2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements VFS file and inode operations of regular files, device
25 * nodes and symlinks as well as address space operations.
27 * UBIFS uses 2 page flags: PG_private and PG_checked. PG_private is set if the
28 * page is dirty and is used for budgeting purposes - dirty pages should not be
29 * budgeted. The PG_checked flag is set if full budgeting is required for the
30 * page e.g., when it corresponds to a file hole or it is just beyond the file
31 * size. The budgeting is done in 'ubifs_write_begin()', because it is OK to
32 * fail in this function, and the budget is released in 'ubifs_write_end()'. So
33 * the PG_private and PG_checked flags carry the information about how the page
34 * was budgeted, to make it possible to release the budget properly.
36 * A thing to keep in mind: inode's 'i_mutex' is locked in most VFS operations
37 * we implement. However, this is not true for '->writepage()', which might be
38 * called with 'i_mutex' unlocked. For example, when pdflush is performing
39 * write-back, it calls 'writepage()' with unlocked 'i_mutex', although the
40 * inode has 'I_LOCK' flag in this case. At "normal" work-paths 'i_mutex' is
41 * locked in '->writepage', e.g. in "sys_write -> alloc_pages -> direct reclaim
42 * path'. So, in '->writepage()' we are only guaranteed that the page is
45 * Similarly, 'i_mutex' does not have to be locked in readpage(), e.g.,
46 * readahead path does not have it locked ("sys_read -> generic_file_aio_read
47 * -> ondemand_readahead -> readpage"). In case of readahead, 'I_LOCK' flag is
48 * not set as well. However, UBIFS disables readahead.
50 * This, for example means that there might be 2 concurrent '->writepage()'
51 * calls for the same inode, but different inode dirty pages.
55 #include <linux/mount.h>
56 #include <linux/namei.h>
58 static int read_block(struct inode *inode, void *addr, unsigned int block,
59 struct ubifs_data_node *dn)
61 struct ubifs_info *c = inode->i_sb->s_fs_info;
62 int err, len, out_len;
66 data_key_init(c, &key, inode->i_ino, block);
67 err = ubifs_tnc_lookup(c, &key, dn);
70 /* Not found, so it must be a hole */
71 memset(addr, 0, UBIFS_BLOCK_SIZE);
75 ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
76 ubifs_inode(inode)->creat_sqnum);
77 len = le32_to_cpu(dn->size);
78 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
81 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
82 out_len = UBIFS_BLOCK_SIZE;
83 err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
84 le16_to_cpu(dn->compr_type));
85 if (err || len != out_len)
89 * Data length can be less than a full block, even for blocks that are
90 * not the last in the file (e.g., as a result of making a hole and
91 * appending data). Ensure that the remainder is zeroed out.
93 if (len < UBIFS_BLOCK_SIZE)
94 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
99 ubifs_err("bad data node (block %u, inode %lu)",
100 block, inode->i_ino);
101 dbg_dump_node(c, dn);
105 static int do_readpage(struct page *page)
109 unsigned int block, beyond;
110 struct ubifs_data_node *dn;
111 struct inode *inode = page->mapping->host;
112 loff_t i_size = i_size_read(inode);
114 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
115 inode->i_ino, page->index, i_size, page->flags);
116 ubifs_assert(!PageChecked(page));
117 ubifs_assert(!PagePrivate(page));
121 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
122 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
123 if (block >= beyond) {
124 /* Reading beyond inode */
125 SetPageChecked(page);
126 memset(addr, 0, PAGE_CACHE_SIZE);
130 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
140 if (block >= beyond) {
141 /* Reading beyond inode */
143 memset(addr, 0, UBIFS_BLOCK_SIZE);
145 ret = read_block(inode, addr, block, dn);
150 } else if (block + 1 == beyond) {
151 int dlen = le32_to_cpu(dn->size);
152 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
154 if (ilen && ilen < dlen)
155 memset(addr + ilen, 0, dlen - ilen);
158 if (++i >= UBIFS_BLOCKS_PER_PAGE)
161 addr += UBIFS_BLOCK_SIZE;
164 if (err == -ENOENT) {
165 /* Not found, so it must be a hole */
166 SetPageChecked(page);
170 ubifs_err("cannot read page %lu of inode %lu, error %d",
171 page->index, inode->i_ino, err);
178 SetPageUptodate(page);
179 ClearPageError(page);
180 flush_dcache_page(page);
186 ClearPageUptodate(page);
188 flush_dcache_page(page);
194 * release_new_page_budget - release budget of a new page.
195 * @c: UBIFS file-system description object
197 * This is a helper function which releases budget corresponding to the budget
198 * of one new page of data.
200 static void release_new_page_budget(struct ubifs_info *c)
202 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
204 ubifs_release_budget(c, &req);
208 * release_existing_page_budget - release budget of an existing page.
209 * @c: UBIFS file-system description object
211 * This is a helper function which releases budget corresponding to the budget
212 * of changing one one page of data which already exists on the flash media.
