netxen: fix build with without CONFIG_PM
[linux-2.6] / drivers / net / cpmac.c
1 /*
2  * Copyright (C) 2006, 2007 Eugene Konev
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/moduleparam.h>
22
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/types.h>
28 #include <linux/delay.h>
29
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/phy.h>
36 #include <linux/phy_fixed.h>
37 #include <linux/platform_device.h>
38 #include <linux/dma-mapping.h>
39 #include <asm/gpio.h>
40 #include <asm/atomic.h>
41
42 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
43 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
44 MODULE_LICENSE("GPL");
45 MODULE_ALIAS("platform:cpmac");
46
47 static int debug_level = 8;
48 static int dumb_switch;
49
50 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
51 module_param(debug_level, int, 0444);
52 module_param(dumb_switch, int, 0444);
53
54 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
55 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
56
57 #define CPMAC_VERSION "0.5.0"
58 /* frame size + 802.1q tag */
59 #define CPMAC_SKB_SIZE          (ETH_FRAME_LEN + 4)
60 #define CPMAC_QUEUES    8
61
62 /* Ethernet registers */
63 #define CPMAC_TX_CONTROL                0x0004
64 #define CPMAC_TX_TEARDOWN               0x0008
65 #define CPMAC_RX_CONTROL                0x0014
66 #define CPMAC_RX_TEARDOWN               0x0018
67 #define CPMAC_MBP                       0x0100
68 # define MBP_RXPASSCRC                  0x40000000
69 # define MBP_RXQOS                      0x20000000
70 # define MBP_RXNOCHAIN                  0x10000000
71 # define MBP_RXCMF                      0x01000000
72 # define MBP_RXSHORT                    0x00800000
73 # define MBP_RXCEF                      0x00400000
74 # define MBP_RXPROMISC                  0x00200000
75 # define MBP_PROMISCCHAN(channel)       (((channel) & 0x7) << 16)
76 # define MBP_RXBCAST                    0x00002000
77 # define MBP_BCASTCHAN(channel)         (((channel) & 0x7) << 8)
78 # define MBP_RXMCAST                    0x00000020
79 # define MBP_MCASTCHAN(channel)         ((channel) & 0x7)
80 #define CPMAC_UNICAST_ENABLE            0x0104
81 #define CPMAC_UNICAST_CLEAR             0x0108
82 #define CPMAC_MAX_LENGTH                0x010c
83 #define CPMAC_BUFFER_OFFSET             0x0110
84 #define CPMAC_MAC_CONTROL               0x0160
85 # define MAC_TXPTYPE                    0x00000200
86 # define MAC_TXPACE                     0x00000040
87 # define MAC_MII                        0x00000020
88 # define MAC_TXFLOW                     0x00000010
89 # define MAC_RXFLOW                     0x00000008
90 # define MAC_MTEST                      0x00000004
91 # define MAC_LOOPBACK                   0x00000002
92 # define MAC_FDX                        0x00000001
93 #define CPMAC_MAC_STATUS                0x0164
94 # define MAC_STATUS_QOS                 0x00000004
95 # define MAC_STATUS_RXFLOW              0x00000002
96 # define MAC_STATUS_TXFLOW              0x00000001
97 #define CPMAC_TX_INT_ENABLE             0x0178
98 #define CPMAC_TX_INT_CLEAR              0x017c
99 #define CPMAC_MAC_INT_VECTOR            0x0180
100 # define MAC_INT_STATUS                 0x00080000
101 # define MAC_INT_HOST                   0x00040000
102 # define MAC_INT_RX                     0x00020000
103 # define MAC_INT_TX                     0x00010000
104 #define CPMAC_MAC_EOI_VECTOR            0x0184
105 #define CPMAC_RX_INT_ENABLE             0x0198
106 #define CPMAC_RX_INT_CLEAR              0x019c
107 #define CPMAC_MAC_INT_ENABLE            0x01a8
108 #define CPMAC_MAC_INT_CLEAR             0x01ac
109 #define CPMAC_MAC_ADDR_LO(channel)      (0x01b0 + (channel) * 4)
110 #define CPMAC_MAC_ADDR_MID              0x01d0
111 #define CPMAC_MAC_ADDR_HI               0x01d4
112 #define CPMAC_MAC_HASH_LO               0x01d8
113 #define CPMAC_MAC_HASH_HI               0x01dc
114 #define CPMAC_TX_PTR(channel)           (0x0600 + (channel) * 4)
115 #define CPMAC_RX_PTR(channel)           (0x0620 + (channel) * 4)
116 #define CPMAC_TX_ACK(channel)           (0x0640 + (channel) * 4)
117 #define CPMAC_RX_ACK(channel)           (0x0660 + (channel) * 4)
118 #define CPMAC_REG_END                   0x0680
119 /*
120  * Rx/Tx statistics
121  * TODO: use some of them to fill stats in cpmac_stats()
122  */
123 #define CPMAC_STATS_RX_GOOD             0x0200
124 #define CPMAC_STATS_RX_BCAST            0x0204
125 #define CPMAC_STATS_RX_MCAST            0x0208
126 #define CPMAC_STATS_RX_PAUSE            0x020c
127 #define CPMAC_STATS_RX_CRC              0x0210
128 #define CPMAC_STATS_RX_ALIGN            0x0214
129 #define CPMAC_STATS_RX_OVER             0x0218
130 #define CPMAC_STATS_RX_JABBER           0x021c
131 #define CPMAC_STATS_RX_UNDER            0x0220
132 #define CPMAC_STATS_RX_FRAG             0x0224
133 #define CPMAC_STATS_RX_FILTER           0x0228
134 #define CPMAC_STATS_RX_QOSFILTER        0x022c
135 #define CPMAC_STATS_RX_OCTETS           0x0230
136
137 #define CPMAC_STATS_TX_GOOD             0x0234
138 #define CPMAC_STATS_TX_BCAST            0x0238
139 #define CPMAC_STATS_TX_MCAST            0x023c
140 #define CPMAC_STATS_TX_PAUSE            0x0240
141 #define CPMAC_STATS_TX_DEFER            0x0244
142 #define CPMAC_STATS_TX_COLLISION        0x0248
143 #define CPMAC_STATS_TX_SINGLECOLL       0x024c
144 #define CPMAC_STATS_TX_MULTICOLL        0x0250
145 #define CPMAC_STATS_TX_EXCESSCOLL       0x0254
146 #define CPMAC_STATS_TX_LATECOLL         0x0258
147 #define CPMAC_STATS_TX_UNDERRUN         0x025c
148 #define CPMAC_STATS_TX_CARRIERSENSE     0x0260
149 #define CPMAC_STATS_TX_OCTETS           0x0264
150
151 #define cpmac_read(base, reg)           (readl((void __iomem *)(base) + (reg)))
152 #define cpmac_write(base, reg, val)     (writel(val, (void __iomem *)(base) + \
153                                                 (reg)))
154
