2 * linux/arch/arm/mm/init.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
19 #include <asm/mach-types.h>
20 #include <asm/setup.h>
21 #include <asm/sizes.h>
24 #include <asm/mach/arch.h>
25 #include <asm/mach/map.h>
29 extern void _text, _etext, __data_start, _end, __init_begin, __init_end;
31 static unsigned long phys_initrd_start __initdata = 0;
32 static unsigned long phys_initrd_size __initdata = 0;
34 static void __init early_initrd(char **p)
36 unsigned long start, size;
38 start = memparse(*p, p);
40 size = memparse((*p) + 1, p);
42 phys_initrd_start = start;
43 phys_initrd_size = size;
46 __early_param("initrd=", early_initrd);
48 static int __init parse_tag_initrd(const struct tag *tag)
50 printk(KERN_WARNING "ATAG_INITRD is deprecated; "
51 "please update your bootloader.\n");
52 phys_initrd_start = __virt_to_phys(tag->u.initrd.start);
53 phys_initrd_size = tag->u.initrd.size;
57 __tagtable(ATAG_INITRD, parse_tag_initrd);
59 static int __init parse_tag_initrd2(const struct tag *tag)
61 phys_initrd_start = tag->u.initrd.start;
62 phys_initrd_size = tag->u.initrd.size;
66 __tagtable(ATAG_INITRD2, parse_tag_initrd2);
69 * This is used to pass memory configuration data from paging_init
70 * to mem_init, and by show_mem() to skip holes in the memory map.
72 static struct meminfo meminfo = { 0, };
74 #define for_each_nodebank(iter,mi,no) \
75 for (iter = 0; iter < mi->nr_banks; iter++) \
76 if (mi->bank[iter].node == no)
80 int free = 0, total = 0, reserved = 0;
81 int shared = 0, cached = 0, slab = 0, node, i;
82 struct meminfo * mi = &meminfo;
84 printk("Mem-info:\n");
86 for_each_online_node(node) {
87 pg_data_t *n = NODE_DATA(node);
88 struct page *map = n->node_mem_map - n->node_start_pfn;
90 for_each_nodebank (i,mi,node) {
91 unsigned int pfn1, pfn2;
92 struct page *page, *end;
94 pfn1 = __phys_to_pfn(mi->bank[i].start);
95 pfn2 = __phys_to_pfn(mi->bank[i].size + mi->bank[i].start);
102 if (PageReserved(page))
104 else if (PageSwapCache(page))
106 else if (PageSlab(page))
108 else if (!page_count(page))
111 shared += page_count(page) - 1;
113 } while (page < end);
117 printk("%d pages of RAM\n", total);
118 printk("%d free pages\n", free);
119 printk("%d reserved pages\n", reserved);
120 printk("%d slab pages\n", slab);
121 printk("%d pages shared\n", shared);
122 printk("%d pages swap cached\n", cached);
126 * FIXME: We really want to avoid allocating the bootmap bitmap
127 * over the top of the initrd. Hopefully, this is located towards
128 * the start of a bank, so if we allocate the bootmap bitmap at
129 * the end, we won't clash.
131 static unsigned int __init
132 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
134 unsigned int start_pfn, bank, bootmap_pfn;
136 start_pfn = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;
139 for_each_nodebank(bank, mi, node) {
140 unsigned int start, end;
142 start = mi->bank[bank].start >> PAGE_SHIFT;
143 end = (mi->bank[bank].size +
144 mi->bank[bank].start) >> PAGE_SHIFT;
149 if (start < start_pfn)
155 if (end - start >= bootmap_pages) {
161 if (bootmap_pfn == 0)
167 static int __init check_initrd(struct meminfo *mi)
169 int initrd_node = -2;
170 #ifdef CONFIG_BLK_DEV_INITRD
171 unsigned long end = phys_initrd_start + phys_initrd_size;
174 * Make sure that the initrd is within a valid area of
177 if (phys_initrd_size) {
182 for (i = 0; i < mi->nr_banks; i++) {
183 unsigned long bank_end;
185 bank_end = mi->bank[i].start + mi->bank[i].size;
187 if (mi->bank[i].start <= phys_initrd_start &&
189 initrd_node = mi->bank[i].node;
193 if (initrd_node == -1) {
194 printk(KERN_ERR "INITRD: 0x%08lx+0x%08lx extends beyond "
195 "physical memory - disabling initrd\n",
196 phys_initrd_start, phys_initrd_size);
197 phys_initrd_start = phys_initrd_size = 0;
204 static inline void map_memory_bank(struct membank *bank)
209 map.pfn = __phys_to_pfn(bank->start);
210 map.virtual = __phys_to_virt(bank->start);
211 map.length = bank->size;
212 map.type = MT_MEMORY;
214 create_mapping(&map);
218 static unsigned long __init
219 bootmem_init_node(int node, int initrd_node, struct meminfo *mi)
221 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
222 unsigned long start_pfn, end_pfn, boot_pfn;
223 unsigned int boot_pages;
231 * Calculate the pfn range, and map the memory banks for this node.
