 if (avail > runtime->xfer_align)
1725                         avail -= avail % runtime->xfer_align;
1726                 frames = size > avail ? avail : size;
1727                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1728                 if (frames > cont)
1729                         frames = cont;
1730                 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
1731                 appl_ptr = runtime->control->appl_ptr;
1732                 appl_ofs = appl_ptr % runtime->buffer_size;
1733                 snd_pcm_stream_unlock_irq(substream);
1734                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1735                         goto _end;
1736                 snd_pcm_stream_lock_irq(substream);
1737                 switch (runtime->status->state) {
1738                 case SNDRV_PCM_STATE_XRUN:
1739                         err = -EPIPE;
1740                         goto _end_unlock;
1741                 case SNDRV_PCM_STATE_SUSPENDED:
1742                         err = -ESTRPIPE;
1743                         goto _end_unlock;
1744                 default:
1745                         break;
1746                 }
1747                 appl_ptr += frames;
1748                 if (appl_ptr >= runtime->boundary)
1749                         appl_ptr -= runtime->boundary;
1750                 runtime->control->appl_ptr = appl_ptr;
1751                 if (substream->ops->ack)
1752                         substream->ops->ack(substream);
1753
1754                 offset += frames;
1755                 size -= frames;
1756                 xfer += frames;
1757                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1758                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1759                         err = snd_pcm_start(substream);
1760                         if (err < 0)
1761                                 goto _end_unlock;
1762                 }
1763                 if (runtime->sleep_min &&
1764                     runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1765                         snd_pcm_tick_prepare(substream);
1766         }
1767  _end_unlock:
1768         snd_pcm_stream_unlock_irq(substream);
1769  _end:
1770         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1771 }
1772
1773 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1774 {
1775         struct snd_pcm_runtime *runtime;
1776         int nonblock;
1777
1778         snd_assert(substream != NULL, return -ENXIO);
1779         runtime = substream->runtime;
1780         snd_assert(runtime != NULL, return -ENXIO);
1781         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
1782         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1783                 return -EBADFD;
1784
1785         nonblock = !!(substream->f_flags & O_NONBLOCK);
1786
1787         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1788             runtime->channels > 1)
1789                 return -EINVAL;
1790         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1791                                   snd_pcm_lib_write_transfer);
1792 }
1793
1794 EXPORT_SYMBOL(snd_pcm_lib_write);
1795
1796 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1797                                        unsigned int hwoff,
1798                                        unsigned long data, unsigned int off,
1799                                        snd_pcm_uframes_t frames)
1800 {
1801         struct snd_pcm_runtime *runtime = substream->runtime;
1802         int err;
1803         void __user **bufs = (void __user **)data;
1804         int channels = runtime->channels;
1805         int c;
1806         if (substream->ops->copy) {
1807                 snd_assert(substream->ops->silence != NULL, return -EINVAL);
1808                 for (c = 0; c < channels; ++c, ++bufs) {
1809                         if (*bufs == NULL) {
1810                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1811                                         return err;
1812                         } else {
1813                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1814                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1815                                         return err;
1816                         }
1817                 }
1818         } else {
1819                 /* default transfer behaviour */
1820                 size_t dma_csize = runtime->dma_bytes / channels;
1821                 snd_assert(runtime->dma_area, return -EFAULT);
1822                 for (c = 0; c < channels; ++c, ++bufs) {
1823                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1824                         if (*bufs == NULL) {
1825                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1826                         } else {
1827                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1828                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1829                                         return -EFAULT;
1830                         }
1831                 }
1832         }
1833         return 0;
1834 }
1835  
1836 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1837                                      void __user **bufs,
1838                                      snd_pcm_uframes_t frames)
1839 {
1840         struct snd_pcm_runtime *runtime;
1841         int nonblock;
1842
1843         snd_assert(substream != NULL, return -ENXIO);
1844         runtime = substream->runtime;
1845         snd_assert(runtime != NULL, return -ENXIO);
1846         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
1847         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1848                 return -EBADFD;
1849
1850         nonblock = !!(substream->f_flags & O_NONBLOCK);
1851
1852         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1853                 return -EINVAL;
1854         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1855                                   nonblock, snd_pcm_lib_writev_transfer);
1856 }
1857
1858 EXPORT_SYMBOL(snd_pcm_lib_writev);
1859
1860 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
1861                                      unsigned int hwoff,