155 /* MDIO bus */
156 #define CPMAC_MDIO_VERSION              0x0000
157 #define CPMAC_MDIO_CONTROL              0x0004
158 # define MDIOC_IDLE                     0x80000000
159 # define MDIOC_ENABLE                   0x40000000
160 # define MDIOC_PREAMBLE                 0x00100000
161 # define MDIOC_FAULT                    0x00080000
162 # define MDIOC_FAULTDETECT              0x00040000
163 # define MDIOC_INTTEST                  0x00020000
164 # define MDIOC_CLKDIV(div)              ((div) & 0xff)
165 #define CPMAC_MDIO_ALIVE                0x0008
166 #define CPMAC_MDIO_LINK                 0x000c
167 #define CPMAC_MDIO_ACCESS(channel)      (0x0080 + (channel) * 8)
168 # define MDIO_BUSY                      0x80000000
169 # define MDIO_WRITE                     0x40000000
170 # define MDIO_REG(reg)                  (((reg) & 0x1f) << 21)
171 # define MDIO_PHY(phy)                  (((phy) & 0x1f) << 16)
172 # define MDIO_DATA(data)                ((data) & 0xffff)
173 #define CPMAC_MDIO_PHYSEL(channel)      (0x0084 + (channel) * 8)
174 # define PHYSEL_LINKSEL                 0x00000040
175 # define PHYSEL_LINKINT                 0x00000020
176
177 struct cpmac_desc {
178         u32 hw_next;
179         u32 hw_data;
180         u16 buflen;
181         u16 bufflags;
182         u16 datalen;
183         u16 dataflags;
184 #define CPMAC_SOP                       0x8000
185 #define CPMAC_EOP                       0x4000
186 #define CPMAC_OWN                       0x2000
187 #define CPMAC_EOQ                       0x1000
188         struct sk_buff *skb;
189         struct cpmac_desc *next;
190         struct cpmac_desc *prev;
191         dma_addr_t mapping;
192         dma_addr_t data_mapping;
193 };
194
195 struct cpmac_priv {
196         spinlock_t lock;
197         spinlock_t rx_lock;
198         struct cpmac_desc *rx_head;
199         int ring_size;
200         struct cpmac_desc *desc_ring;
201         dma_addr_t dma_ring;
202         void __iomem *regs;
203         struct mii_bus *mii_bus;
204         struct phy_device *phy;
205         char phy_name[MII_BUS_ID_SIZE + 3];
206         int oldlink, oldspeed, oldduplex;
207         u32 msg_enable;
208         struct net_device *dev;
209         struct work_struct reset_work;
210         struct platform_device *pdev;
211         struct napi_struct napi;
212         atomic_t reset_pending;
213 };
214
215 static irqreturn_t cpmac_irq(int, void *);
216 static void cpmac_hw_start(struct net_device *dev);
217 static void cpmac_hw_stop(struct net_device *dev);
218 static int cpmac_stop(struct net_device *dev);
219 static int cpmac_open(struct net_device *dev);
220
221 static void cpmac_dump_regs(struct net_device *dev)
222 {
223         int i;
224         struct cpmac_priv *priv = netdev_priv(dev);
225         for (i = 0; i < CPMAC_REG_END; i += 4) {
226                 if (i % 16 == 0) {
227                         if (i)
228                                 printk("\n");
229                         printk(KERN_DEBUG "%s: reg[%p]:", dev->name,
230                                priv->regs + i);
231                 }
232                 printk(" %08x", cpmac_read(priv->regs, i));
233         }
234         printk("\n");
235 }
236
237 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
238 {
239         int i;
240         printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc);
241         for (i = 0; i < sizeof(*desc) / 4; i++)
242                 printk(" %08x", ((u32 *)desc)[i]);
243         printk("\n");
244 }
245
246 static void cpmac_dump_all_desc(struct net_device *dev)
247 {
248         struct cpmac_priv *priv = netdev_priv(dev);
249         struct cpmac_desc *dump = priv->rx_head;
250         do {
251                 cpmac_dump_desc(dev, dump);
252                 dump = dump->next;
253         } while (dump != priv->rx_head);
254 }
255
256 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
257 {
258         int i;
259         printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
260         for (i = 0; i < skb->len; i++) {
261                 if (i % 16 == 0) {
262                         if (i)
263                                 printk("\n");
264                         printk(KERN_DEBUG "%s: data[%p]:", dev->name,
265                                skb->data + i);
266                 }
267                 printk(" %02x", ((u8 *)skb->data)[i]);
268         }
269         printk("\n");
270 }
271
272 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
273 {
274         u32 val;
275
276         while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
277                 cpu_relax();
278         cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
279                     MDIO_PHY(phy_id));
280         while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
281                 cpu_relax();
282         return MDIO_DATA(val);
283 }
284
285 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
286                             int reg, u16 val)
287 {
288         while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
289                 cpu_relax();
290         cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
291                     MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
292         return 0;
293 }
294
295 static int cpmac_mdio_reset(struct mii_bus *bus)
296 {
297         ar7_device_reset(AR7_RESET_BIT_MDIO);
298         cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
299                     MDIOC_CLKDIV(ar7_cpmac_freq() / 2200000 - 1));
300         return 0;
301 }
302
303 static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
304
305 static struct mii_bus *cpmac_mii;
306
307 static int cpmac_config(struct net_device *dev, struct ifmap *map)
308 {
309         if (dev->flags & IFF_UP)
310                 return -EBUSY;
311
312         /* Don't allow changing the I/O address */
313         if (map->base_addr != dev->base_addr)