233 for_each_nodebank(i, mi, node) {
234 struct membank *bank = &mi->bank[i];
235 unsigned long start, end;
237 start = bank->start >> PAGE_SHIFT;
238 end = (bank->start + bank->size) >> PAGE_SHIFT;
240 if (start_pfn > start)
245 map_memory_bank(bank);
249 * If there is no memory in this node, ignore it.
255 * Allocate the bootmem bitmap page.
257 boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
258 boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
261 * Initialise the bootmem allocator for this node, handing the
262 * memory banks over to bootmem.
264 node_set_online(node);
265 pgdat = NODE_DATA(node);
266 init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
268 for_each_nodebank(i, mi, node)
269 free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size);
272 * Reserve the bootmem bitmap for this node.
274 reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
275 boot_pages << PAGE_SHIFT, BOOTMEM_DEFAULT);
278 * Reserve any special node zero regions.
281 reserve_node_zero(pgdat);
283 #ifdef CONFIG_BLK_DEV_INITRD
285 * If the initrd is in this node, reserve its memory.
287 if (node == initrd_node) {
288 int res = reserve_bootmem_node(pgdat, phys_initrd_start,
289 phys_initrd_size, BOOTMEM_EXCLUSIVE);
292 initrd_start = __phys_to_virt(phys_initrd_start);
293 initrd_end = initrd_start + phys_initrd_size;
296 "INITRD: 0x%08lx+0x%08lx overlaps in-use "
297 "memory region - disabling initrd\n",
298 phys_initrd_start, phys_initrd_size);
304 * initialise the zones within this node.
306 memset(zone_size, 0, sizeof(zone_size));
307 memset(zhole_size, 0, sizeof(zhole_size));
310 * The size of this node has already been determined. If we need
311 * to do anything fancy with the allocation of this memory to the
312 * zones, now is the time to do it.
314 zone_size[0] = end_pfn - start_pfn;
317 * For each bank in this node, calculate the size of the holes.
318 * holes = node_size - sum(bank_sizes_in_node)
320 zhole_size[0] = zone_size[0];
321 for_each_nodebank(i, mi, node)
322 zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
325 * Adjust the sizes according to any special requirements for
328 arch_adjust_zones(node, zone_size, zhole_size);
330 free_area_init_node(node, zone_size, start_pfn, zhole_size);
335 void __init bootmem_init(struct meminfo *mi)
337 unsigned long memend_pfn = 0;
338 int node, initrd_node, i;
341 * Invalidate the node number for empty or invalid memory banks
343 for (i = 0; i < mi->nr_banks; i++)
344 if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES)
345 mi->bank[i].node = -1;
347 memcpy(&meminfo, mi, sizeof(meminfo));
350 * Locate which node contains the ramdisk image, if any.
352 initrd_node = check_initrd(mi);
355 * Run through each node initialising the bootmem allocator.
357 for_each_node(node) {
358 unsigned long end_pfn;
360 end_pfn = bootmem_init_node(node, initrd_node, mi);
363 * Remember the highest memory PFN.