214 static void release_existing_page_budget(struct ubifs_info *c)
216 struct ubifs_budget_req req = { .dd_growth = c->page_budget};
218 ubifs_release_budget(c, &req);
221 static int write_begin_slow(struct address_space *mapping,
222 loff_t pos, unsigned len, struct page **pagep,
225 struct inode *inode = mapping->host;
226 struct ubifs_info *c = inode->i_sb->s_fs_info;
227 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
228 struct ubifs_budget_req req = { .new_page = 1 };
229 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
232 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
233 inode->i_ino, pos, len, inode->i_size);
236 * At the slow path we have to budget before locking the page, because
237 * budgeting may force write-back, which would wait on locked pages and
238 * deadlock if we had the page locked. At this point we do not know
239 * anything about the page, so assume that this is a new page which is
240 * written to a hole. This corresponds to largest budget. Later the
241 * budget will be amended if this is not true.
244 /* We are appending data, budget for inode change */
247 err = ubifs_budget_space(c, &req);
251 page = grab_cache_page_write_begin(mapping, index, flags);
252 if (unlikely(!page)) {
253 ubifs_release_budget(c, &req);
257 if (!PageUptodate(page)) {
258 if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
259 SetPageChecked(page);
261 err = do_readpage(page);
264 page_cache_release(page);
269 SetPageUptodate(page);
270 ClearPageError(page);
273 if (PagePrivate(page))
275 * The page is dirty, which means it was budgeted twice:
276 * o first time the budget was allocated by the task which
277 * made the page dirty and set the PG_private flag;
278 * o and then we budgeted for it for the second time at the
279 * very beginning of this function.
281 * So what we have to do is to release the page budget we
284 release_new_page_budget(c);
285 else if (!PageChecked(page))
287 * We are changing a page which already exists on the media.
288 * This means that changing the page does not make the amount
289 * of indexing information larger, and this part of the budget
290 * which we have already acquired may be released.
292 ubifs_convert_page_budget(c);
295 struct ubifs_inode *ui = ubifs_inode(inode);
298 * 'ubifs_write_end()' is optimized from the fast-path part of
299 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
300 * if data is appended.
302 mutex_lock(&ui->ui_mutex);
305 * The inode is dirty already, so we may free the
306 * budget we allocated.
308 ubifs_release_dirty_inode_budget(c, ui);
316 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
317 * @c: UBIFS file-system description object
318 * @page: page to allocate budget for
319 * @ui: UBIFS inode object the page belongs to
320 * @appending: non-zero if the page is appended
322 * This is a helper function for 'ubifs_write_begin()' which allocates budget
323 * for the operation. The budget is allocated differently depending on whether
324 * this is appending, whether the page is dirty or not, and so on. This
325 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
326 * in case of success and %-ENOSPC in case of failure.
328 static int allocate_budget(struct ubifs_info *c, struct page *page,
329 struct ubifs_inode *ui, int appending)
331 struct ubifs_budget_req req = { .fast = 1 };
333 if (PagePrivate(page)) {
336 * The page is dirty and we are not appending, which
337 * means no budget is needed at all.
341 mutex_lock(&ui->ui_mutex);
344 * The page is dirty and we are appending, so the inode
345 * has to be marked as dirty. However, it is already
346 * dirty, so we do not need any budget. We may return,
347 * but @ui->ui_mutex hast to be left locked because we
348 * should prevent write-back from flushing the inode
349 * and freeing the budget. The lock will be released in
350 * 'ubifs_write_end()'.
355 * The page is dirty, we are appending, the inode is clean, so
356 * we need to budget the inode change.
360 if (PageChecked(page))
362 * The page corresponds to a hole and does not
363 * exist on the media. So changing it makes
364 * make the amount of indexing information
365 * larger, and we have to budget for a new
371 * Not a hole, the change will not add any new
372 * indexing information, budget for page
375 req.dirtied_page = 1;
378 mutex_lock(&ui->ui_mutex);
381 * The inode is clean but we will have to mark
382 * it as dirty because we are appending. This
389 return ubifs_budget_space(c, &req);
393 * This function is called when a page of data is going to be written. Since
394 * the page of data will not necessarily go to the flash straight away, UBIFS
395 * has to reserve space on the media for it, which is done by means of
398 * This is the hot-path of the file-system and we are trying to optimize it as
399 * much as possible. For this reasons it is split on 2 parts - slow and fast.
401 * There many budgeting cases:
402 * o a new page is appended - we have to budget for a new page and for
403 * changing the inode; however, if the inode is already dirty, there is
404 * no need to budget for it;
405 * o an existing clean page is changed - we have budget for it; if the page
406 * does not exist on the media (a hole), we have to budget for a new
407 * page; otherwise, we may budget for changing an existing page; the
408 * difference between these cases is that changing an existing page does
409 * not introduce anything new to the FS indexing information, so it does
410 * not grow, and smaller budget is acquired in this case;
411 * o an existing dirty page is changed - no need to budget at all, because
412 * the page budget has been acquired by earlier, when the page has been
415 * UBIFS budgeting sub-system may force write-back if it thinks there is no
416 * space to reserve. This imposes some locking restrictions and makes it
417 * impossible to take into account the above cases, and makes it impossible to
418 * optimize budgeting.
