1 /* de2104x.c: A Linux PCI Ethernet driver for Intel/Digital 21040/1 chips. */
3 Copyright 2001,2003 Jeff Garzik <jgarzik@pobox.com>
5 Copyright 1994, 1995 Digital Equipment Corporation. [de4x5.c]
6 Written/copyright 1994-2001 by Donald Becker. [tulip.c]
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL.
15 See the file COPYING in this distribution for more information.
17 TODO, in rough priority order:
18 * Support forcing media type with a module parameter,
19 like dl2k.c/sundance.c
20 * Constants (module parms?) for Rx work limit
21 * Complete reset on PciErr
22 * Jumbo frames / dev->change_mtu
23 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
24 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
25 * Implement Tx software interrupt mitigation via
30 #define DRV_NAME "de2104x"
31 #define DRV_VERSION "0.7"
32 #define DRV_RELDATE "Mar 17, 2004"
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/init.h>
39 #include <linux/pci.h>
40 #include <linux/delay.h>
41 #include <linux/ethtool.h>
42 #include <linux/compiler.h>
43 #include <linux/rtnetlink.h>
44 #include <linux/crc32.h>
48 #include <asm/uaccess.h>
49 #include <asm/unaligned.h>
51 /* These identify the driver base version and may not be removed. */
52 static char version[] =
53 KERN_INFO DRV_NAME " PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
55 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
56 MODULE_DESCRIPTION("Intel/Digital 21040/1 series PCI Ethernet driver");
57 MODULE_LICENSE("GPL");
58 MODULE_VERSION(DRV_VERSION);
60 static int debug = -1;
61 module_param (debug, int, 0);
62 MODULE_PARM_DESC (debug, "de2104x bitmapped message enable number");
64 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
65 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
66 || defined(CONFIG_SPARC) || defined(__ia64__) \
67 || defined(__sh__) || defined(__mips__)
68 static int rx_copybreak = 1518;
70 static int rx_copybreak = 100;
72 module_param (rx_copybreak, int, 0);
73 MODULE_PARM_DESC (rx_copybreak, "de2104x Breakpoint at which Rx packets are copied");
75 #define PFX DRV_NAME ": "
77 #define DE_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
85 #define DE_RX_RING_SIZE 64
86 #define DE_TX_RING_SIZE 64
87 #define DE_RING_BYTES \
88 ((sizeof(struct de_desc) * DE_RX_RING_SIZE) + \
89 (sizeof(struct de_desc) * DE_TX_RING_SIZE))
90 #define NEXT_TX(N) (((N) + 1) & (DE_TX_RING_SIZE - 1))
91 #define NEXT_RX(N) (((N) + 1) & (DE_RX_RING_SIZE - 1))
92 #define TX_BUFFS_AVAIL(CP) \
93 (((CP)->tx_tail <= (CP)->tx_head) ? \
94 (CP)->tx_tail + (DE_TX_RING_SIZE - 1) - (CP)->tx_head : \
95 (CP)->tx_tail - (CP)->tx_head - 1)
97 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
100 #define DE_SETUP_SKB ((struct sk_buff *) 1)
101 #define DE_DUMMY_SKB ((struct sk_buff *) 2)
102 #define DE_SETUP_FRAME_WORDS 96
103 #define DE_EEPROM_WORDS 256
104 #define DE_EEPROM_SIZE (DE_EEPROM_WORDS * sizeof(u16))
105 #define DE_MAX_MEDIA 5
107 #define DE_MEDIA_TP_AUTO 0
108 #define DE_MEDIA_BNC 1
109 #define DE_MEDIA_AUI 2
110 #define DE_MEDIA_TP 3
111 #define DE_MEDIA_TP_FD 4
112 #define DE_MEDIA_INVALID DE_MAX_MEDIA
113 #define DE_MEDIA_FIRST 0
114 #define DE_MEDIA_LAST (DE_MAX_MEDIA - 1)
115 #define DE_AUI_BNC (SUPPORTED_AUI | SUPPORTED_BNC)
117 #define DE_TIMER_LINK (60 * HZ)
118 #define DE_TIMER_NO_LINK (5 * HZ)
120 #define DE_NUM_REGS 16
121 #define DE_REGS_SIZE (DE_NUM_REGS * sizeof(u32))
122 #define DE_REGS_VER 1
124 /* Time in jiffies before concluding the transmitter is hung. */
125 #define TX_TIMEOUT (6*HZ)
127 #define DE_UNALIGNED_16(a) (u16)(get_unaligned((u16 *)(a)))
129 /* This is a mysterious value that can be written to CSR11 in the 21040 (only)
130 to support a pre-NWay full-duplex signaling mechanism using short frames.