314                 return -EOPNOTSUPP;
315
316         /* ignore other fields */
317         return 0;
318 }
319
320 static void cpmac_set_multicast_list(struct net_device *dev)
321 {
322         struct dev_mc_list *iter;
323         int i;
324         u8 tmp;
325         u32 mbp, bit, hash[2] = { 0, };
326         struct cpmac_priv *priv = netdev_priv(dev);
327
328         mbp = cpmac_read(priv->regs, CPMAC_MBP);
329         if (dev->flags & IFF_PROMISC) {
330                 cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
331                             MBP_RXPROMISC);
332         } else {
333                 cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
334                 if (dev->flags & IFF_ALLMULTI) {
335                         /* enable all multicast mode */
336                         cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
337                         cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
338                 } else {
339                         /*
340                          * cpmac uses some strange mac address hashing
341                          * (not crc32)
342                          */
343                         for (i = 0, iter = dev->mc_list; i < dev->mc_count;
344                              i++, iter = iter->next) {
345                                 bit = 0;
346                                 tmp = iter->dmi_addr[0];
347                                 bit  ^= (tmp >> 2) ^ (tmp << 4);
348                                 tmp = iter->dmi_addr[1];
349                                 bit  ^= (tmp >> 4) ^ (tmp << 2);
350                                 tmp = iter->dmi_addr[2];
351                                 bit  ^= (tmp >> 6) ^ tmp;
352                                 tmp = iter->dmi_addr[3];
353                                 bit  ^= (tmp >> 2) ^ (tmp << 4);
354                                 tmp = iter->dmi_addr[4];
355                                 bit  ^= (tmp >> 4) ^ (tmp << 2);
356                                 tmp = iter->dmi_addr[5];
357                                 bit  ^= (tmp >> 6) ^ tmp;
358                                 bit &= 0x3f;
359                                 hash[bit / 32] |= 1 << (bit % 32);
360                         }
361
362                         cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
363                         cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
364                 }
365         }
366 }
367
368 static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
369                                     struct cpmac_desc *desc)
370 {
371         struct sk_buff *skb, *result = NULL;
372
373         if (unlikely(netif_msg_hw(priv)))
374                 cpmac_dump_desc(priv->dev, desc);
375         cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
376         if (unlikely(!desc->datalen)) {
377                 if (netif_msg_rx_err(priv) && net_ratelimit())
378                         printk(KERN_WARNING "%s: rx: spurious interrupt\n",
379                                priv->dev->name);
380                 return NULL;
381         }
382
383         skb = netdev_alloc_skb(priv->dev, CPMAC_SKB_SIZE);
384         if (likely(skb)) {
385                 skb_reserve(skb, 2);
386                 skb_put(desc->skb, desc->datalen);
387                 desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
388                 desc->skb->ip_summed = CHECKSUM_NONE;
389                 priv->dev->stats.rx_packets++;
390                 priv->dev->stats.rx_bytes += desc->datalen;
391                 result = desc->skb;
392                 dma_unmap_single(&priv->dev->dev, desc->data_mapping,
393                                  CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
394                 desc->skb = skb;
395                 desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
396                                                     CPMAC_SKB_SIZE,
397                                                     DMA_FROM_DEVICE);
398                 desc->hw_data = (u32)desc->data_mapping;
399                 if (unlikely(netif_msg_pktdata(priv))) {
400                         printk(KERN_DEBUG "%s: received packet:\n",
401                                priv->dev->name);
402                         cpmac_dump_skb(priv->dev, result);
403                 }
404         } else {
405                 if (netif_msg_rx_err(priv) && net_ratelimit())
406                         printk(KERN_WARNING
407                                "%s: low on skbs, dropping packet\n",
408                                priv->dev->name);
409                 priv->dev->stats.rx_dropped++;
410         }
411
412         desc->buflen = CPMAC_SKB_SIZE;
413         desc->dataflags = CPMAC_OWN;
414
415         return result;
416 }
417
418 static int cpmac_poll(struct napi_struct *napi, int budget)
419 {
420         struct sk_buff *skb;
421         struct cpmac_desc *desc, *restart;
422         struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
423         int received = 0, processed = 0;
424
425         spin_lock(&priv->rx_lock);
426         if (unlikely(!priv->rx_head)) {
427                 if (netif_msg_rx_err(priv) && net_ratelimit())
428                         printk(KERN_WARNING "%s: rx: polling, but no queue\n",
429                                priv->dev->name);
430                 spin_unlock(&priv->rx_lock);
431                 napi_complete(napi);
432                 return 0;
433         }
434
435         desc = priv->rx_head;
436         restart = NULL;
437         while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
438                 processed++;
439
440                 if ((desc->dataflags & CPMAC_EOQ) != 0) {
441                         /* The last update to eoq->hw_next didn't happen
442                         * soon enough, and the receiver stopped here.
