Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/kaber/nf-next-2.6
[linux-2.6] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22
23 /* things that live in capability.c */
24 extern struct security_operations default_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26
27 struct security_operations *security_ops;       /* Initialized to NULL */
28
29 /* amount of vm to protect from userspace access */
30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31
32 static inline int verify(struct security_operations *ops)
33 {
34         /* verify the security_operations structure exists */
35         if (!ops)
36                 return -EINVAL;
37         security_fixup_ops(ops);
38         return 0;
39 }
40
41 static void __init do_security_initcalls(void)
42 {
43         initcall_t *call;
44         call = __security_initcall_start;
45         while (call < __security_initcall_end) {
46                 (*call) ();
47                 call++;
48         }
49 }
50
51 /**
52  * security_init - initializes the security framework
53  *
54  * This should be called early in the kernel initialization sequence.
55  */
56 int __init security_init(void)
57 {
58         printk(KERN_INFO "Security Framework initialized\n");
59
60         security_fixup_ops(&default_security_ops);
61         security_ops = &default_security_ops;
62         do_security_initcalls();
63
64         return 0;
65 }
66
67 /* Save user chosen LSM */
68 static int __init choose_lsm(char *str)
69 {
70         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
71         return 1;
72 }
73 __setup("security=", choose_lsm);
74
75 /**
76  * security_module_enable - Load given security module on boot ?
77  * @ops: a pointer to the struct security_operations that is to be checked.
78  *
79  * Each LSM must pass this method before registering its own operations
80  * to avoid security registration races. This method may also be used
81  * to check if your LSM is currently loaded during kernel initialization.
82  *
83  * Return true if:
84  *      -The passed LSM is the one chosen by user at boot time,
85  *      -or user didn't specify a specific LSM and we're the first to ask
86  *       for registration permission,
87  *      -or the passed LSM is currently loaded.
88  * Otherwise, return false.
89  */
90 int __init security_module_enable(struct security_operations *ops)
91 {
92         if (!*chosen_lsm)
93                 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
94         else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
95                 return 0;
96
97         return 1;
98 }
99
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int register_security(struct security_operations *ops)
113 {
114         if (verify(ops)) {
115                 printk(KERN_DEBUG "%s could not verify "
116                        "security_operations structure.\n", __func__);
117                 return -EINVAL;
118         }
119
120         if (security_ops != &default_security_ops)
121                 return -EAGAIN;
122
123         security_ops = ops;
124
125         return 0;
126 }
127
128 /* Security operations */
129
130 int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
131 {
132         return security_ops->ptrace_may_access(child, mode);
133 }
134
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137         return security_ops->ptrace_traceme(parent);
138 }
139
140 int security_capget(struct task_struct *target,
141                      kernel_cap_t *effective,
142                      kernel_cap_t *inheritable,
143                      kernel_cap_t *permitted)
144 {
145         return security_ops->capget(target, effective, inheritable, permitted);
146 }
147
148 int security_capset(struct cred *new, const struct cred *old,
149                     const kernel_cap_t *effective,
150                     const kernel_cap_t *inheritable,
151                     const kernel_cap_t *permitted)
152 {
153         return security_ops->capset(new, old,
154                                     effective, inheritable, permitted);
155 }
156
157 int security_capable(int cap)
158 {
159         return security_ops->capable(current, current_cred(), cap,
160                                      SECURITY_CAP_AUDIT);
161 }
162
163 int security_real_capable(struct task_struct *tsk, int cap)
164 {
165         const struct cred *cred;
166         int ret;
167
168         cred = get_task_cred(tsk);
169         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
170         put_cred(cred);
171         return ret;
172 }
173
174 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
175 {
176         const struct cred *cred;
