1 #ifndef _ASM_POWERPC_MMU_H_
2 #define _ASM_POWERPC_MMU_H_
5 #include <asm-ppc/mmu.h>
9 * PowerPC memory management structures
11 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
20 #include <asm/asm-compat.h>
27 #define STE_ESID_V 0x80
28 #define STE_ESID_KS 0x20
29 #define STE_ESID_KP 0x10
30 #define STE_ESID_N 0x08
32 #define STE_VSID_SHIFT 12
34 /* Location of cpu0's segment table */
35 #define STAB0_PAGE 0x6
36 #define STAB0_PHYS_ADDR (STAB0_PAGE<<12)
39 extern char initial_stab[];
40 #endif /* ! __ASSEMBLY */
46 #define SLB_NUM_BOLTED 3
47 #define SLB_CACHE_ENTRIES 8
49 /* Bits in the SLB ESID word */
50 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
52 /* Bits in the SLB VSID word */
53 #define SLB_VSID_SHIFT 12
54 #define SLB_VSID_B ASM_CONST(0xc000000000000000)
55 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
56 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
57 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
58 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
59 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
60 #define SLB_VSID_L ASM_CONST(0x0000000000000100)
61 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
62 #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
63 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
64 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
65 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
66 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
67 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
69 #define SLB_VSID_KERNEL (SLB_VSID_KP)
70 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
72 #define SLBIE_C (0x08000000)
78 #define HPTES_PER_GROUP 8
80 #define HPTE_V_AVPN_SHIFT 7
81 #define HPTE_V_AVPN ASM_CONST(0xffffffffffffff80)
82 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
83 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & HPTE_V_AVPN))
84 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
85 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
86 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
87 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
88 #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
90 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
91 #define HPTE_R_TS ASM_CONST(0x4000000000000000)
92 #define HPTE_R_RPN_SHIFT 12
93 #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
94 #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
95 #define HPTE_R_PP ASM_CONST(0x0000000000000003)
96 #define HPTE_R_N ASM_CONST(0x0000000000000004)
98 /* Values for PP (assumes Ks=0, Kp=1) */
99 /* pp0 will always be 0 for linux */
100 #define PP_RWXX 0 /* Supervisor read/write, User none */
101 #define PP_RWRX 1 /* Supervisor read/write, User read */
102 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
103 #define PP_RXRX 3 /* Supervisor read, User read */
112 extern hpte_t *htab_address;
113 extern unsigned long htab_hash_mask;
116 * Page size definition
118 * shift : is the "PAGE_SHIFT" value for that page size
119 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
120 * directly to a slbmte "vsid" value
121 * penc : is the HPTE encoding mask for the "LP" field:
126 unsigned int shift; /* number of bits */
127 unsigned int penc; /* HPTE encoding */
128 unsigned int tlbiel; /* tlbiel supported for that page size */
129 unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
130 unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
133 #endif /* __ASSEMBLY__ */
136 * The kernel use the constants below to index in the page sizes array.
137 * The use of fixed constants for this purpose is better for performances
138 * of the low level hash refill handlers.
140 * A non supported page size has a "shift" field set to 0
142 * Any new page size being implemented can get a new entry in here. Whether
143 * the kernel will use it or not is a different matter though. The actual page
144 * size used by hugetlbfs is not defined here and may be made variable
147 #define MMU_PAGE_4K 0 /* 4K */
148 #define MMU_PAGE_64K 1 /* 64K */
149 #define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */
150 #define MMU_PAGE_1M 3 /* 1M */
151 #define MMU_PAGE_16M 4 /* 16M */
152 #define MMU_PAGE_16G 5 /* 16G */
153 #define MMU_PAGE_COUNT 6
158 * The current system page sizes
160 extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
161 extern int mmu_linear_psize;
162 extern int mmu_virtual_psize;
164 #ifdef CONFIG_HUGETLB_PAGE
166 * The page size index of the huge pages for use by hugetlbfs
168 extern int mmu_huge_psize;
170 #endif /* CONFIG_HUGETLB_PAGE */
173 * This function sets the AVPN and L fields of the HPTE appropriately
176 static inline unsigned long hpte_encode_v(unsigned long va, int psize)
179 v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
180 v <<= HPTE_V_AVPN_SHIFT;
181 if (psize != MMU_PAGE_4K)
187 * This function sets the ARPN, and LP fields of the HPTE appropriately
188 * for the page size. We assume the pa is already "clean" that is properly
189 * aligned for the requested page size
191 static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
195 /* A 4K page needs no special encoding */
196 if (psize == MMU_PAGE_4K)
197 return pa & HPTE_R_RPN;
199 unsigned int penc = mmu_psize_defs[psize].penc;
200 unsigned int shift = mmu_psize_defs[psize].shift;
201 return (pa & ~((1ul << shift) - 1)) | (penc << 12);
207 * This hashes a virtual address for a 256Mb segment only for now
210 static inline unsigned long hpt_hash(unsigned long va, unsigned int shift)
212 return ((va >> 28) & 0x7fffffffffUL) ^ ((va & 0x0fffffffUL) >> shift);
215 extern int __hash_page_4K(unsigned long ea, unsigned long access,
216 unsigned long vsid, pte_t *ptep, unsigned long trap,
218 extern int __hash_page_64K(unsigned long ea, unsigned long access,
219 unsigned long vsid, pte_t *ptep, unsigned long trap,
222 extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
223 unsigned long ea, unsigned long vsid, int local);
225 extern void htab_finish_init(void);
226 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
227 unsigned long pstart, unsigned long mode,
230 extern void htab_initialize(void);
231 extern void htab_initialize_secondary(void);
232 extern void hpte_init_native(void);
233 extern void hpte_init_lpar(void);
234 extern void hpte_init_iSeries(void);
235 extern void mm_init_ppc64(void);
237 extern long pSeries_lpar_hpte_insert(unsigned long hpte_group,
238 unsigned long va, unsigned long prpn,
239 unsigned long rflags,
240 unsigned long vflags, int psize);
242 extern long native_hpte_insert(unsigned long hpte_group,
243 unsigned long va, unsigned long prpn,
244 unsigned long rflags,
245 unsigned long vflags, int psize);
247 extern long iSeries_hpte_insert(unsigned long hpte_group,
248 unsigned long va, unsigned long prpn,
249 unsigned long rflags,
250 unsigned long vflags, int psize);
252 extern void stabs_alloc(void);
253 extern void slb_initialize(void);
254 extern void stab_initialize(unsigned long stab);
256 #endif /* __ASSEMBLY__ */
261 * We first generate a 36-bit "proto-VSID". For kernel addresses this
262 * is equal to the ESID, for user addresses it is:
263 * (context << 15) | (esid & 0x7fff)
265 * The two forms are distinguishable because the top bit is 0 for user
266 * addresses, whereas the top two bits are 1 for kernel addresses.