443                         *Remember this descriptor so we can restart
444                         * the receiver after freeing some space.
445                         */
446                         if (unlikely(restart)) {
447                                 if (netif_msg_rx_err(priv))
448                                         printk(KERN_ERR "%s: poll found a"
449                                                 " duplicate EOQ: %p and %p\n",
450                                                 priv->dev->name, restart, desc);
451                                 goto fatal_error;
452                         }
453
454                         restart = desc->next;
455                 }
456
457                 skb = cpmac_rx_one(priv, desc);
458                 if (likely(skb)) {
459                         netif_receive_skb(skb);
460                         received++;
461                 }
462                 desc = desc->next;
463         }
464
465         if (desc != priv->rx_head) {
466                 /* We freed some buffers, but not the whole ring,
467                  * add what we did free to the rx list */
468                 desc->prev->hw_next = (u32)0;
469                 priv->rx_head->prev->hw_next = priv->rx_head->mapping;
470         }
471
472         /* Optimization: If we did not actually process an EOQ (perhaps because
473          * of quota limits), check to see if the tail of the queue has EOQ set.
474         * We should immediately restart in that case so that the receiver can
475         * restart and run in parallel with more packet processing.
476         * This lets us handle slightly larger bursts before running
477         * out of ring space (assuming dev->weight < ring_size) */
478
479         if (!restart &&
480              (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
481                     == CPMAC_EOQ &&
482              (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
483                 /* reset EOQ so the poll loop (above) doesn't try to
484                 * restart this when it eventually gets to this descriptor.
485                 */
486                 priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
487                 restart = priv->rx_head;
488         }
489
490         if (restart) {
491                 priv->dev->stats.rx_errors++;
492                 priv->dev->stats.rx_fifo_errors++;
493                 if (netif_msg_rx_err(priv) && net_ratelimit())
494                         printk(KERN_WARNING "%s: rx dma ring overrun\n",
495                                priv->dev->name);
496
497                 if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
498                         if (netif_msg_drv(priv))
499                                 printk(KERN_ERR "%s: cpmac_poll is trying to "
500                                         "restart rx from a descriptor that's "
501                                         "not free: %p\n",
502                                         priv->dev->name, restart);
503                                 goto fatal_error;
504                 }
505
506                 cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
507         }
508
509         priv->rx_head = desc;
510         spin_unlock(&priv->rx_lock);
511         if (unlikely(netif_msg_rx_status(priv)))
512                 printk(KERN_DEBUG "%s: poll processed %d packets\n",
513                        priv->dev->name, received);
514         if (processed == 0) {
515                 /* we ran out of packets to read,
516                  * revert to interrupt-driven mode */
517                 napi_complete(napi);
518                 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
519                 return 0;
520         }
521
522         return 1;
523
524 fatal_error:
525         /* Something went horribly wrong.
526          * Reset hardware to try to recover rather than wedging. */
527
528         if (netif_msg_drv(priv)) {
529                 printk(KERN_ERR "%s: cpmac_poll is confused. "
530                                 "Resetting hardware\n", priv->dev->name);
531                 cpmac_dump_all_desc(priv->dev);
532                 printk(KERN_DEBUG "%s: RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
533                         priv->dev->name,
534                         cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
535                         cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
536         }
537
538         spin_unlock(&priv->rx_lock);
539         napi_complete(napi);
540         netif_tx_stop_all_queues(priv->dev);
541         napi_disable(&priv->napi);
542
543         atomic_inc(&priv->reset_pending);
544         cpmac_hw_stop(priv->dev);
545         if (!schedule_work(&priv->reset_work))
546                 atomic_dec(&priv->reset_pending);
547         return 0;
548
549 }
550
551 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
552 {
553         int queue, len;
554         struct cpmac_desc *desc;
555         struct cpmac_priv *priv = netdev_priv(dev);
556
557         if (unlikely(atomic_read(&priv->reset_pending)))
558                 return NETDEV_TX_BUSY;
559
560         if (unlikely(skb_padto(skb, ETH_ZLEN)))
561                 return NETDEV_TX_OK;
562
563         len = max(skb->len, ETH_ZLEN);
564         queue = skb_get_queue_mapping(skb);
565         netif_stop_subqueue(dev, queue);
566
567         desc = &priv->desc_ring[queue];
568         if (unlikely(desc->dataflags & CPMAC_OWN)) {
569                 if (netif_msg_tx_err(priv) && net_ratelimit())
570                         printk(KERN_WARNING "%s: tx dma ring full\n",
571                                dev->name);
572                 return NETDEV_TX_BUSY;
573         }
574
575         spin_lock(&priv->lock);
576         dev->trans_start = jiffies;
577         spin_unlock(&priv->lock);
578         desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
579         desc->skb = skb;
580         desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
581                                             DMA_TO_DEVICE);
582         desc->hw_data = (u32)desc->data_mapping;
583         desc->datalen = len;
584         desc->buflen = len;
585         if (unlikely(netif_msg_tx_queued(priv)))
586                 printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb,
587                        skb->len);
588         if (unlikely(netif_msg_hw(priv)))
589                 cpmac_dump_desc(dev, desc);
590         if (unlikely(netif_msg_pktdata(priv)))
591                 cpmac_dump_skb(dev, skb);
592         cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
593
594         return NETDEV_TX_OK;
595 }
596
597 static void cpmac_end_xmit(struct net_device *dev, int queue)
598 {
599         struct cpmac_desc *desc;
600         struct cpmac_priv *priv = netdev_priv(dev);
601
602         desc = &priv->desc_ring[queue];
603         cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
604         if (likely(desc->skb)) {
605                 spin_lock(&priv->lock);
606                 dev->stats.tx_packets++;