131 No one knows what it should be, but if left at its default value some
132 10base2(!) packets trigger a full-duplex-request interrupt. */
133 #define FULL_DUPLEX_MAGIC 0x6969
156 CacheAlign16 = 0x00008000,
157 BurstLen4 = 0x00000400,
160 NormalTxPoll = (1 << 0),
161 NormalRxPoll = (1 << 0),
163 /* Tx/Rx descriptor status bits */
166 RxErrLong = (1 << 7),
168 RxErrFIFO = (1 << 0),
169 RxErrRunt = (1 << 11),
170 RxErrFrame = (1 << 14),
172 FirstFrag = (1 << 29),
173 LastFrag = (1 << 30),
175 TxFIFOUnder = (1 << 1),
176 TxLinkFail = (1 << 2) | (1 << 10) | (1 << 11),
179 TxJabber = (1 << 14),
180 SetupFrame = (1 << 27),
191 TxState = (1 << 22) | (1 << 21) | (1 << 20),
192 RxState = (1 << 19) | (1 << 18) | (1 << 17),
193 LinkFail = (1 << 12),
195 RxStopped = (1 << 8),
196 TxStopped = (1 << 1),
199 TxEnable = (1 << 13),
201 RxTx = TxEnable | RxEnable,
202 FullDuplex = (1 << 9),
203 AcceptAllMulticast = (1 << 7),
204 AcceptAllPhys = (1 << 6),
206 MacModeClear = (1<<12) | (1<<11) | (1<<10) | (1<<8) | (1<<3) |
207 RxTx | BOCnt | AcceptAllPhys | AcceptAllMulticast,
210 EE_SHIFT_CLK = 0x02, /* EEPROM shift clock. */
211 EE_CS = 0x01, /* EEPROM chip select. */
212 EE_DATA_WRITE = 0x04, /* Data from the Tulip to EEPROM. */
215 EE_DATA_READ = 0x08, /* Data from the EEPROM chip. */
216 EE_ENB = (0x4800 | EE_CS),
218 /* The EEPROM commands include the alway-set leading bit. */
222 RxMissedOver = (1 << 16),
223 RxMissedMask = 0xffff,
225 /* SROM-related bits */
227 MediaBlockMask = 0x3f,
228 MediaCustomCSRs = (1 << 6),
231 PM_Sleep = (1 << 31),
232 PM_Snooze = (1 << 30),
233 PM_Mask = PM_Sleep | PM_Snooze,
236 NWayState = (1 << 14) | (1 << 13) | (1 << 12),
237 NWayRestart = (1 << 12),
238 NonselPortActive = (1 << 9),
239 LinkFailStatus = (1 << 2),
240 NetCxnErr = (1 << 1),
243 static const u32 de_intr_mask =
244 IntrOK | IntrErr | RxIntr | RxEmpty | TxIntr | TxEmpty |
245 LinkPass | LinkFail | PciErr;
248 * Set the programmable burst length to 4 longwords for all:
249 * DMA errors result without these values. Cache align 16 long.
