Merge branch 'from-linus' into upstream
[linux-2.6] / include / linux / ktime.h
1 /*
2  *  include/linux/ktime.h
3  *
4  *  ktime_t - nanosecond-resolution time format.
5  *
6  *   Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
7  *   Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
8  *
9  *  data type definitions, declarations, prototypes and macros.
10  *
11  *  Started by: Thomas Gleixner and Ingo Molnar
12  *
13  *  Credits:
14  *
15  *      Roman Zippel provided the ideas and primary code snippets of
16  *      the ktime_t union and further simplifications of the original
17  *      code.
18  *
19  *  For licencing details see kernel-base/COPYING
20  */
21 #ifndef _LINUX_KTIME_H
22 #define _LINUX_KTIME_H
23
24 #include <linux/time.h>
25 #include <linux/jiffies.h>
26
27 /*
28  * ktime_t:
29  *
30  * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
31  * internal representation of time values in scalar nanoseconds. The
32  * design plays out best on 64-bit CPUs, where most conversions are
33  * NOPs and most arithmetic ktime_t operations are plain arithmetic
34  * operations.
35  *
36  * On 32-bit CPUs an optimized representation of the timespec structure
37  * is used to avoid expensive conversions from and to timespecs. The
38  * endian-aware order of the tv struct members is choosen to allow
39  * mathematical operations on the tv64 member of the union too, which
40  * for certain operations produces better code.
41  *
42  * For architectures with efficient support for 64/32-bit conversions the
43  * plain scalar nanosecond based representation can be selected by the
44  * config switch CONFIG_KTIME_SCALAR.
45  */
46 typedef union {
47         s64     tv64;
48 #if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
49         struct {
50 # ifdef __BIG_ENDIAN
51         s32     sec, nsec;
52 # else
53         s32     nsec, sec;
54 # endif
55         } tv;
56 #endif
57 } ktime_t;
58
59 #define KTIME_MAX                       (~((u64)1 << 63))
60
61 /*
62  * ktime_t definitions when using the 64-bit scalar representation:
63  */
64
65 #if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
66
67 /**
68  * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
69  * @secs:       seconds to set
70  * @nsecs:      nanoseconds to set
71  *
72  * Return the ktime_t representation of the value
73  */
74 static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
75 {
76         return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
77 }
78
79 /* Subtract two ktime_t variables. rem = lhs -rhs: */
80 #define ktime_sub(lhs, rhs) \
81                 ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
82
83 /* Add two ktime_t variables. res = lhs + rhs: */
84 #define ktime_add(lhs, rhs) \
85                 ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
86
87 /*
88  * Add a ktime_t variable and a scalar nanosecond value.
89  * res = kt + nsval:
90  */
91 #define ktime_add_ns(kt, nsval) \
92                 ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
93
94 /* convert a timespec to ktime_t format: */
95 static inline ktime_t timespec_to_ktime(struct timespec ts)
96 {
97         return ktime_set(ts.tv_sec, ts.tv_nsec);
98 }
99
100 /* convert a timeval to ktime_t format: */
101 static inline ktime_t timeval_to_ktime(struct timeval tv)
102 {
103         return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
104 }
105
106 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
107 #define ktime_to_timespec(kt)           ns_to_timespec((kt).tv64)
108
109 /* Map the ktime_t to timeval conversion to ns_to_timeval function */
110 #define ktime_to_timeval(kt)            ns_to_timeval((kt).tv64)
111
112 /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
113 #define ktime_to_ns(kt)                 ((kt).tv64)
114
115 #else
116
117 /*
118  * Helper macros/inlines to get the ktime_t math right in the timespec
119  * representation. The macros are sometimes ugly - their actual use is
120  * pretty okay-ish, given the circumstances. We do all this for
121  * performance reasons. The pure scalar nsec_t based code was nice and
122  * simple, but created too many 64-bit / 32-bit conversions and divisions.
123  *
124  * Be especially aware that negative values are represented in a way
125  * that the tv.sec field is negative and the tv.nsec field is greater
126  * or equal to zero but less than nanoseconds per second. This is the
127  * same representation which is used by timespecs.