607                 dev->stats.tx_bytes += desc->skb->len;
608                 spin_unlock(&priv->lock);
609                 dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
610                                  DMA_TO_DEVICE);
611
612                 if (unlikely(netif_msg_tx_done(priv)))
613                         printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name,
614                                desc->skb, desc->skb->len);
615
616                 dev_kfree_skb_irq(desc->skb);
617                 desc->skb = NULL;
618                 if (__netif_subqueue_stopped(dev, queue))
619                         netif_wake_subqueue(dev, queue);
620         } else {
621                 if (netif_msg_tx_err(priv) && net_ratelimit())
622                         printk(KERN_WARNING
623                                "%s: end_xmit: spurious interrupt\n", dev->name);
624                 if (__netif_subqueue_stopped(dev, queue))
625                         netif_wake_subqueue(dev, queue);
626         }
627 }
628
629 static void cpmac_hw_stop(struct net_device *dev)
630 {
631         int i;
632         struct cpmac_priv *priv = netdev_priv(dev);
633         struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
634
635         ar7_device_reset(pdata->reset_bit);
636         cpmac_write(priv->regs, CPMAC_RX_CONTROL,
637                     cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
638         cpmac_write(priv->regs, CPMAC_TX_CONTROL,
639                     cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
640         for (i = 0; i < 8; i++) {
641                 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
642                 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
643         }
644         cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
645         cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
646         cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
647         cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
648         cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
649                     cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
650 }
651
652 static void cpmac_hw_start(struct net_device *dev)
653 {
654         int i;
655         struct cpmac_priv *priv = netdev_priv(dev);
656         struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
657
658         ar7_device_reset(pdata->reset_bit);
659         for (i = 0; i < 8; i++) {
660                 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
661                 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
662         }
663         cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
664
665         cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
666                     MBP_RXMCAST);
667         cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
668         for (i = 0; i < 8; i++)
669                 cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
670         cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
671         cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
672                     (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
673                     (dev->dev_addr[3] << 24));
674         cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
675         cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
676         cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
677         cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
678         cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
679         cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
680         cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
681         cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
682         cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
683
684         cpmac_write(priv->regs, CPMAC_RX_CONTROL,
685                     cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
686         cpmac_write(priv->regs, CPMAC_TX_CONTROL,
687                     cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
688         cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
689                     cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
690                     MAC_FDX);
691 }
692
693 static void cpmac_clear_rx(struct net_device *dev)
694 {
695         struct cpmac_priv *priv = netdev_priv(dev);
696         struct cpmac_desc *desc;
697         int i;
698         if (unlikely(!priv->rx_head))
699                 return;
700         desc = priv->rx_head;
701         for (i = 0; i < priv->ring_size; i++) {
702                 if ((desc->dataflags & CPMAC_OWN) == 0) {
703                         if (netif_msg_rx_err(priv) && net_ratelimit())
704                                 printk(KERN_WARNING "%s: packet dropped\n",
705                                        dev->name);
706                         if (unlikely(netif_msg_hw(priv)))
707                                 cpmac_dump_desc(dev, desc);
708                         desc->dataflags = CPMAC_OWN;
709                         dev->stats.rx_dropped++;
710                 }
711                 desc->hw_next = desc->next->mapping;
712                 desc = desc->next;
713         }
714         priv->rx_head->prev->hw_next = 0;
715 }
716
717 static void cpmac_clear_tx(struct net_device *dev)
718 {
719         struct cpmac_priv *priv = netdev_priv(dev);
720         int i;
721         if (unlikely(!priv->desc_ring))
722                 return;
723         for (i = 0; i < CPMAC_QUEUES; i++) {
724                 priv->desc_ring[i].dataflags = 0;
725                 if (priv->desc_ring[i].skb) {
726                         dev_kfree_skb_any(priv->desc_ring[i].skb);
727                         priv->desc_ring[i].skb = NULL;
728                 }
729         }
730 }
731
732 static void cpmac_hw_error(struct work_struct *work)
733 {
734         struct cpmac_priv *priv =
735                 container_of(work, struct cpmac_priv, reset_work);
736
737         spin_lock(&priv->rx_lock);
738         cpmac_clear_rx(priv->dev);
739         spin_unlock(&priv->rx_lock);
740         cpmac_clear_tx(priv->dev);
741         cpmac_hw_start(priv->dev);
742         barrier();
743         atomic_dec(&priv->reset_pending);
744
745         netif_tx_wake_all_queues(priv->dev);
746         cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
747 }
748
749 static void cpmac_check_status(struct net_device *dev)
750 {
751         struct cpmac_priv *priv = netdev_priv(dev);
752
753         u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
754         int rx_channel = (macstatus >> 8) & 7;
755         int rx_code = (macstatus >> 12) & 15;
756         int tx_channel = (macstatus >> 16) & 7;
757         int tx_code = (macstatus >> 20) & 15;
758
759         if (rx_code || tx_code) {
760                 if (netif_msg_drv(priv) && net_ratelimit()) {
761                         /* Can't find any documentation on what these
762                          *error codes actually are. So just log them and hope..