420 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
421 * there is a plenty of flash space and the budget will be acquired quickly,
422 * without forcing write-back. The slow path does not make this assumption.
424 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
425 loff_t pos, unsigned len, unsigned flags,
426 struct page **pagep, void **fsdata)
428 struct inode *inode = mapping->host;
429 struct ubifs_info *c = inode->i_sb->s_fs_info;
430 struct ubifs_inode *ui = ubifs_inode(inode);
431 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
432 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
435 ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
437 if (unlikely(c->ro_media))
440 /* Try out the fast-path part first */
441 page = grab_cache_page_write_begin(mapping, index, flags);
445 if (!PageUptodate(page)) {
446 /* The page is not loaded from the flash */
447 if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
449 * We change whole page so no need to load it. But we
450 * have to set the @PG_checked flag to make the further
451 * code the page is new. This might be not true, but it
452 * is better to budget more that to read the page from
455 SetPageChecked(page);
457 err = do_readpage(page);
460 page_cache_release(page);
465 SetPageUptodate(page);
466 ClearPageError(page);
469 err = allocate_budget(c, page, ui, appending);
471 ubifs_assert(err == -ENOSPC);
473 * Budgeting failed which means it would have to force
474 * write-back but didn't, because we set the @fast flag in the
475 * request. Write-back cannot be done now, while we have the
476 * page locked, because it would deadlock. Unlock and free
477 * everything and fall-back to slow-path.
480 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
481 mutex_unlock(&ui->ui_mutex);
484 page_cache_release(page);
486 return write_begin_slow(mapping, pos, len, pagep, flags);
490 * Whee, we aquired budgeting quickly - without involving
491 * garbage-collection, committing or forceing write-back. We return
492 * with @ui->ui_mutex locked if we are appending pages, and unlocked
493 * otherwise. This is an optimization (slightly hacky though).
501 * cancel_budget - cancel budget.
502 * @c: UBIFS file-system description object
503 * @page: page to cancel budget for
504 * @ui: UBIFS inode object the page belongs to
505 * @appending: non-zero if the page is appended
507 * This is a helper function for a page write operation. It unlocks the
508 * @ui->ui_mutex in case of appending.
510 static void cancel_budget(struct ubifs_info *c, struct page *page,
511 struct ubifs_inode *ui, int appending)
515 ubifs_release_dirty_inode_budget(c, ui);
516 mutex_unlock(&ui->ui_mutex);
518 if (!PagePrivate(page)) {
519 if (PageChecked(page))
520 release_new_page_budget(c);
522 release_existing_page_budget(c);
526 static int ubifs_write_end(struct file *file, struct address_space *mapping,
527 loff_t pos, unsigned len, unsigned copied,
528 struct page *page, void *fsdata)
530 struct inode *inode = mapping->host;
531 struct ubifs_inode *ui = ubifs_inode(inode);
532 struct ubifs_info *c = inode->i_sb->s_fs_info;
533 loff_t end_pos = pos + len;
534 int appending = !!(end_pos > inode->i_size);
536 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
537 inode->i_ino, pos, page->index, len, copied, inode->i_size);
539 if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
541 * VFS copied less data to the page that it intended and
542 * declared in its '->write_begin()' call via the @len
543 * argument. If the page was not up-to-date, and @len was
544 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
545 * not load it from the media (for optimization reasons). This
546 * means that part of the page contains garbage. So read the
549 dbg_gen("copied %d instead of %d, read page and repeat",
551 cancel_budget(c, page, ui, appending);
554 * Return 0 to force VFS to repeat the whole operation, or the
555 * error code if 'do_readpage()' failes.
557 copied = do_readpage(page);
561 if (!PagePrivate(page)) {
562 SetPagePrivate(page);
563 atomic_long_inc(&c->dirty_pg_cnt);
564 __set_page_dirty_nobuffers(page);
568 i_size_write(inode, end_pos);
569 ui->ui_size = end_pos;
571 * Note, we do not set @I_DIRTY_PAGES (which means that the
572 * inode has dirty pages), this has been done in
573 * '__set_page_dirty_nobuffers()'.
575 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
576 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
577 mutex_unlock(&ui->ui_mutex);
582 page_cache_release(page);
587 * populate_page - copy data nodes into a page for bulk-read.
588 * @c: UBIFS file-system description object
590 * @bu: bulk-read information
591 * @n: next zbranch slot
593 * This function returns %0 on success and a negative error code on failure.