251 static const u32 de_bus_mode = CacheAlign16 | BurstLen4;
253 struct de_srom_media_block {
258 } __attribute__((packed));
260 struct de_srom_info_leaf {
264 } __attribute__((packed));
274 u16 type; /* DE_MEDIA_xxx */
291 struct net_device *dev;
294 struct de_desc *rx_ring;
295 struct de_desc *tx_ring;
296 struct ring_info tx_skb[DE_TX_RING_SIZE];
297 struct ring_info rx_skb[DE_RX_RING_SIZE];
303 struct net_device_stats net_stats;
305 struct pci_dev *pdev;
307 u16 setup_frame[DE_SETUP_FRAME_WORDS];
312 struct media_info media[DE_MAX_MEDIA];
313 struct timer_list media_timer;
317 unsigned de21040 : 1;
318 unsigned media_lock : 1;
322 static void de_set_rx_mode (struct net_device *dev);
323 static void de_tx (struct de_private *de);
324 static void de_clean_rings (struct de_private *de);
325 static void de_media_interrupt (struct de_private *de, u32 status);
326 static void de21040_media_timer (unsigned long data);
327 static void de21041_media_timer (unsigned long data);
328 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media);
331 static struct pci_device_id de_pci_tbl[] = {
332 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
333 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
334 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
335 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
338 MODULE_DEVICE_TABLE(pci, de_pci_tbl);
340 static const char * const media_name[DE_MAX_MEDIA] = {
348 /* 21040 transceiver register settings:
349 * TP AUTO(unused), BNC(unused), AUI, TP, TP FD*/
350 static u16 t21040_csr13[] = { 0, 0, 0x8F09, 0x8F01, 0x8F01, };
351 static u16 t21040_csr14[] = { 0, 0, 0x0705, 0xFFFF, 0xFFFD, };
352 static u16 t21040_csr15[] = { 0, 0, 0x0006, 0x0000, 0x0000, };
354 /* 21041 transceiver register settings: TP AUTO, BNC, AUI, TP, TP FD*/
355 static u16 t21041_csr13[] = { 0xEF01, 0xEF09, 0xEF09, 0xEF01, 0xEF09, };
356 static u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x6F3F, 0x6F3D, };
357 static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, };
360 #define dr32(reg) readl(de->regs + (reg))
361 #define dw32(reg,val) writel((val), de->regs + (reg))
364 static void de_rx_err_acct (struct de_private *de, unsigned rx_tail,
367 if (netif_msg_rx_err (de))
369 "%s: rx err, slot %d status 0x%x len %d\n",
370 de->dev->name, rx_tail, status, len);
372 if ((status & 0x38000300) != 0x0300) {
373 /* Ingore earlier buffers. */
374 if ((status & 0xffff) != 0x7fff) {
375 if (netif_msg_rx_err(de))
376 printk(KERN_WARNING "%s: Oversized Ethernet frame "
377 "spanned multiple buffers, status %8.8x!\n",
378 de->dev->name, status);
379 de->net_stats.rx_length_errors++;
381 } else if (status & RxError) {
382 /* There was a fatal error. */
383 de->net_stats.rx_errors++; /* end of a packet.*/
384 if (status & 0x0890) de->net_stats.rx_length_errors++;
385 if (status & RxErrCRC) de->net_stats.rx_crc_errors++;
386 if (status & RxErrFIFO) de->net_stats.rx_fifo_errors++;
390 static void de_rx (struct de_private *de)
392 unsigned rx_tail = de->rx_tail;
393 unsigned rx_work = DE_RX_RING_SIZE;
400 struct sk_buff *skb, *copy_skb;
401 unsigned copying_skb, buflen;
403 skb = de->rx_skb[rx_tail].skb;
406 status = le32_to_cpu(de->rx_ring[rx_tail].opts1);
407 if (status & DescOwn)
410 len = ((status >> 16) & 0x7ff) - 4;
411 mapping = de->rx_skb[rx_tail].mapping;
413 if (unlikely(drop)) {
414 de->net_stats.rx_dropped++;
418 if (unlikely((status & 0x38008300) != 0x0300)) {
419 de_rx_err_acct(de, rx_tail, status, len);
423 copying_skb = (len <= rx_copybreak);
425 if (unlikely(netif_msg_rx_status(de)))
426 printk(KERN_DEBUG "%s: rx slot %d status 0x%x len %d copying? %d\n",
427 de->dev->name, rx_tail, status, len,
430 buflen = copying_skb ? (len + RX_OFFSET) : de->rx_buf_sz;
431 copy_skb = dev_alloc_skb (buflen);
432 if (unlikely(!copy_skb)) {
433 de->net_stats.rx_dropped++;
440 pci_unmap_single(de->pdev, mapping,
441 buflen, PCI_DMA_FROMDEVICE);
445 de->rx_skb[rx_tail].mapping =