763                          */
764                         if (rx_code)
765                                 printk(KERN_WARNING "%s: host error %d on rx "
766                                      "channel %d (macstatus %08x), resetting\n",
767                                      dev->name, rx_code, rx_channel, macstatus);
768                         if (tx_code)
769                                 printk(KERN_WARNING "%s: host error %d on tx "
770                                      "channel %d (macstatus %08x), resetting\n",
771                                      dev->name, tx_code, tx_channel, macstatus);
772                 }
773
774                 netif_tx_stop_all_queues(dev);
775                 cpmac_hw_stop(dev);
776                 if (schedule_work(&priv->reset_work))
777                         atomic_inc(&priv->reset_pending);
778                 if (unlikely(netif_msg_hw(priv)))
779                         cpmac_dump_regs(dev);
780         }
781         cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
782 }
783
784 static irqreturn_t cpmac_irq(int irq, void *dev_id)
785 {
786         struct net_device *dev = dev_id;
787         struct cpmac_priv *priv;
788         int queue;
789         u32 status;
790
791         priv = netdev_priv(dev);
792
793         status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
794
795         if (unlikely(netif_msg_intr(priv)))
796                 printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name,
797                        status);
798
799         if (status & MAC_INT_TX)
800                 cpmac_end_xmit(dev, (status & 7));
801
802         if (status & MAC_INT_RX) {
803                 queue = (status >> 8) & 7;
804                 if (napi_schedule_prep(&priv->napi)) {
805                         cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
806                         __napi_schedule(&priv->napi);
807                 }
808         }
809
810         cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
811
812         if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
813                 cpmac_check_status(dev);
814
815         return IRQ_HANDLED;
816 }
817
818 static void cpmac_tx_timeout(struct net_device *dev)
819 {
820         struct cpmac_priv *priv = netdev_priv(dev);
821
822         spin_lock(&priv->lock);
823         dev->stats.tx_errors++;
824         spin_unlock(&priv->lock);
825         if (netif_msg_tx_err(priv) && net_ratelimit())
826                 printk(KERN_WARNING "%s: transmit timeout\n", dev->name);
827
828         atomic_inc(&priv->reset_pending);
829         barrier();
830         cpmac_clear_tx(dev);
831         barrier();
832         atomic_dec(&priv->reset_pending);
833
834         netif_tx_wake_all_queues(priv->dev);
835 }
836
837 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
838 {
839         struct cpmac_priv *priv = netdev_priv(dev);
840         if (!(netif_running(dev)))
841                 return -EINVAL;
842         if (!priv->phy)
843                 return -EINVAL;
844         if ((cmd == SIOCGMIIPHY) || (cmd == SIOCGMIIREG) ||
845             (cmd == SIOCSMIIREG))
846                 return phy_mii_ioctl(priv->phy, if_mii(ifr), cmd);
847
848         return -EOPNOTSUPP;
849 }
850
851 static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
852 {
853         struct cpmac_priv *priv = netdev_priv(dev);
854
855         if (priv->phy)
856                 return phy_ethtool_gset(priv->phy, cmd);
857
858         return -EINVAL;
859 }
860
861 static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
862 {
863         struct cpmac_priv *priv = netdev_priv(dev);
864
865         if (!capable(CAP_NET_ADMIN))
866                 return -EPERM;
867
868         if (priv->phy)
869                 return phy_ethtool_sset(priv->phy, cmd);
870
871         return -EINVAL;
872 }
873
874 static void cpmac_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
875 {
876         struct cpmac_priv *priv = netdev_priv(dev);
877
878         ring->rx_max_pending = 1024;
879         ring->rx_mini_max_pending = 1;
880         ring->rx_jumbo_max_pending = 1;
881         ring->tx_max_pending = 1;
882
883         ring->rx_pending = priv->ring_size;
884         ring->rx_mini_pending = 1;
885         ring->rx_jumbo_pending = 1;
886         ring->tx_pending = 1;
887 }
888
889 static int cpmac_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
890 {
891         struct cpmac_priv *priv = netdev_priv(dev);
892
893         if (netif_running(dev))
894                 return -EBUSY;
895         priv->ring_size = ring->rx_pending;
896         return 0;
897 }
898
899 static void cpmac_get_drvinfo(struct net_device *dev,
900                               struct ethtool_drvinfo *info)
901 {
902         strcpy(info->driver, "cpmac");
903         strcpy(info->version, CPMAC_VERSION);
904         info->fw_version[0] = '\0';
905         sprintf(info->bus_info, "%s", "cpmac");
906         info->regdump_len = 0;
907 }
908
909 static const struct ethtool_ops cpmac_ethtool_ops = {
910         .get_settings = cpmac_get_settings,
911         .set_settings = cpmac_set_settings,
912         .get_drvinfo = cpmac_get_drvinfo,
913         .get_link = ethtool_op_get_link,
914         .get_ringparam = cpmac_get_ringparam,
915         .set_ringparam = cpmac_set_ringparam,
916 };
917
918 static void cpmac_adjust_link(struct net_device *dev)
919 {
920         struct cpmac_priv *priv = netdev_priv(dev);
921         int new_state = 0;
922
923         spin_lock(&priv->lock);
924         if (priv->phy->link) {
925                 netif_tx_start_all_queues(dev);
926                 if (priv->phy->duplex != priv->oldduplex) {
927                         new_state = 1;
928                         priv->oldduplex = priv->phy->duplex;
929                 }
930
931                 if (priv->phy->speed != priv->oldspeed) {
932                         new_state = 1;
933                         priv->oldspeed = priv->phy->speed;
934                 }
935
936                 if (!priv->oldlink) {
937                         new_state = 1;
938                         priv->oldlink = 1;
939                 }
940         } else if (priv->oldlink) {
941                 new_state = 1;
942                 priv->oldlink = 0;
943                 priv->oldspeed = 0;