365 if (end_pfn > memend_pfn)
366 memend_pfn = end_pfn;
369 high_memory = __va(memend_pfn << PAGE_SHIFT);
372 * This doesn't seem to be used by the Linux memory manager any
373 * more, but is used by ll_rw_block. If we can get rid of it, we
374 * also get rid of some of the stuff above as well.
376 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
377 * the system, not the maximum PFN.
379 max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
382 static inline void free_area(unsigned long addr, unsigned long end, char *s)
384 unsigned int size = (end - addr) >> 10;
386 for (; addr < end; addr += PAGE_SIZE) {
387 struct page *page = virt_to_page(addr);
388 ClearPageReserved(page);
389 init_page_count(page);
395 printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
399 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
401 struct page *start_pg, *end_pg;
402 unsigned long pg, pgend;
405 * Convert start_pfn/end_pfn to a struct page pointer.
407 start_pg = pfn_to_page(start_pfn);
408 end_pg = pfn_to_page(end_pfn);
411 * Convert to physical addresses, and
412 * round start upwards and end downwards.
414 pg = PAGE_ALIGN(__pa(start_pg));
415 pgend = __pa(end_pg) & PAGE_MASK;
418 * If there are free pages between these,
419 * free the section of the memmap array.
422 free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
426 * The mem_map array can get very big. Free the unused area of the memory map.
428 static void __init free_unused_memmap_node(int node, struct meminfo *mi)
430 unsigned long bank_start, prev_bank_end = 0;
434 * [FIXME] This relies on each bank being in address order. This
435 * may not be the case, especially if the user has provided the
436 * information on the command line.
438 for_each_nodebank(i, mi, node) {
439 bank_start = mi->bank[i].start >> PAGE_SHIFT;
440 if (bank_start < prev_bank_end) {
441 printk(KERN_ERR "MEM: unordered memory banks. "
442 "Not freeing memmap.\n");
447 * If we had a previous bank, and there is a space
448 * between the current bank and the previous, free it.
450 if (prev_bank_end && prev_bank_end != bank_start)
451 free_memmap(node, prev_bank_end, bank_start);
453 prev_bank_end = (mi->bank[i].start +
454 mi->bank[i].size) >> PAGE_SHIFT;
459 * mem_init() marks the free areas in the mem_map and tells us how much
460 * memory is free. This is done after various parts of the system have
461 * claimed their memory after the kernel image.
463 void __init mem_init(void)
465 unsigned int codepages, datapages, initpages;
468 codepages = &_etext - &_text;
469 datapages = &_end - &__data_start;
470 initpages = &__init_end - &__init_begin;
472 #ifndef CONFIG_DISCONTIGMEM
473 max_mapnr = virt_to_page(high_memory) - mem_map;
476 /* this will put all unused low memory onto the freelists */
477 for_each_online_node(node) {
478 pg_data_t *pgdat = NODE_DATA(node);
480 free_unused_memmap_node(node, &meminfo);
482 if (pgdat->node_spanned_pages != 0)
483 totalram_pages += free_all_bootmem_node(pgdat);
487 /* now that our DMA memory is actually so designated, we can free it */
488 free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
492 * Since our memory may not be contiguous, calculate the
493 * real number of pages we have in this system
495 printk(KERN_INFO "Memory:");
498 for (i = 0; i < meminfo.nr_banks; i++) {
499 num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
500 printk(" %ldMB", meminfo.bank[i].size >> 20);
503 printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
504 printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
505 "%dK data, %dK init)\n",
506 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
507 codepages >> 10, datapages >> 10, initpages >> 10);
509 if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
510 extern int sysctl_overcommit_memory;
512 * On a machine this small we won't get
513 * anywhere without overcommit, so turn
516 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
520 void free_initmem(void)
522 if (!machine_is_integrator() && !machine_is_cintegrator()) {
523 free_area((unsigned long)(&__init_begin),
524 (unsigned long)(&__init_end),
529 #ifdef CONFIG_BLK_DEV_INITRD
531 static int keep_initrd;
533 void free_initrd_mem(unsigned long start, unsigned long end)
536 free_area(start, end, "initrd");
539 static int __init keepinitrd_setup(char *__unused)
545 __setup("keepinitrd", keepinitrd_setup);