267 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
270 * The proto-VSIDs are then scrambled into real VSIDs with the
271 * multiplicative hash:
273 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
274 * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
275 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
277 * This scramble is only well defined for proto-VSIDs below
278 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
279 * reserved. VSID_MULTIPLIER is prime, so in particular it is
280 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
281 * Because the modulus is 2^n-1 we can compute it efficiently without
282 * a divide or extra multiply (see below).
284 * This scheme has several advantages over older methods:
286 * - We have VSIDs allocated for every kernel address
287 * (i.e. everything above 0xC000000000000000), except the very top
288 * segment, which simplifies several things.
290 * - We allow for 15 significant bits of ESID and 20 bits of
291 * context for user addresses. i.e. 8T (43 bits) of address space for
292 * up to 1M contexts (although the page table structure and context
293 * allocation will need changes to take advantage of this).
295 * - The scramble function gives robust scattering in the hash
296 * table (at least based on some initial results). The previous
297 * method was more susceptible to pathological cases giving excessive
301 * WARNING - If you change these you must make sure the asm
302 * implementations in slb_allocate (slb_low.S), do_stab_bolted
303 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
305 * You'll also need to change the precomputed VSID values in head.S
306 * which are used by the iSeries firmware.
309 #define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */
311 #define VSID_MODULUS ((1UL<<VSID_BITS)-1)
313 #define CONTEXT_BITS 19
314 #define USER_ESID_BITS 16
316 #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
319 * This macro generates asm code to compute the VSID scramble
320 * function. Used in slb_allocate() and do_stab_bolted. The function
321 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
323 * rt = register continaing the proto-VSID and into which the
324 * VSID will be stored
325 * rx = scratch register (clobbered)
327 * - rt and rx must be different registers
328 * - The answer will end up in the low 36 bits of rt. The higher
329 * bits may contain other garbage, so you may need to mask the
332 #define ASM_VSID_SCRAMBLE(rt, rx) \
333 lis rx,VSID_MULTIPLIER@h; \
334 ori rx,rx,VSID_MULTIPLIER@l; \
335 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
337 srdi rx,rt,VSID_BITS; \
338 clrldi rt,rt,(64-VSID_BITS); \
339 add rt,rt,rx; /* add high and low bits */ \
340 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
341 * 2^36-1+2^28-1. That in particular means that if r3 >= \
342 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
343 * the bit clear, r3 already has the answer we want, if it \
344 * doesn't, the answer is the low 36 bits of r3+1. So in all \
345 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
347 srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \
353 typedef unsigned long mm_context_id_t;
357 #ifdef CONFIG_HUGETLB_PAGE
358 u16 low_htlb_areas, high_htlb_areas;
363 static inline unsigned long vsid_scramble(unsigned long protovsid)
366 /* The code below is equivalent to this function for arguments
367 * < 2^VSID_BITS, which is all this should ever be called
368 * with. However gcc is not clever enough to compute the
369 * modulus (2^n-1) without a second multiply. */
370 return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS);
374 x = protovsid * VSID_MULTIPLIER;
375 x = (x >> VSID_BITS) + (x & VSID_MODULUS);
376 return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
380 /* This is only valid for addresses >= KERNELBASE */
381 static inline unsigned long get_kernel_vsid(unsigned long ea)
383 return vsid_scramble(ea >> SID_SHIFT);
386 /* This is only valid for user addresses (which are below 2^41) */
387 static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
389 return vsid_scramble((context << USER_ESID_BITS)
390 | (ea >> SID_SHIFT));
393 #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER) % VSID_MODULUS)
394 #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
396 #endif /* __ASSEMBLY */
398 #endif /* CONFIG_PPC64 */
399 #endif /* _ASM_POWERPC_MMU_H_ */