177         int ret;
178
179         cred = get_task_cred(tsk);
180         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
181         put_cred(cred);
182         return ret;
183 }
184
185 int security_acct(struct file *file)
186 {
187         return security_ops->acct(file);
188 }
189
190 int security_sysctl(struct ctl_table *table, int op)
191 {
192         return security_ops->sysctl(table, op);
193 }
194
195 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
196 {
197         return security_ops->quotactl(cmds, type, id, sb);
198 }
199
200 int security_quota_on(struct dentry *dentry)
201 {
202         return security_ops->quota_on(dentry);
203 }
204
205 int security_syslog(int type)
206 {
207         return security_ops->syslog(type);
208 }
209
210 int security_settime(struct timespec *ts, struct timezone *tz)
211 {
212         return security_ops->settime(ts, tz);
213 }
214
215 int security_vm_enough_memory(long pages)
216 {
217         WARN_ON(current->mm == NULL);
218         return security_ops->vm_enough_memory(current->mm, pages);
219 }
220
221 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
222 {
223         WARN_ON(mm == NULL);
224         return security_ops->vm_enough_memory(mm, pages);
225 }
226
227 int security_vm_enough_memory_kern(long pages)
228 {
229         /* If current->mm is a kernel thread then we will pass NULL,
230            for this specific case that is fine */
231         return security_ops->vm_enough_memory(current->mm, pages);
232 }
233
234 int security_bprm_set_creds(struct linux_binprm *bprm)
235 {
236         return security_ops->bprm_set_creds(bprm);
237 }
238
239 int security_bprm_check(struct linux_binprm *bprm)
240 {
241         return security_ops->bprm_check_security(bprm);
242 }
243
244 void security_bprm_committing_creds(struct linux_binprm *bprm)
245 {
246         security_ops->bprm_committing_creds(bprm);
247 }
248
249 void security_bprm_committed_creds(struct linux_binprm *bprm)
250 {
251         security_ops->bprm_committed_creds(bprm);
252 }
253
254 int security_bprm_secureexec(struct linux_binprm *bprm)
255 {
256         return security_ops->bprm_secureexec(bprm);
257 }
258
259 int security_sb_alloc(struct super_block *sb)
260 {
261         return security_ops->sb_alloc_security(sb);
262 }
263
264 void security_sb_free(struct super_block *sb)
265 {
266         security_ops->sb_free_security(sb);
267 }
268
269 int security_sb_copy_data(char *orig, char *copy)
270 {
271         return security_ops->sb_copy_data(orig, copy);
272 }
273 EXPORT_SYMBOL(security_sb_copy_data);
274
275 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
276 {
277         return security_ops->sb_kern_mount(sb, flags, data);
278 }
279
280 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
281 {
282         return security_ops->sb_show_options(m, sb);
283 }
284
285 int security_sb_statfs(struct dentry *dentry)
286 {
287         return security_ops->sb_statfs(dentry);
288 }
289
290 int security_sb_mount(char *dev_name, struct path *path,
291                        char *type, unsigned long flags, void *data)
292 {
293         return security_ops->sb_mount(dev_name, path, type, flags, data);
294 }
295
296 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
297 {
298         return security_ops->sb_check_sb(mnt, path);
299 }
300
301 int security_sb_umount(struct vfsmount *mnt, int flags)
302 {
303         return security_ops->sb_umount(mnt, flags);
304 }
305
306 void security_sb_umount_close(struct vfsmount *mnt)
307 {
308         security_ops->sb_umount_close(mnt);
309 }
310
311 void security_sb_umount_busy(struct vfsmount *mnt)
312 {
313         security_ops->sb_umount_busy(mnt);
314 }
315
316 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
317 {
318         security_ops->sb_post_remount(mnt, flags, data);
319 }
320
321 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
322 {
323         security_ops->sb_post_addmount(mnt, mountpoint);
324 }
325
326 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
327 {
328         return security_ops->sb_pivotroot(old_path, new_path);
329 }
330
331 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
332 {
333         security_ops->sb_post_pivotroot(old_path, new_path);
334 }
335
336 int security_sb_set_mnt_opts(struct super_block *sb,
337                                 struct security_mnt_opts *opts)
338 {
339         return security_ops->sb_set_mnt_opts(sb, opts);
340 }
341 EXPORT_SYMBOL(security_sb_set_mnt_opts);
342
343 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
344                                 struct super_block *newsb)
345 {
346         security_ops->sb_clone_mnt_opts(oldsb, newsb);