595 static int populate_page(struct ubifs_info *c, struct page *page,
596 struct bu_info *bu, int *n)
598 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
599 struct inode *inode = page->mapping->host;
600 loff_t i_size = i_size_read(inode);
601 unsigned int page_block;
605 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
606 inode->i_ino, page->index, i_size, page->flags);
608 addr = zaddr = kmap(page);
610 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
611 if (!i_size || page->index > end_index) {
613 memset(addr, 0, PAGE_CACHE_SIZE);
617 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
619 int err, len, out_len, dlen;
623 memset(addr, 0, UBIFS_BLOCK_SIZE);
624 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
625 struct ubifs_data_node *dn;
627 dn = bu->buf + (bu->zbranch[nn].offs - offs);
629 ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
630 ubifs_inode(inode)->creat_sqnum);
632 len = le32_to_cpu(dn->size);
633 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
636 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
637 out_len = UBIFS_BLOCK_SIZE;
638 err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
639 le16_to_cpu(dn->compr_type));
640 if (err || len != out_len)
643 if (len < UBIFS_BLOCK_SIZE)
644 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
647 read = (i << UBIFS_BLOCK_SHIFT) + len;
648 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
653 memset(addr, 0, UBIFS_BLOCK_SIZE);
655 if (++i >= UBIFS_BLOCKS_PER_PAGE)
657 addr += UBIFS_BLOCK_SIZE;
661 if (end_index == page->index) {
662 int len = i_size & (PAGE_CACHE_SIZE - 1);
664 if (len && len < read)
665 memset(zaddr + len, 0, read - len);
670 SetPageChecked(page);
674 SetPageUptodate(page);
675 ClearPageError(page);
676 flush_dcache_page(page);
682 ClearPageUptodate(page);
684 flush_dcache_page(page);
686 ubifs_err("bad data node (block %u, inode %lu)",
687 page_block, inode->i_ino);
692 * ubifs_do_bulk_read - do bulk-read.
693 * @c: UBIFS file-system description object
694 * @bu: bulk-read information
695 * @page1: first page to read
697 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
699 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
702 pgoff_t offset = page1->index, end_index;
703 struct address_space *mapping = page1->mapping;
704 struct inode *inode = mapping->host;
705 struct ubifs_inode *ui = ubifs_inode(inode);
706 int err, page_idx, page_cnt, ret = 0, n = 0;
707 int allocate = bu->buf ? 0 : 1;
710 err = ubifs_tnc_get_bu_keys(c, bu);
715 /* Turn off bulk-read at the end of the file */
716 ui->read_in_a_row = 1;
720 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
723 * This happens when there are multiple blocks per page and the
724 * blocks for the first page we are looking for, are not
725 * together. If all the pages were like this, bulk-read would
726 * reduce performance, so we turn it off for a while.
734 * Allocate bulk-read buffer depending on how many data
735 * nodes we are going to read.
737 bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
738 bu->zbranch[bu->cnt - 1].len -
740 ubifs_assert(bu->buf_len > 0);
741 ubifs_assert(bu->buf_len <= c->leb_size);
742 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
747 err = ubifs_tnc_bulk_read(c, bu);
752 err = populate_page(c, page1, bu, &n);
759 isize = i_size_read(inode);
762 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
764 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
765 pgoff_t page_offset = offset + page_idx;
768 if (page_offset > end_index)
770 page = find_or_create_page(mapping, page_offset,
771 GFP_NOFS | __GFP_COLD);
774 if (!PageUptodate(page))
775 err = populate_page(c, page, bu, &n);
777 page_cache_release(page);
782 ui->last_page_read = offset + page_idx - 1;
790 ubifs_warn("ignoring error %d and skipping bulk-read", err);
794 ui->read_in_a_row = ui->bulk_read = 0;
799 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
800 * @page: page from which to start bulk-read.
802 * Some flash media are capable of reading sequentially at faster rates. UBIFS
803 * bulk-read facility is designed to take advantage of that, by reading in one
804 * go consecutive data nodes that are also located consecutively in the same
805 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
807 static int ubifs_bulk_read(struct page *page)
809 struct inode *inode = page->mapping->host;
810 struct ubifs_info *c = inode->i_sb->s_fs_info;
811 struct ubifs_inode *ui = ubifs_inode(inode);
812 pgoff_t index = page->index, last_page_read = ui->last_page_read;
814 int err = 0, allocated = 0;
816 ui->last_page_read = index;
821 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
822 * so don't bother if we cannot lock the mutex.
824 if (!mutex_trylock(&ui->ui_mutex))
827 if (index != last_page_read + 1) {
828 /* Turn off bulk-read if we stop reading sequentially */
829 ui->read_in_a_row = 1;
835 if (!ui->bulk_read) {
836 ui->read_in_a_row += 1;
837 if (ui->read_in_a_row < 3)
839 /* Three reads in a row, so switch on bulk-read */
844 * If possible, try to use pre-allocated bulk-read information, which
845 * is protected by @c->bu_mutex.