944                 priv->oldduplex = -1;
945         }
946
947         if (new_state && netif_msg_link(priv) && net_ratelimit())
948                 phy_print_status(priv->phy);
949
950         spin_unlock(&priv->lock);
951 }
952
953 static int cpmac_open(struct net_device *dev)
954 {
955         int i, size, res;
956         struct cpmac_priv *priv = netdev_priv(dev);
957         struct resource *mem;
958         struct cpmac_desc *desc;
959         struct sk_buff *skb;
960
961         mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
962         if (!request_mem_region(mem->start, mem->end - mem->start, dev->name)) {
963                 if (netif_msg_drv(priv))
964                         printk(KERN_ERR "%s: failed to request registers\n",
965                                dev->name);
966                 res = -ENXIO;
967                 goto fail_reserve;
968         }
969
970         priv->regs = ioremap(mem->start, mem->end - mem->start);
971         if (!priv->regs) {
972                 if (netif_msg_drv(priv))
973                         printk(KERN_ERR "%s: failed to remap registers\n",
974                                dev->name);
975                 res = -ENXIO;
976                 goto fail_remap;
977         }
978
979         size = priv->ring_size + CPMAC_QUEUES;
980         priv->desc_ring = dma_alloc_coherent(&dev->dev,
981                                              sizeof(struct cpmac_desc) * size,
982                                              &priv->dma_ring,
983                                              GFP_KERNEL);
984         if (!priv->desc_ring) {
985                 res = -ENOMEM;
986                 goto fail_alloc;
987         }
988
989         for (i = 0; i < size; i++)
990                 priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
991
992         priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
993         for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
994                 skb = netdev_alloc_skb(dev, CPMAC_SKB_SIZE);
995                 if (unlikely(!skb)) {
996                         res = -ENOMEM;
997                         goto fail_desc;
998                 }
999                 skb_reserve(skb, 2);
1000                 desc->skb = skb;
1001                 desc->data_mapping = dma_map_single(&dev->dev, skb->data,
1002                                                     CPMAC_SKB_SIZE,
1003                                                     DMA_FROM_DEVICE);
1004                 desc->hw_data = (u32)desc->data_mapping;
1005                 desc->buflen = CPMAC_SKB_SIZE;
1006                 desc->dataflags = CPMAC_OWN;
1007                 desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
1008                 desc->next->prev = desc;
1009                 desc->hw_next = (u32)desc->next->mapping;
1010         }
1011
1012         priv->rx_head->prev->hw_next = (u32)0;
1013
1014         if ((res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED,
1015                                dev->name, dev))) {
1016                 if (netif_msg_drv(priv))
1017                         printk(KERN_ERR "%s: failed to obtain irq\n",
1018                                dev->name);
1019                 goto fail_irq;
1020         }
1021
1022         atomic_set(&priv->reset_pending, 0);
1023         INIT_WORK(&priv->reset_work, cpmac_hw_error);
1024         cpmac_hw_start(dev);
1025
1026         napi_enable(&priv->napi);
1027         priv->phy->state = PHY_CHANGELINK;
1028         phy_start(priv->phy);
1029
1030         return 0;
1031
1032 fail_irq:
1033 fail_desc:
1034         for (i = 0; i < priv->ring_size; i++) {
1035                 if (priv->rx_head[i].skb) {
1036                         dma_unmap_single(&dev->dev,
1037                                          priv->rx_head[i].data_mapping,
1038                                          CPMAC_SKB_SIZE,
1039                                          DMA_FROM_DEVICE);
1040                         kfree_skb(priv->rx_head[i].skb);
1041                 }
1042         }
1043 fail_alloc:
1044         kfree(priv->desc_ring);
1045         iounmap(priv->regs);
1046
1047 fail_remap:
1048         release_mem_region(mem->start, mem->end - mem->start);
1049
1050 fail_reserve:
1051         return res;
1052 }
1053
1054 static int cpmac_stop(struct net_device *dev)
1055 {
1056         int i;
1057         struct cpmac_priv *priv = netdev_priv(dev);
1058         struct resource *mem;
1059
1060         netif_tx_stop_all_queues(dev);
1061
1062         cancel_work_sync(&priv->reset_work);
1063         napi_disable(&priv->napi);
1064         phy_stop(priv->phy);
1065
1066         cpmac_hw_stop(dev);
1067
1068         for (i = 0; i < 8; i++)
1069                 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1070         cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1071         cpmac_write(priv->regs, CPMAC_MBP, 0);
1072
1073         free_irq(dev->irq, dev);
1074         iounmap(priv->regs);
1075         mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1076         release_mem_region(mem->start, mem->end - mem->start);
1077         priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1078         for (i = 0; i < priv->ring_size; i++) {
1079                 if (priv->rx_head[i].skb) {
1080                         dma_unmap_single(&dev->dev,
1081                                          priv->rx_head[i].data_mapping,
1082                                          CPMAC_SKB_SIZE,
1083                                          DMA_FROM_DEVICE);
1084                         kfree_skb(priv->rx_head[i].skb);
1085                 }
1086         }
1087
1088         dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1089                           (CPMAC_QUEUES + priv->ring_size),
1090                           priv->desc_ring, priv->dma_ring);
1091         return 0;
1092 }
1093
1094 static const struct net_device_ops cpmac_netdev_ops = {
1095         .ndo_open               = cpmac_open,
1096         .ndo_stop               = cpmac_stop,
1097         .ndo_start_xmit         = cpmac_start_xmit,
1098         .ndo_tx_timeout         = cpmac_tx_timeout,
1099         .ndo_set_multicast_list = cpmac_set_multicast_list,
1100         .ndo_so_ioctl           = cpmac_ioctl,
1101         .ndo_set_config         = cpmac_config,