347 }
348 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
349
350 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
351 {
352         return security_ops->sb_parse_opts_str(options, opts);
353 }
354 EXPORT_SYMBOL(security_sb_parse_opts_str);
355
356 int security_inode_alloc(struct inode *inode)
357 {
358         inode->i_security = NULL;
359         return security_ops->inode_alloc_security(inode);
360 }
361
362 void security_inode_free(struct inode *inode)
363 {
364         security_ops->inode_free_security(inode);
365 }
366
367 int security_inode_init_security(struct inode *inode, struct inode *dir,
368                                   char **name, void **value, size_t *len)
369 {
370         if (unlikely(IS_PRIVATE(inode)))
371                 return -EOPNOTSUPP;
372         return security_ops->inode_init_security(inode, dir, name, value, len);
373 }
374 EXPORT_SYMBOL(security_inode_init_security);
375
376 #ifdef CONFIG_SECURITY_PATH
377 int security_path_mknod(struct path *path, struct dentry *dentry, int mode,
378                         unsigned int dev)
379 {
380         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
381                 return 0;
382         return security_ops->path_mknod(path, dentry, mode, dev);
383 }
384 EXPORT_SYMBOL(security_path_mknod);
385
386 int security_path_mkdir(struct path *path, struct dentry *dentry, int mode)
387 {
388         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
389                 return 0;
390         return security_ops->path_mkdir(path, dentry, mode);
391 }
392
393 int security_path_rmdir(struct path *path, struct dentry *dentry)
394 {
395         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
396                 return 0;
397         return security_ops->path_rmdir(path, dentry);
398 }
399
400 int security_path_unlink(struct path *path, struct dentry *dentry)
401 {
402         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
403                 return 0;
404         return security_ops->path_unlink(path, dentry);
405 }
406
407 int security_path_symlink(struct path *path, struct dentry *dentry,
408                           const char *old_name)
409 {
410         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
411                 return 0;
412         return security_ops->path_symlink(path, dentry, old_name);
413 }
414
415 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
416                        struct dentry *new_dentry)
417 {
418         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
419                 return 0;
420         return security_ops->path_link(old_dentry, new_dir, new_dentry);
421 }
422
423 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
424                          struct path *new_dir, struct dentry *new_dentry)
425 {
426         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
427                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
428                 return 0;
429         return security_ops->path_rename(old_dir, old_dentry, new_dir,
430                                          new_dentry);
431 }
432
433 int security_path_truncate(struct path *path, loff_t length,
434                            unsigned int time_attrs)
435 {
436         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
437                 return 0;
438         return security_ops->path_truncate(path, length, time_attrs);
439 }
440 #endif
441
442 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
443 {
444         if (unlikely(IS_PRIVATE(dir)))
445                 return 0;
446         return security_ops->inode_create(dir, dentry, mode);
447 }
448
449 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
450                          struct dentry *new_dentry)
451 {
452         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
453                 return 0;
454         return security_ops->inode_link(old_dentry, dir, new_dentry);
455 }
456
457 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
458 {
459         if (unlikely(IS_PRIVATE(dentry->d_inode)))
460                 return 0;
461         return security_ops->inode_unlink(dir, dentry);
462 }
463
464 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
465                             const char *old_name)
466 {
467         if (unlikely(IS_PRIVATE(dir)))
468                 return 0;
469         return security_ops->inode_symlink(dir, dentry, old_name);
470 }
471
472 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
473 {
474         if (unlikely(IS_PRIVATE(dir)))
475                 return 0;
476         return security_ops->inode_mkdir(dir, dentry, mode);
477 }
478