847 if (mutex_trylock(&c->bu_mutex))
850 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
858 bu->buf_len = c->max_bu_buf_len;
859 data_key_init(c, &bu->key, inode->i_ino,
860 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
861 err = ubifs_do_bulk_read(c, bu, page);
864 mutex_unlock(&c->bu_mutex);
869 mutex_unlock(&ui->ui_mutex);
873 static int ubifs_readpage(struct file *file, struct page *page)
875 if (ubifs_bulk_read(page))
882 static int do_writepage(struct page *page, int len)
884 int err = 0, i, blen;
888 struct inode *inode = page->mapping->host;
889 struct ubifs_info *c = inode->i_sb->s_fs_info;
892 spin_lock(&ui->ui_lock);
893 ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE);
894 spin_unlock(&ui->ui_lock);
897 /* Update radix tree tags */
898 set_page_writeback(page);
901 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
904 blen = min_t(int, len, UBIFS_BLOCK_SIZE);
905 data_key_init(c, &key, inode->i_ino, block);
906 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
909 if (++i >= UBIFS_BLOCKS_PER_PAGE)
917 ubifs_err("cannot write page %lu of inode %lu, error %d",
918 page->index, inode->i_ino, err);
919 ubifs_ro_mode(c, err);
922 ubifs_assert(PagePrivate(page));
923 if (PageChecked(page))
924 release_new_page_budget(c);
926 release_existing_page_budget(c);
928 atomic_long_dec(&c->dirty_pg_cnt);
929 ClearPagePrivate(page);
930 ClearPageChecked(page);
934 end_page_writeback(page);
939 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
940 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
941 * situation when a we have an inode with size 0, then a megabyte of data is
942 * appended to the inode, then write-back starts and flushes some amount of the
943 * dirty pages, the journal becomes full, commit happens and finishes, and then
944 * an unclean reboot happens. When the file system is mounted next time, the
945 * inode size would still be 0, but there would be many pages which are beyond
946 * the inode size, they would be indexed and consume flash space. Because the
947 * journal has been committed, the replay would not be able to detect this
948 * situation and correct the inode size. This means UBIFS would have to scan
949 * whole index and correct all inode sizes, which is long an unacceptable.
951 * To prevent situations like this, UBIFS writes pages back only if they are
952 * within last synchronized inode size, i.e. the the size which has been
953 * written to the flash media last time. Otherwise, UBIFS forces inode
954 * write-back, thus making sure the on-flash inode contains current inode size,
955 * and then keeps writing pages back.
957 * Some locking issues explanation. 'ubifs_writepage()' first is called with
958 * the page locked, and it locks @ui_mutex. However, write-back does take inode
959 * @i_mutex, which means other VFS operations may be run on this inode at the
960 * same time. And the problematic one is truncation to smaller size, from where
961 * we have to call 'vmtruncate()', which first changes @inode->i_size, then
962 * drops the truncated pages. And while dropping the pages, it takes the page
963 * lock. This means that 'do_truncation()' cannot call 'vmtruncate()' with
964 * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This
965 * means that @inode->i_size is changed while @ui_mutex is unlocked.
967 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
968 * inode size. How do we do this if @inode->i_size may became smaller while we
969 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
970 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
971 * internally and updates it under @ui_mutex.
973 * Q: why we do not worry that if we race with truncation, we may end up with a
974 * situation when the inode is truncated while we are in the middle of
975 * 'do_writepage()', so we do write beyond inode size?
976 * A: If we are in the middle of 'do_writepage()', truncation would be locked
977 * on the page lock and it would not write the truncated inode node to the
978 * journal before we have finished.
980 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
982 struct inode *inode = page->mapping->host;
983 struct ubifs_inode *ui = ubifs_inode(inode);
984 loff_t i_size = i_size_read(inode), synced_i_size;
985 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
986 int err, len = i_size & (PAGE_CACHE_SIZE - 1);
989 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
990 inode->i_ino, page->index, page->flags);
991 ubifs_assert(PagePrivate(page));
993 /* Is the page fully outside @i_size? (truncate in progress) */
994 if (page->index > end_index || (page->index == end_index && !len)) {
999 spin_lock(&ui->ui_lock);
1000 synced_i_size = ui->synced_i_size;
1001 spin_unlock(&ui->ui_lock);
1003 /* Is the page fully inside @i_size? */
1004 if (page->index < end_index) {
1005 if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
1006 err = inode->i_sb->s_op->write_inode(inode, 1);
1010 * The inode has been written, but the write-buffer has
1011 * not been synchronized, so in case of an unclean
1012 * reboot we may end up with some pages beyond inode
1013 * size, but they would be in the journal (because
1014 * commit flushes write buffers) and recovery would deal
1018 return do_writepage(page, PAGE_CACHE_SIZE);
1022 * The page straddles @i_size. It must be zeroed out on each and every
1023 * writepage invocation because it may be mmapped. "A file is mapped
1024 * in multiples of the page size. For a file that is not a multiple of
1025 * the page size, the remaining memory is zeroed when mapped, and
1026 * writes to that region are not written out to the file."