1102         .ndo_change_mtu         = eth_change_mtu,
1103         .ndo_validate_addr      = eth_validate_addr,
1104         .ndo_set_mac_address    = eth_mac_addr,
1105 };
1106
1107 static int external_switch;
1108
1109 static int __devinit cpmac_probe(struct platform_device *pdev)
1110 {
1111         int rc, phy_id;
1112         char *mdio_bus_id = "0";
1113         struct resource *mem;
1114         struct cpmac_priv *priv;
1115         struct net_device *dev;
1116         struct plat_cpmac_data *pdata;
1117
1118         pdata = pdev->dev.platform_data;
1119
1120         for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1121                 if (!(pdata->phy_mask & (1 << phy_id)))
1122                         continue;
1123                 if (!cpmac_mii->phy_map[phy_id])
1124                         continue;
1125                 break;
1126         }
1127
1128         if (phy_id == PHY_MAX_ADDR) {
1129                 if (external_switch || dumb_switch) {
1130                         mdio_bus_id = 0; /* fixed phys bus */
1131                         phy_id = pdev->id;
1132                 } else {
1133                         dev_err(&pdev->dev, "no PHY present\n");
1134                         return -ENODEV;
1135                 }
1136         }
1137
1138         dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1139
1140         if (!dev) {
1141                 printk(KERN_ERR "cpmac: Unable to allocate net_device\n");
1142                 return -ENOMEM;
1143         }
1144
1145         platform_set_drvdata(pdev, dev);
1146         priv = netdev_priv(dev);
1147
1148         priv->pdev = pdev;
1149         mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1150         if (!mem) {
1151                 rc = -ENODEV;
1152                 goto fail;
1153         }
1154
1155         dev->irq = platform_get_irq_byname(pdev, "irq");
1156
1157         dev->netdev_ops = &cpmac_netdev_ops;
1158         dev->ethtool_ops = &cpmac_ethtool_ops;
1159
1160         netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1161
1162         spin_lock_init(&priv->lock);
1163         spin_lock_init(&priv->rx_lock);
1164         priv->dev = dev;
1165         priv->ring_size = 64;
1166         priv->msg_enable = netif_msg_init(debug_level, 0xff);
1167         memcpy(dev->dev_addr, pdata->dev_addr, sizeof(dev->dev_addr));
1168
1169         priv->phy = phy_connect(dev, dev_name(&cpmac_mii->phy_map[phy_id]->dev),
1170                                 &cpmac_adjust_link, 0, PHY_INTERFACE_MODE_MII);
1171         if (IS_ERR(priv->phy)) {
1172                 if (netif_msg_drv(priv))
1173                         printk(KERN_ERR "%s: Could not attach to PHY\n",
1174                                dev->name);
1175                 return PTR_ERR(priv->phy);
1176         }
1177
1178         if ((rc = register_netdev(dev))) {
1179                 printk(KERN_ERR "cpmac: error %i registering device %s\n", rc,
1180                        dev->name);
1181                 goto fail;
1182         }
1183
1184         if (netif_msg_probe(priv)) {
1185                 printk(KERN_INFO
1186                        "cpmac: device %s (regs: %p, irq: %d, phy: %s, "
1187                        "mac: %pM)\n", dev->name, (void *)mem->start, dev->irq,
1188                        priv->phy_name, dev->dev_addr);
1189         }
1190         return 0;
1191
1192 fail:
1193         free_netdev(dev);
1194         return rc;
1195 }
1196
1197 static int __devexit cpmac_remove(struct platform_device *pdev)
1198 {
1199         struct net_device *dev = platform_get_drvdata(pdev);
1200         unregister_netdev(dev);
1201         free_netdev(dev);
1202         return 0;
1203 }
1204
1205 static struct platform_driver cpmac_driver = {
1206         .driver.name = "cpmac",
1207         .driver.owner = THIS_MODULE,
1208         .probe = cpmac_probe,
1209         .remove = __devexit_p(cpmac_remove),
1210 };
1211
1212 int __devinit cpmac_init(void)
1213 {
1214         u32 mask;
1215         int i, res;
1216
1217         cpmac_mii = mdiobus_alloc();
1218         if (cpmac_mii == NULL)
1219                 return -ENOMEM;
1220
1221         cpmac_mii->name = "cpmac-mii";
1222         cpmac_mii->read = cpmac_mdio_read;
1223         cpmac_mii->write = cpmac_mdio_write;
1224         cpmac_mii->reset = cpmac_mdio_reset;
1225         cpmac_mii->irq = mii_irqs;
1226
1227         cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
1228
1229         if (!cpmac_mii->priv) {
1230                 printk(KERN_ERR "Can't ioremap mdio registers\n");
1231                 res = -ENXIO;
1232                 goto fail_alloc;
1233         }
1234
1235 #warning FIXME: unhardcode gpio&reset bits
1236         ar7_gpio_disable(26);
1237         ar7_gpio_disable(27);
1238         ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1239         ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1240         ar7_device_reset(AR7_RESET_BIT_EPHY);
1241
1242         cpmac_mii->reset(cpmac_mii);
1243
1244         for (i = 0; i < 300000; i++)
1245                 if ((mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE)))
1246                         break;
1247                 else
1248                         cpu_relax();
1249
1250         mask &= 0x7fffffff;
1251         if (mask & (mask - 1)) {
1252                 external_switch = 1;
1253                 mask = 0;
1254         }
1255
1256         cpmac_mii->phy_mask = ~(mask | 0x80000000);
1257         snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "0");
1258
1259         res = mdiobus_register(cpmac_mii);
1260         if (res)
1261                 goto fail_mii;
1262
1263         res = platform_driver_register(&cpmac_driver);
1264         if (res)
1265                 goto fail_cpmac;
1266
1267         return 0;
1268
1269 fail_cpmac:
1270         mdiobus_unregister(cpmac_mii);
1271
1272 fail_mii:
1273         iounmap(cpmac_mii->priv);
1274
1275 fail_alloc:
1276         mdiobus_free(cpmac_mii);
1277
1278         return res;
1279 }
1280
1281 void __devexit cpmac_exit(void)
1282 {
1283         platform_driver_unregister(&cpmac_driver);
1284         mdiobus_unregister(cpmac_mii);
1285         mdiobus_free(cpmac_mii);
1286         iounmap(cpmac_mii->priv);
1287 }
1288
1289 module_init(cpmac_init);
1290 module_exit(cpmac_exit);