479 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
480 {
481         if (unlikely(IS_PRIVATE(dentry->d_inode)))
482                 return 0;
483         return security_ops->inode_rmdir(dir, dentry);
484 }
485
486 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
487 {
488         if (unlikely(IS_PRIVATE(dir)))
489                 return 0;
490         return security_ops->inode_mknod(dir, dentry, mode, dev);
491 }
492
493 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
494                            struct inode *new_dir, struct dentry *new_dentry)
495 {
496         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
497             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
498                 return 0;
499         return security_ops->inode_rename(old_dir, old_dentry,
500                                            new_dir, new_dentry);
501 }
502
503 int security_inode_readlink(struct dentry *dentry)
504 {
505         if (unlikely(IS_PRIVATE(dentry->d_inode)))
506                 return 0;
507         return security_ops->inode_readlink(dentry);
508 }
509
510 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
511 {
512         if (unlikely(IS_PRIVATE(dentry->d_inode)))
513                 return 0;
514         return security_ops->inode_follow_link(dentry, nd);
515 }
516
517 int security_inode_permission(struct inode *inode, int mask)
518 {
519         if (unlikely(IS_PRIVATE(inode)))
520                 return 0;
521         return security_ops->inode_permission(inode, mask);
522 }
523
524 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
525 {
526         if (unlikely(IS_PRIVATE(dentry->d_inode)))
527                 return 0;
528         return security_ops->inode_setattr(dentry, attr);
529 }
530 EXPORT_SYMBOL_GPL(security_inode_setattr);
531
532 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
533 {
534         if (unlikely(IS_PRIVATE(dentry->d_inode)))
535                 return 0;
536         return security_ops->inode_getattr(mnt, dentry);
537 }
538
539 void security_inode_delete(struct inode *inode)
540 {
541         if (unlikely(IS_PRIVATE(inode)))
542                 return;
543         security_ops->inode_delete(inode);
544 }
545
546 int security_inode_setxattr(struct dentry *dentry, const char *name,
547                             const void *value, size_t size, int flags)
548 {
549         if (unlikely(IS_PRIVATE(dentry->d_inode)))
550                 return 0;
551         return security_ops->inode_setxattr(dentry, name, value, size, flags);
552 }
553
554 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
555                                   const void *value, size_t size, int flags)
556 {
557         if (unlikely(IS_PRIVATE(dentry->d_inode)))
558                 return;
559         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
560 }
561
562 int security_inode_getxattr(struct dentry *dentry, const char *name)
563 {
564         if (unlikely(IS_PRIVATE(dentry->d_inode)))
565                 return 0;
566         return security_ops->inode_getxattr(dentry, name);
567 }
568
569 int security_inode_listxattr(struct dentry *dentry)
570 {
571         if (unlikely(IS_PRIVATE(dentry->d_inode)))
572                 return 0;
573         return security_ops->inode_listxattr(dentry);
574 }
575
576 int security_inode_removexattr(struct dentry *dentry, const char *name)
577 {
578         if (unlikely(IS_PRIVATE(dentry->d_inode)))
579                 return 0;
580         return security_ops->inode_removexattr(dentry, name);
581 }
582
583 int security_inode_need_killpriv(struct dentry *dentry)
584 {
585         return security_ops->inode_need_killpriv(dentry);
586 }
587
588 int security_inode_killpriv(struct dentry *dentry)
589 {
590         return security_ops->inode_killpriv(dentry);
591 }
592
593 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
594 {
595         if (unlikely(IS_PRIVATE(inode)))
596                 return 0;
597         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
598 }
599
600 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
601 {
602         if (unlikely(IS_PRIVATE(inode)))
603                 return 0;
604         return security_ops->inode_setsecurity(inode, name, value, size, flags);
605 }
606
607 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
608 {
609         if (unlikely(IS_PRIVATE(inode)))
610                 return 0;
611         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
612 }
613
614 void security_inode_getsecid(const struct inode *inode, u32 *secid)
615 {
616         security_ops->inode_getsecid(inode, secid);
617 }
618
619 int security_file_permission(struct file *file, int mask)
620 {