128  *
129  *   tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
130  */
131
132 /* Set a ktime_t variable to a value in sec/nsec representation: */
133 static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
134 {
135         return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
136 }
137
138 /**
139  * ktime_sub - subtract two ktime_t variables
140  * @lhs:        minuend
141  * @rhs:        subtrahend
142  *
143  * Returns the remainder of the substraction
144  */
145 static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
146 {
147         ktime_t res;
148
149         res.tv64 = lhs.tv64 - rhs.tv64;
150         if (res.tv.nsec < 0)
151                 res.tv.nsec += NSEC_PER_SEC;
152
153         return res;
154 }
155
156 /**
157  * ktime_add - add two ktime_t variables
158  * @add1:       addend1
159  * @add2:       addend2
160  *
161  * Returns the sum of addend1 and addend2
162  */
163 static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
164 {
165         ktime_t res;
166
167         res.tv64 = add1.tv64 + add2.tv64;
168         /*
169          * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
170          * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
171          *
172          * it's equivalent to:
173          *   tv.nsec -= NSEC_PER_SEC
174          *   tv.sec ++;
175          */
176         if (res.tv.nsec >= NSEC_PER_SEC)
177                 res.tv64 += (u32)-NSEC_PER_SEC;
178
179         return res;
180 }
181
182 /**
183  * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
184  * @kt:         addend
185  * @nsec:       the scalar nsec value to add
186  *
187  * Returns the sum of kt and nsec in ktime_t format
188  */
189 extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
190
191 /**
192  * timespec_to_ktime - convert a timespec to ktime_t format
193  * @ts:         the timespec variable to convert
194  *
195  * Returns a ktime_t variable with the converted timespec value
196  */
197 static inline ktime_t timespec_to_ktime(const struct timespec ts)
198 {
199         return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
200                                    .nsec = (s32)ts.tv_nsec } };
201 }
202
203 /**
204  * timeval_to_ktime - convert a timeval to ktime_t format
205  * @tv:         the timeval variable to convert
206  *
207  * Returns a ktime_t variable with the converted timeval value
208  */
209 static inline ktime_t timeval_to_ktime(const struct timeval tv)
210 {
211         return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
212                                    .nsec = (s32)tv.tv_usec * 1000 } };
213 }
214
215 /**
216  * ktime_to_timespec - convert a ktime_t variable to timespec format
217  * @kt:         the ktime_t variable to convert
218  *
219  * Returns the timespec representation of the ktime value
220  */
221 static inline struct timespec ktime_to_timespec(const ktime_t kt)
222 {
223         return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
224                                    .tv_nsec = (long) kt.tv.nsec };
225 }
226
227 /**
228  * ktime_to_timeval - convert a ktime_t variable to timeval format
229  * @kt:         the ktime_t variable to convert
230  *
231  * Returns the timeval representation of the ktime value
232  */
233 static inline struct timeval ktime_to_timeval(const ktime_t kt)
234 {
235         return (struct timeval) {
236                 .tv_sec = (time_t) kt.tv.sec,
237                 .tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
238 }
239
240 /**
241  * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
242  * @kt:         the ktime_t variable to convert
243  *
244  * Returns the scalar nanoseconds representation of kt
245  */
246 static inline u64 ktime_to_ns(const ktime_t kt)
247 {
248         return (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
249 }
250
251 #endif
252
253 /*
254  * The resolution of the clocks. The resolution value is returned in
255  * the clock_getres() system call to give application programmers an
256  * idea of the (in)accuracy of timers. Timer values are rounded up to
257  * this resolution values.
258  */
259 #define KTIME_REALTIME_RES      (ktime_t){ .tv64 = TICK_NSEC }
260 #define KTIME_MONOTONIC_RES     (ktime_t){ .tv64 = TICK_NSEC }
261
262 /* Get the monotonic time in timespec format: */
263 extern void ktime_get_ts(struct timespec *ts);
264
265 /* Get the real (wall-) time in timespec format: */
266 #define ktime_get_real_ts(ts)   getnstimeofday(ts)
267
268 #endif