1028 kaddr = kmap_atomic(page, KM_USER0);
1029 memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
1030 flush_dcache_page(page);
1031 kunmap_atomic(kaddr, KM_USER0);
1033 if (i_size > synced_i_size) {
1034 err = inode->i_sb->s_op->write_inode(inode, 1);
1039 return do_writepage(page, len);
1047 * do_attr_changes - change inode attributes.
1048 * @inode: inode to change attributes for
1049 * @attr: describes attributes to change
1051 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1053 if (attr->ia_valid & ATTR_UID)
1054 inode->i_uid = attr->ia_uid;
1055 if (attr->ia_valid & ATTR_GID)
1056 inode->i_gid = attr->ia_gid;
1057 if (attr->ia_valid & ATTR_ATIME)
1058 inode->i_atime = timespec_trunc(attr->ia_atime,
1059 inode->i_sb->s_time_gran);
1060 if (attr->ia_valid & ATTR_MTIME)
1061 inode->i_mtime = timespec_trunc(attr->ia_mtime,
1062 inode->i_sb->s_time_gran);
1063 if (attr->ia_valid & ATTR_CTIME)
1064 inode->i_ctime = timespec_trunc(attr->ia_ctime,
1065 inode->i_sb->s_time_gran);
1066 if (attr->ia_valid & ATTR_MODE) {
1067 umode_t mode = attr->ia_mode;
1069 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1071 inode->i_mode = mode;
1076 * do_truncation - truncate an inode.
1077 * @c: UBIFS file-system description object
1078 * @inode: inode to truncate
1079 * @attr: inode attribute changes description
1081 * This function implements VFS '->setattr()' call when the inode is truncated
1082 * to a smaller size. Returns zero in case of success and a negative error code
1083 * in case of failure.
1085 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1086 const struct iattr *attr)
1089 struct ubifs_budget_req req;
1090 loff_t old_size = inode->i_size, new_size = attr->ia_size;
1091 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1092 struct ubifs_inode *ui = ubifs_inode(inode);
1094 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1095 memset(&req, 0, sizeof(struct ubifs_budget_req));
1098 * If this is truncation to a smaller size, and we do not truncate on a
1099 * block boundary, budget for changing one data block, because the last
1100 * block will be re-written.
1102 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1103 req.dirtied_page = 1;
1105 req.dirtied_ino = 1;
1106 /* A funny way to budget for truncation node */
1107 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1108 err = ubifs_budget_space(c, &req);
1111 * Treat truncations to zero as deletion and always allow them,
1112 * just like we do for '->unlink()'.
1114 if (new_size || err != -ENOSPC)
1119 err = vmtruncate(inode, new_size);
1124 pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1127 page = find_lock_page(inode->i_mapping, index);
1129 if (PageDirty(page)) {
1131 * 'ubifs_jnl_truncate()' will try to truncate
1132 * the last data node, but it contains
1133 * out-of-date data because the page is dirty.
1134 * Write the page now, so that
1135 * 'ubifs_jnl_truncate()' will see an already
1136 * truncated (and up to date) data node.
1138 ubifs_assert(PagePrivate(page));
1140 clear_page_dirty_for_io(page);
1141 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1143 (PAGE_CACHE_SIZE - 1);
1144 err = do_writepage(page, offset);
1145 page_cache_release(page);
1149 * We could now tell 'ubifs_jnl_truncate()' not
1150 * to read the last block.
1154 * We could 'kmap()' the page and pass the data
1155 * to 'ubifs_jnl_truncate()' to save it from
1156 * having to read it.
1159 page_cache_release(page);
1164 mutex_lock(&ui->ui_mutex);
1165 ui->ui_size = inode->i_size;
1166 /* Truncation changes inode [mc]time */
1167 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1168 /* The other attributes may be changed at the same time as well */
1169 do_attr_changes(inode, attr);
1171 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1172 mutex_unlock(&ui->ui_mutex);
1175 ubifs_release_budget(c, &req);
1177 c->nospace = c->nospace_rp = 0;
1184 * do_setattr - change inode attributes.
1185 * @c: UBIFS file-system description object
1186 * @inode: inode to change attributes for
1187 * @attr: inode attribute changes description
1189 * This function implements VFS '->setattr()' call for all cases except
1190 * truncations to smaller size. Returns zero in case of success and a negative
1191 * error code in case of failure.