621         return security_ops->file_permission(file, mask);
622 }
623
624 int security_file_alloc(struct file *file)
625 {
626         return security_ops->file_alloc_security(file);
627 }
628
629 void security_file_free(struct file *file)
630 {
631         security_ops->file_free_security(file);
632 }
633
634 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
635 {
636         return security_ops->file_ioctl(file, cmd, arg);
637 }
638
639 int security_file_mmap(struct file *file, unsigned long reqprot,
640                         unsigned long prot, unsigned long flags,
641                         unsigned long addr, unsigned long addr_only)
642 {
643         return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
644 }
645
646 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
647                             unsigned long prot)
648 {
649         return security_ops->file_mprotect(vma, reqprot, prot);
650 }
651
652 int security_file_lock(struct file *file, unsigned int cmd)
653 {
654         return security_ops->file_lock(file, cmd);
655 }
656
657 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
658 {
659         return security_ops->file_fcntl(file, cmd, arg);
660 }
661
662 int security_file_set_fowner(struct file *file)
663 {
664         return security_ops->file_set_fowner(file);
665 }
666
667 int security_file_send_sigiotask(struct task_struct *tsk,
668                                   struct fown_struct *fown, int sig)
669 {
670         return security_ops->file_send_sigiotask(tsk, fown, sig);
671 }
672
673 int security_file_receive(struct file *file)
674 {
675         return security_ops->file_receive(file);
676 }
677
678 int security_dentry_open(struct file *file, const struct cred *cred)
679 {
680         return security_ops->dentry_open(file, cred);
681 }
682
683 int security_task_create(unsigned long clone_flags)
684 {
685         return security_ops->task_create(clone_flags);
686 }
687
688 void security_cred_free(struct cred *cred)
689 {
690         security_ops->cred_free(cred);
691 }
692
693 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
694 {
695         return security_ops->cred_prepare(new, old, gfp);
696 }
697
698 void security_commit_creds(struct cred *new, const struct cred *old)
699 {
700         security_ops->cred_commit(new, old);
701 }
702
703 int security_kernel_act_as(struct cred *new, u32 secid)
704 {
705         return security_ops->kernel_act_as(new, secid);
706 }
707
708 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
709 {
710         return security_ops->kernel_create_files_as(new, inode);
711 }
712
713 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
714 {
715         return security_ops->task_setuid(id0, id1, id2, flags);
716 }
717
718 int security_task_fix_setuid(struct cred *new, const struct cred *old,
719                              int flags)
720 {
721         return security_ops->task_fix_setuid(new, old, flags);
722 }
723
724 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
725 {
726         return security_ops->task_setgid(id0, id1, id2, flags);
727 }
728
729 int security_task_setpgid(struct task_struct *p, pid_t pgid)
730 {
731         return security_ops->task_setpgid(p, pgid);
732 }
733
734 int security_task_getpgid(struct task_struct *p)
735 {
736         return security_ops->task_getpgid(p);
737 }
738
739 int security_task_getsid(struct task_struct *p)
740 {
741         return security_ops->task_getsid(p);
742 }
743
744 void security_task_getsecid(struct task_struct *p, u32 *secid)
745 {
746         security_ops->task_getsecid(p, secid);
747 }
748 EXPORT_SYMBOL(security_task_getsecid);
749
750 int security_task_setgroups(struct group_info *group_info)
751 {
752         return security_ops->task_setgroups(group_info);
753 }
754
755 int security_task_setnice(struct task_struct *p, int nice)
756 {
757         return security_ops->task_setnice(p, nice);
758 }
759
760 int security_task_setioprio(struct task_struct *p, int ioprio)
761 {
762         return security_ops->task_setioprio(p, ioprio);
763 }
764
765 int security_task_getioprio(struct task_struct *p)
766 {
767         return security_ops->task_getioprio(p);
768 }
769
770 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
771 {
772         return security_ops->task_setrlimit(resource, new_rlim);
773 }
774
775 int security_task_setscheduler(struct task_struct *p,
776                                 int policy, struct sched_param *lp)
777 {
778         return security_ops->task_setscheduler(p, policy, lp);
779 }
780
781 int security_task_getscheduler(struct task_struct *p)
782 {
783         return security_ops->task_getscheduler(p);
784 }
785