1862                                      unsigned long data, unsigned int off,
1863                                      snd_pcm_uframes_t frames)
1864 {
1865         struct snd_pcm_runtime *runtime = substream->runtime;
1866         int err;
1867         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1868         if (substream->ops->copy) {
1869                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1870                         return err;
1871         } else {
1872                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1873                 snd_assert(runtime->dma_area, return -EFAULT);
1874                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
1875                         return -EFAULT;
1876         }
1877         return 0;
1878 }
1879
1880 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
1881                                            unsigned long data,
1882                                            snd_pcm_uframes_t size,
1883                                            int nonblock,
1884                                            transfer_f transfer)
1885 {
1886         struct snd_pcm_runtime *runtime = substream->runtime;
1887         snd_pcm_uframes_t xfer = 0;
1888         snd_pcm_uframes_t offset = 0;
1889         int err = 0;
1890
1891         if (size == 0)
1892                 return 0;
1893         if (size > runtime->xfer_align)
1894                 size -= size % runtime->xfer_align;
1895
1896         snd_pcm_stream_lock_irq(substream);
1897         switch (runtime->status->state) {
1898         case SNDRV_PCM_STATE_PREPARED:
1899                 if (size >= runtime->start_threshold) {
1900                         err = snd_pcm_start(substream);
1901                         if (err < 0)
1902                                 goto _end_unlock;
1903                 }
1904                 break;
1905         case SNDRV_PCM_STATE_DRAINING:
1906         case SNDRV_PCM_STATE_RUNNING:
1907         case SNDRV_PCM_STATE_PAUSED:
1908                 break;
1909         case SNDRV_PCM_STATE_XRUN:
1910                 err = -EPIPE;
1911                 goto _end_unlock;
1912         case SNDRV_PCM_STATE_SUSPENDED:
1913                 err = -ESTRPIPE;
1914                 goto _end_unlock;
1915         default:
1916                 err = -EBADFD;
1917                 goto _end_unlock;
1918         }
1919
1920         while (size > 0) {
1921                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1922                 snd_pcm_uframes_t avail;
1923                 snd_pcm_uframes_t cont;
1924                 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1925                         snd_pcm_update_hw_ptr(substream);
1926               __draining:
1927                 avail = snd_pcm_capture_avail(runtime);
1928                 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
1929                         if (avail < runtime->xfer_align) {
1930                                 err = -EPIPE;
1931                                 goto _end_unlock;
1932                         }
1933                 } else if ((avail < runtime->control->avail_min && size > avail) ||
1934                            (size >= runtime->xfer_align && avail < runtime->xfer_align)) {
1935                         wait_queue_t wait;
1936                         enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
1937                         long tout;
1938
1939                         if (nonblock) {
1940                                 err = -EAGAIN;
1941                                 goto _end_unlock;
1942                         }
1943
1944                         init_waitqueue_entry(&wait, current);
1945                         add_wait_queue(&runtime->sleep, &wait);
1946                         while (1) {
1947                                 if (signal_pending(current)) {
1948                                         state = SIGNALED;
1949                                         break;
1950                                 }
1951                                 set_current_state(TASK_INTERRUPTIBLE);
1952                                 snd_pcm_stream_unlock_irq(substream);
1953                                 tout = schedule_timeout(10 * HZ);
1954                                 snd_pcm_stream_lock_irq(substream);
1955                                 if (tout == 0) {
1956                                         if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
1957                                             runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
1958                                                 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
1959                                                 break;
1960                                         }
1961                                 }
1962                                 switch (runtime->status->state) {
1963                                 case SNDRV_PCM_STATE_XRUN:
1964                                         state = ERROR;
1965                                         goto _end_loop;
1966                                 case SNDRV_PCM_STATE_SUSPENDED:
1967                                         state = SUSPENDED;
1968                                         goto _end_loop;
1969                                 case SNDRV_PCM_STATE_DRAINING:
1970                                         goto __draining;
1971                                 case SNDRV_PCM_STATE_SETUP:
1972                                         state = DROPPED;
1973                                         goto _end_loop;
1974                                 default:
1975                                         break;
1976                                 }
1977                                 avail = snd_pcm_capture_avail(runtime);
1978                                 if (avail >= runtime->control->avail_min) {
1979                                         state = READY;
1980                                         break;
1981                                 }
1982                         }
1983                        _end_loop:
1984                         remove_wait_queue(&runtime->sleep, &wait);
1985
1986                         switch (state) {
1987                         case ERROR:
1988                                 err = -EPIPE;
1989                                 goto _end_unlock;
1990                         case SUSPENDED:
1991                                 err = -ESTRPIPE;
1992                                 goto _end_unlock;
1993                         case SIGNALED:
1994                                 err = -ERESTARTSYS;
1995                                 goto _end_unlock;
1996                         case EXPIRED:
1997                                 snd_printd("capture read error (DMA or IRQ trouble?)\n");
1998                                 err = -EIO;
1999                                 goto _end_unlock;
2000                         case DROPPED:
2001                                 err = -EBADFD;
2002                                 goto _end_unlock;
2003                         default:
2004                                 break;
2005                         }
2006                 }
2007                 if (avail > runtime->xfer_align)
2008                         avail -= avail % runtime->xfer_align;
2009                 frames = size > avail ? avail : size;
2010                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2011                 if (frames > cont)
2012                         frames = cont;
2013                 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2014                 appl_ptr = runtime->control->appl_ptr;
2015                 appl_ofs = appl_ptr % runtime->buffer_size;
2016                 snd_pcm_stream_unlock_irq(substream);
2017                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2018                         goto _end;
2019                 snd_pcm_stream_lock_irq(substream);
2020                 switch (runtime->status->state) {
2021                 case SNDRV_PCM_STATE_XRUN:
2022                         err = -EPIPE;
2023                         goto _end_unlock;
2024                 case SNDRV_PCM_STATE_SUSPENDED:
2025                         err = -ESTRPIPE;
2026                         goto _end_unlock;
2027                 default:
2028                         break;
2029                 }
2030                 appl_ptr += frames;
2031                 if (appl_ptr >= runtime->boundary)
2032                         appl_ptr -= runtime->boundary;
2033                 runtime->control->appl_ptr = appl_ptr;
2034                 if (substream->ops->ack)
2035                         substream->ops->ack(substream);
2036
2037                 offset += frames;
2038                 size -= frames;
2039                 xfer += frames;
2040                 if (runtime->sleep_min &&
2041                     runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2042                         snd_pcm_tick_prepare(substream);
2043         }
2044  _end_unlock:
2045         snd_pcm_stream_unlock_irq(substream);
2046  _end:
2047         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2048 }
2049
2050 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2051 {
2052         struct snd_pcm_runtime *runtime;
2053         int nonblock;
2054         
2055         snd_assert(substream != NULL, return -ENXIO);
2056         runtime = substream->runtime;
2057         snd_assert(runtime != NULL, return -ENXIO);
2058         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2059         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2060                 return -EBADFD;
2061
2062         nonblock = !!(substream->f_flags & O_NONBLOCK);
2063         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2064                 return -EINVAL;
2065         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2066 }
2067
2068 EXPORT_SYMBOL(snd_pcm_lib_read);
2069
2070 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2071                                       unsigned int hwoff,
2072                                       unsigned long data, unsigned int off,
2073                                       snd_pcm_uframes_t frames)
2074 {
2075         struct snd_pcm_runtime *runtime = substream->runtime;
2076         int err;
2077         void __user **bufs = (void __user **)data;
2078         int channels = runtime->channels;
2079         int c;
2080         if (substream->ops->copy) {
2081                 for (c = 0; c < channels; ++c, ++bufs) {
2082                         char __user *buf;
2083                         if (*bufs == NULL)
2084                                 continue;
2085                         buf = *bufs + samples_to_bytes(runtime, off);
2086                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2087                                 return err;
2088                 }
2089         } else {
2090                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2091                 snd_assert(runtime->dma_area, return -EFAULT);
2092                 for (c = 0; c < channels; ++c, ++bufs) {
2093                         char *hwbuf;
2094                         char __user *buf;
2095                         if (*bufs == NULL)
2096                                 continue;
2097
2098                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2099                         buf = *bufs + samples_to_bytes(runtime, off);
2100                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2101                                 return -EFAULT;
2102                 }
2103         }
2104         return 0;
2105 }
2106  
2107 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2108                                     void __user **bufs,
2109                                     snd_pcm_uframes_t frames)
2110 {
2111         struct snd_pcm_runtime *runtime;
2112         int nonblock;
2113
2114         snd_assert(substream != NULL, return -ENXIO);
2115         runtime = substream->runtime;
2116         snd_assert(runtime != NULL, return -ENXIO);
2117         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2118         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2119                 return -EBADFD;
2120
2121         nonblock = !!(substream->f_flags & O_NONBLOCK);
2122         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2123                 return -EINVAL;
2124         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2125 }
2126
2127 EXPORT_SYMBOL(snd_pcm_lib_readv);