1193 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1194 const struct iattr *attr)
1197 loff_t new_size = attr->ia_size;
1198 struct ubifs_inode *ui = ubifs_inode(inode);
1199 struct ubifs_budget_req req = { .dirtied_ino = 1,
1200 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1202 err = ubifs_budget_space(c, &req);
1206 if (attr->ia_valid & ATTR_SIZE) {
1207 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1208 err = vmtruncate(inode, new_size);
1213 mutex_lock(&ui->ui_mutex);
1214 if (attr->ia_valid & ATTR_SIZE) {
1215 /* Truncation changes inode [mc]time */
1216 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1217 /* 'vmtruncate()' changed @i_size, update @ui_size */
1218 ui->ui_size = inode->i_size;
1221 do_attr_changes(inode, attr);
1223 release = ui->dirty;
1224 if (attr->ia_valid & ATTR_SIZE)
1226 * Inode length changed, so we have to make sure
1227 * @I_DIRTY_DATASYNC is set.
1229 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1231 mark_inode_dirty_sync(inode);
1232 mutex_unlock(&ui->ui_mutex);
1235 ubifs_release_budget(c, &req);
1237 err = inode->i_sb->s_op->write_inode(inode, 1);
1241 ubifs_release_budget(c, &req);
1245 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1248 struct inode *inode = dentry->d_inode;
1249 struct ubifs_info *c = inode->i_sb->s_fs_info;
1251 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1252 inode->i_ino, inode->i_mode, attr->ia_valid);
1253 err = inode_change_ok(inode, attr);
1257 err = dbg_check_synced_i_size(inode);
1261 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1262 /* Truncation to a smaller size */
1263 err = do_truncation(c, inode, attr);
1265 err = do_setattr(c, inode, attr);
1270 static void ubifs_invalidatepage(struct page *page, unsigned long offset)
1272 struct inode *inode = page->mapping->host;
1273 struct ubifs_info *c = inode->i_sb->s_fs_info;
1275 ubifs_assert(PagePrivate(page));
1277 /* Partial page remains dirty */
1280 if (PageChecked(page))
1281 release_new_page_budget(c);
1283 release_existing_page_budget(c);
1285 atomic_long_dec(&c->dirty_pg_cnt);
1286 ClearPagePrivate(page);
1287 ClearPageChecked(page);
1290 static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1292 struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
1294 nd_set_link(nd, ui->data);
1298 int ubifs_fsync(struct file *file, struct dentry *dentry, int datasync)
1300 struct inode *inode = dentry->d_inode;
1301 struct ubifs_info *c = inode->i_sb->s_fs_info;
1304 dbg_gen("syncing inode %lu", inode->i_ino);
1307 * VFS has already synchronized dirty pages for this inode. Synchronize
1308 * the inode unless this is a 'datasync()' call.
1310 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1311 err = inode->i_sb->s_op->write_inode(inode, 1);
1317 * Nodes related to this inode may still sit in a write-buffer. Flush
1320 err = ubifs_sync_wbufs_by_inode(c, inode);
1328 * mctime_update_needed - check if mtime or ctime update is needed.
1329 * @inode: the inode to do the check for
1330 * @now: current time
1332 * This helper function checks if the inode mtime/ctime should be updated or
1333 * not. If current values of the time-stamps are within the UBIFS inode time
1334 * granularity, they are not updated. This is an optimization.
1336 static inline int mctime_update_needed(const struct inode *inode,
1337 const struct timespec *now)
1339 if (!timespec_equal(&inode->i_mtime, now) ||
1340 !timespec_equal(&inode->i_ctime, now))
1346 * update_ctime - update mtime and ctime of an inode.
1347 * @c: UBIFS file-system description object
1348 * @inode: inode to update
1350 * This function updates mtime and ctime of the inode if it is not equivalent to
1351 * current time. Returns zero in case of success and a negative error code in
1354 static int update_mctime(struct ubifs_info *c, struct inode *inode)
1356 struct timespec now = ubifs_current_time(inode);
1357 struct ubifs_inode *ui = ubifs_inode(inode);
1359 if (mctime_update_needed(inode, &now)) {
1361 struct ubifs_budget_req req = { .dirtied_ino = 1,
1362 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1364 err = ubifs_budget_space(c, &req);
1368 mutex_lock(&ui->ui_mutex);
1369 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1370 release = ui->dirty;
1371 mark_inode_dirty_sync(inode);
1372 mutex_unlock(&ui->ui_mutex);
1374 ubifs_release_budget(c, &req);
1380 static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov,
1381 unsigned long nr_segs, loff_t pos)
1385 struct inode *inode = iocb->ki_filp->f_mapping->host;
1386 struct ubifs_info *c = inode->i_sb->s_fs_info;
1388 err = update_mctime(c, inode);
1392 ret = generic_file_aio_write(iocb, iov, nr_segs, pos);
1396 if (ret > 0 && (IS_SYNC(inode) || iocb->ki_filp->f_flags & O_SYNC)) {
1397 err = ubifs_sync_wbufs_by_inode(c, inode);
1405 static int ubifs_set_page_dirty(struct page *page)
1409 ret = __set_page_dirty_nobuffers(page);
1411 * An attempt to dirty a page without budgeting for it - should not
1414 ubifs_assert(ret == 0);
1418 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1421 * An attempt to release a dirty page without budgeting for it - should
1424 if (PageWriteback(page))
1426 ubifs_assert(PagePrivate(page));
1428 ClearPagePrivate(page);
1429 ClearPageChecked(page);
1434 * mmap()d file has taken write protection fault and is being made
1435 * writable. UBIFS must ensure page is budgeted for.