786 int security_task_movememory(struct task_struct *p)
787 {
788         return security_ops->task_movememory(p);
789 }
790
791 int security_task_kill(struct task_struct *p, struct siginfo *info,
792                         int sig, u32 secid)
793 {
794         return security_ops->task_kill(p, info, sig, secid);
795 }
796
797 int security_task_wait(struct task_struct *p)
798 {
799         return security_ops->task_wait(p);
800 }
801
802 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
803                          unsigned long arg4, unsigned long arg5)
804 {
805         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
806 }
807
808 void security_task_to_inode(struct task_struct *p, struct inode *inode)
809 {
810         security_ops->task_to_inode(p, inode);
811 }
812
813 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
814 {
815         return security_ops->ipc_permission(ipcp, flag);
816 }
817
818 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
819 {
820         security_ops->ipc_getsecid(ipcp, secid);
821 }
822
823 int security_msg_msg_alloc(struct msg_msg *msg)
824 {
825         return security_ops->msg_msg_alloc_security(msg);
826 }
827
828 void security_msg_msg_free(struct msg_msg *msg)
829 {
830         security_ops->msg_msg_free_security(msg);
831 }
832
833 int security_msg_queue_alloc(struct msg_queue *msq)
834 {
835         return security_ops->msg_queue_alloc_security(msq);
836 }
837
838 void security_msg_queue_free(struct msg_queue *msq)
839 {
840         security_ops->msg_queue_free_security(msq);
841 }
842
843 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
844 {
845         return security_ops->msg_queue_associate(msq, msqflg);
846 }
847
848 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
849 {
850         return security_ops->msg_queue_msgctl(msq, cmd);
851 }
852
853 int security_msg_queue_msgsnd(struct msg_queue *msq,
854                                struct msg_msg *msg, int msqflg)
855 {
856         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
857 }
858
859 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
860                                struct task_struct *target, long type, int mode)
861 {
862         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
863 }
864
865 int security_shm_alloc(struct shmid_kernel *shp)
866 {
867         return security_ops->shm_alloc_security(shp);
868 }
869
870 void security_shm_free(struct shmid_kernel *shp)
871 {
872         security_ops->shm_free_security(shp);
873 }
874
875 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
876 {
877         return security_ops->shm_associate(shp, shmflg);
878 }
879
880 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
881 {
882         return security_ops->shm_shmctl(shp, cmd);
883 }
884
885 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
886 {
887         return security_ops->shm_shmat(shp, shmaddr, shmflg);
888 }
889
890 int security_sem_alloc(struct sem_array *sma)
891 {
892         return security_ops->sem_alloc_security(sma);
893 }
894
895 void security_sem_free(struct sem_array *sma)
896 {
897         security_ops->sem_free_security(sma);
898 }
899
900 int security_sem_associate(struct sem_array *sma, int semflg)
901 {
902         return security_ops->sem_associate(sma, semflg);
903 }
904
905 int security_sem_semctl(struct sem_array *sma, int cmd)
906 {
907         return security_ops->sem_semctl(sma, cmd);
908 }
909
910 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
911                         unsigned nsops, int alter)
912 {
913         return security_ops->sem_semop(sma, sops, nsops, alter);
914 }
915
916 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
917 {
918         if (unlikely(inode && IS_PRIVATE(inode)))
919                 return;
920         security_ops->d_instantiate(dentry, inode);
921 }
922 EXPORT_SYMBOL(security_d_instantiate);
923
924 int security_getprocattr(struct task_struct *p, char *name, char **value)
925 {
926         return security_ops->getprocattr(p, name, value);
927 }
928
929 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
930 {
931         return security_ops->setprocattr(p, name, value, size);
932 }
933
934 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
935 {
936         return security_ops->netlink_send(sk, skb);
937 }
938
939 int security_netlink_recv(struct sk_buff *skb, int cap)
940 {
941         return security_ops->netlink_recv(skb, cap);
942 }
943 EXPORT_SYMBOL(security_netlink_recv);
944
945 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
946 {
947         return security_ops->secid_to_secctx(secid, secdata, seclen);
948 }
949 EXPORT_SYMBOL(security_secid_to_secctx);
950
951 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
952 {
953         return security_ops->secctx_to_secid(secdata, seclen, secid);
954 }
955 EXPORT_SYMBOL(security_secctx_to_secid);
956
957 void security_release_secctx(char *secdata, u32 seclen)
958 {
959         security_ops->release_secctx(secdata, seclen);
960 }
961 EXPORT_SYMBOL(security_release_secctx);
962
963 #ifdef CONFIG_SECURITY_NETWORK
964
965 int security_unix_stream_connect(struct socket *sock, struct socket *other,
966                                  struct sock *newsk)
967 {
968         return security_ops->unix_stream_connect(sock, other, newsk);
969 }
970 EXPORT_SYMBOL(security_unix_stream_connect);
971
972 int security_unix_may_send(struct socket *sock,  struct socket *other)
973 {
974         return security_ops->unix_may_send(sock, other);
975 }
976 EXPORT_SYMBOL(security_unix_may_send);
977
978 int security_socket_create(int family, int type, int protocol, int kern)
979 {
980         return security_ops->socket_create(family, type, protocol, kern);
981 }
982
983 int security_socket_post_create(struct socket *sock, int family,
984                                 int type, int protocol, int kern)
985 {
986         return security_ops->socket_post_create(sock, family, type,
987                                                 protocol, kern);
988 }
989
990 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
991 {
992         return security_ops->socket_bind(sock, address, addrlen);
993 }
994
995 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
996 {
997         return security_ops->socket_connect(sock, address, addrlen);
998 }
999
1000 int security_socket_listen(struct socket *sock, int backlog)
1001 {
1002         return security_ops->socket_listen(sock, backlog);
1003 }
1004
1005 int security_socket_accept(struct socket *sock, struct socket *newsock)
1006 {
1007         return security_ops->socket_accept(sock, newsock);
1008 }
1009
1010 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
1011 {
1012         security_ops->socket_post_accept(sock, newsock);
1013 }
1014
1015 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1016 {
1017         return security_ops->socket_sendmsg(sock, msg, size);
1018 }
1019
1020 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1021                             int size, int flags)
1022 {
1023         return security_ops->socket_recvmsg(sock, msg, size, flags);
1024 }
1025
1026 int security_socket_getsockname(struct socket *sock)
1027 {
1028         return security_ops->socket_getsockname(sock);
1029 }
1030
1031 int security_socket_getpeername(struct socket *sock)
1032 {
1033         return security_ops->socket_getpeername(sock);
1034 }
1035
1036 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1037 {
1038         return security_ops->socket_getsockopt(sock, level, optname);
1039 }
1040
1041 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1042 {
1043         return security_ops->socket_setsockopt(sock, level, optname);
1044 }
1045
1046 int security_socket_shutdown(struct socket *sock, int how)
1047 {
1048         return security_ops->socket_shutdown(sock, how);
1049 }
1050
1051 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1052 {
1053         return security_ops->socket_sock_rcv_skb(sk, skb);
1054 }
1055 EXPORT_SYMBOL(security_sock_rcv_skb);
1056
1057 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1058                                       int __user *optlen, unsigned len)
1059 {
1060         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1061 }
1062
1063 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1064 {
1065         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1066 }
1067 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1068
1069 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1070 {
1071         return security_ops->sk_alloc_security(sk, family, priority);
1072 }
1073
1074 void security_sk_free(struct sock *sk)
1075 {
1076         security_ops->sk_free_security(sk);
1077 }
1078
1079 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1080 {
1081         security_ops->sk_clone_security(sk, newsk);
1082 }
1083
1084 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1085 {
1086         security_ops->sk_getsecid(sk, &fl->secid);
1087 }
1088 EXPORT_SYMBOL(security_sk_classify_flow);
1089
1090 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1091 {
1092         security_ops->req_classify_flow(req, fl);
1093 }
1094 EXPORT_SYMBOL(security_req_classify_flow);
1095
1096 void security_sock_graft(struct sock *sk, struct socket *parent)
1097 {
1098         security_ops->sock_graft(sk, parent);
1099 }