1437 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, struct page *page)
1439 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1440 struct ubifs_info *c = inode->i_sb->s_fs_info;
1441 struct timespec now = ubifs_current_time(inode);
1442 struct ubifs_budget_req req = { .new_page = 1 };
1443 int err, update_time;
1445 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1446 i_size_read(inode));
1447 ubifs_assert(!(inode->i_sb->s_flags & MS_RDONLY));
1449 if (unlikely(c->ro_media))
1453 * We have not locked @page so far so we may budget for changing the
1454 * page. Note, we cannot do this after we locked the page, because
1455 * budgeting may cause write-back which would cause deadlock.
1457 * At the moment we do not know whether the page is dirty or not, so we
1458 * assume that it is not and budget for a new page. We could look at
1459 * the @PG_private flag and figure this out, but we may race with write
1460 * back and the page state may change by the time we lock it, so this
1461 * would need additional care. We do not bother with this at the
1462 * moment, although it might be good idea to do. Instead, we allocate
1463 * budget for a new page and amend it later on if the page was in fact
1466 * The budgeting-related logic of this function is similar to what we
1467 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1468 * for more comments.
1470 update_time = mctime_update_needed(inode, &now);
1473 * We have to change inode time stamp which requires extra
1476 req.dirtied_ino = 1;
1478 err = ubifs_budget_space(c, &req);
1479 if (unlikely(err)) {
1481 ubifs_warn("out of space for mmapped file "
1482 "(inode number %lu)", inode->i_ino);
1487 if (unlikely(page->mapping != inode->i_mapping ||
1488 page_offset(page) > i_size_read(inode))) {
1489 /* Page got truncated out from underneath us */
1494 if (PagePrivate(page))
1495 release_new_page_budget(c);
1497 if (!PageChecked(page))
1498 ubifs_convert_page_budget(c);
1499 SetPagePrivate(page);
1500 atomic_long_inc(&c->dirty_pg_cnt);
1501 __set_page_dirty_nobuffers(page);
1506 struct ubifs_inode *ui = ubifs_inode(inode);
1508 mutex_lock(&ui->ui_mutex);
1509 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1510 release = ui->dirty;
1511 mark_inode_dirty_sync(inode);
1512 mutex_unlock(&ui->ui_mutex);
1514 ubifs_release_dirty_inode_budget(c, ui);
1522 ubifs_release_budget(c, &req);
1526 static struct vm_operations_struct ubifs_file_vm_ops = {
1527 .fault = filemap_fault,
1528 .page_mkwrite = ubifs_vm_page_mkwrite,
1531 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1535 /* 'generic_file_mmap()' takes care of NOMMU case */
1536 err = generic_file_mmap(file, vma);
1539 vma->vm_ops = &ubifs_file_vm_ops;
1543 const struct address_space_operations ubifs_file_address_operations = {
1544 .readpage = ubifs_readpage,
1545 .writepage = ubifs_writepage,
1546 .write_begin = ubifs_write_begin,
1547 .write_end = ubifs_write_end,
1548 .invalidatepage = ubifs_invalidatepage,
1549 .set_page_dirty = ubifs_set_page_dirty,
1550 .releasepage = ubifs_releasepage,
1553 const struct inode_operations ubifs_file_inode_operations = {
1554 .setattr = ubifs_setattr,
1555 .getattr = ubifs_getattr,
1556 #ifdef CONFIG_UBIFS_FS_XATTR
1557 .setxattr = ubifs_setxattr,
1558 .getxattr = ubifs_getxattr,
1559 .listxattr = ubifs_listxattr,
1560 .removexattr = ubifs_removexattr,
1564 const struct inode_operations ubifs_symlink_inode_operations = {
1565 .readlink = generic_readlink,
1566 .follow_link = ubifs_follow_link,
1567 .setattr = ubifs_setattr,
1568 .getattr = ubifs_getattr,
1571 const struct file_operations ubifs_file_operations = {
1572 .llseek = generic_file_llseek,
1573 .read = do_sync_read,
1574 .write = do_sync_write,
1575 .aio_read = generic_file_aio_read,
1576 .aio_write = ubifs_aio_write,
1577 .mmap = ubifs_file_mmap,
1578 .fsync = ubifs_fsync,
1579 .unlocked_ioctl = ubifs_ioctl,
1580 .splice_read = generic_file_splice_read,
1581 .splice_write = generic_file_splice_write,
1582 #ifdef CONFIG_COMPAT
1583 .compat_ioctl = ubifs_compat_ioctl,