1100 EXPORT_SYMBOL(security_sock_graft);
1101
1102 int security_inet_conn_request(struct sock *sk,
1103                         struct sk_buff *skb, struct request_sock *req)
1104 {
1105         return security_ops->inet_conn_request(sk, skb, req);
1106 }
1107 EXPORT_SYMBOL(security_inet_conn_request);
1108
1109 void security_inet_csk_clone(struct sock *newsk,
1110                         const struct request_sock *req)
1111 {
1112         security_ops->inet_csk_clone(newsk, req);
1113 }
1114
1115 void security_inet_conn_established(struct sock *sk,
1116                         struct sk_buff *skb)
1117 {
1118         security_ops->inet_conn_established(sk, skb);
1119 }
1120
1121 #endif  /* CONFIG_SECURITY_NETWORK */
1122
1123 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1124
1125 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1126 {
1127         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1128 }
1129 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1130
1131 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1132                               struct xfrm_sec_ctx **new_ctxp)
1133 {
1134         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1135 }
1136
1137 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1138 {
1139         security_ops->xfrm_policy_free_security(ctx);
1140 }
1141 EXPORT_SYMBOL(security_xfrm_policy_free);
1142
1143 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1144 {
1145         return security_ops->xfrm_policy_delete_security(ctx);
1146 }
1147
1148 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1149 {
1150         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1151 }
1152 EXPORT_SYMBOL(security_xfrm_state_alloc);
1153
1154 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1155                                       struct xfrm_sec_ctx *polsec, u32 secid)
1156 {
1157         if (!polsec)
1158                 return 0;
1159         /*
1160          * We want the context to be taken from secid which is usually
1161          * from the sock.
1162          */
1163         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1164 }
1165
1166 int security_xfrm_state_delete(struct xfrm_state *x)
1167 {
1168         return security_ops->xfrm_state_delete_security(x);
1169 }
1170 EXPORT_SYMBOL(security_xfrm_state_delete);
1171
1172 void security_xfrm_state_free(struct xfrm_state *x)
1173 {
1174         security_ops->xfrm_state_free_security(x);
1175 }
1176
1177 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1178 {
1179         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1180 }
1181
1182 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1183                                        struct xfrm_policy *xp, struct flowi *fl)
1184 {
1185         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1186 }
1187
1188 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1189 {
1190         return security_ops->xfrm_decode_session(skb, secid, 1);
1191 }
1192
1193 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1194 {
1195         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1196
1197         BUG_ON(rc);
1198 }
1199 EXPORT_SYMBOL(security_skb_classify_flow);
1200
1201 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1202
1203 #ifdef CONFIG_KEYS
1204
1205 int security_key_alloc(struct key *key, const struct cred *cred,
1206                        unsigned long flags)
1207 {
1208         return security_ops->key_alloc(key, cred, flags);
1209 }
1210
1211 void security_key_free(struct key *key)
1212 {
1213         security_ops->key_free(key);
1214 }
1215
1216 int security_key_permission(key_ref_t key_ref,
1217                             const struct cred *cred, key_perm_t perm)
1218 {
1219         return security_ops->key_permission(key_ref, cred, perm);
1220 }
1221
1222 int security_key_getsecurity(struct key *key, char **_buffer)
1223 {
1224         return security_ops->key_getsecurity(key, _buffer);
1225 }
1226
1227 #endif  /* CONFIG_KEYS */
1228
1229 #ifdef CONFIG_AUDIT
1230
1231 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1232 {
1233         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1234 }
1235
1236 int security_audit_rule_known(struct audit_krule *krule)
1237 {
1238         return security_ops->audit_rule_known(krule);
1239 }
1240
1241 void security_audit_rule_free(void *lsmrule)
1242 {
1243         security_ops->audit_rule_free(lsmrule);
1244 }
1245
1246 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1247                               struct audit_context *actx)
1248 {
1249         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1250 }
1251
1252 #endif /* CONFIG_AUDIT */