446 pci_map_single(de->pdev, copy_skb->data,
447 buflen, PCI_DMA_FROMDEVICE);
448 de->rx_skb[rx_tail].skb = copy_skb;
450 pci_dma_sync_single_for_cpu(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
451 skb_reserve(copy_skb, RX_OFFSET);
452 skb_copy_from_linear_data(skb, skb_put(copy_skb, len),
454 pci_dma_sync_single_for_device(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
456 /* We'll reuse the original ring buffer. */
460 skb->protocol = eth_type_trans (skb, de->dev);
462 de->net_stats.rx_packets++;
463 de->net_stats.rx_bytes += skb->len;
464 de->dev->last_rx = jiffies;
466 if (rc == NET_RX_DROP)
470 de->rx_ring[rx_tail].opts1 = cpu_to_le32(DescOwn);
471 if (rx_tail == (DE_RX_RING_SIZE - 1))
472 de->rx_ring[rx_tail].opts2 =
473 cpu_to_le32(RingEnd | de->rx_buf_sz);
475 de->rx_ring[rx_tail].opts2 = cpu_to_le32(de->rx_buf_sz);
476 de->rx_ring[rx_tail].addr1 = cpu_to_le32(mapping);
477 rx_tail = NEXT_RX(rx_tail);
481 printk(KERN_WARNING "%s: rx work limit reached\n", de->dev->name);
483 de->rx_tail = rx_tail;
486 static irqreturn_t de_interrupt (int irq, void *dev_instance)
488 struct net_device *dev = dev_instance;
489 struct de_private *de = dev->priv;
492 status = dr32(MacStatus);
493 if ((!(status & (IntrOK|IntrErr))) || (status == 0xFFFF))
496 if (netif_msg_intr(de))
497 printk(KERN_DEBUG "%s: intr, status %08x mode %08x desc %u/%u/%u\n",
498 dev->name, status, dr32(MacMode), de->rx_tail, de->tx_head, de->tx_tail);
500 dw32(MacStatus, status);
502 if (status & (RxIntr | RxEmpty)) {
504 if (status & RxEmpty)
505 dw32(RxPoll, NormalRxPoll);
508 spin_lock(&de->lock);
510 if (status & (TxIntr | TxEmpty))
513 if (status & (LinkPass | LinkFail))
514 de_media_interrupt(de, status);
516 spin_unlock(&de->lock);
518 if (status & PciErr) {
521 pci_read_config_word(de->pdev, PCI_STATUS, &pci_status);
522 pci_write_config_word(de->pdev, PCI_STATUS, pci_status);
523 printk(KERN_ERR "%s: PCI bus error, status=%08x, PCI status=%04x\n",
524 dev->name, status, pci_status);
530 static void de_tx (struct de_private *de)
532 unsigned tx_head = de->tx_head;
533 unsigned tx_tail = de->tx_tail;
535 while (tx_tail != tx_head) {
540 status = le32_to_cpu(de->tx_ring[tx_tail].opts1);
541 if (status & DescOwn)
544 skb = de->tx_skb[tx_tail].skb;
546 if (unlikely(skb == DE_DUMMY_SKB))
549 if (unlikely(skb == DE_SETUP_SKB)) {
550 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
551 sizeof(de->setup_frame), PCI_DMA_TODEVICE);
555 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
556 skb->len, PCI_DMA_TODEVICE);
558 if (status & LastFrag) {
559 if (status & TxError) {
560 if (netif_msg_tx_err(de))
561 printk(KERN_DEBUG "%s: tx err, status 0x%x\n",
562 de->dev->name, status);
563 de->net_stats.tx_errors++;
565 de->net_stats.tx_window_errors++;
566 if (status & TxMaxCol)
567 de->net_stats.tx_aborted_errors++;
568 if (status & TxLinkFail)
569 de->net_stats.tx_carrier_errors++;
570 if (status & TxFIFOUnder)
571 de->net_stats.tx_fifo_errors++;
573 de->net_stats.tx_packets++;
574 de->net_stats.tx_bytes += skb->len;
575 if (netif_msg_tx_done(de))
576 printk(KERN_DEBUG "%s: tx done, slot %d\n", de->dev->name, tx_tail);
578 dev_kfree_skb_irq(skb);
582 de->tx_skb[tx_tail].skb = NULL;
584 tx_tail = NEXT_TX(tx_tail);
587 de->tx_tail = tx_tail;
589 if (netif_queue_stopped(de->dev) && (TX_BUFFS_AVAIL(de) > (DE_TX_RING_SIZE / 4)))
590 netif_wake_queue(de->dev);
593 static int de_start_xmit (struct sk_buff *skb, struct net_device *dev)
595 struct de_private *de = dev->priv;
596 unsigned int entry, tx_free;
597 u32 mapping, len, flags = FirstFrag | LastFrag;
600 spin_lock_irq(&de->lock);
602 tx_free = TX_BUFFS_AVAIL(de);
604 netif_stop_queue(dev);
605 spin_unlock_irq(&de->lock);
612 txd = &de->tx_ring[entry];
615 mapping = pci_map_single(de->pdev, skb->data, len, PCI_DMA_TODEVICE);
616 if (entry == (DE_TX_RING_SIZE - 1))
618 if (!tx_free || (tx_free == (DE_TX_RING_SIZE / 2)))
621 txd->opts2 = cpu_to_le32(flags);
622 txd->addr1 = cpu_to_le32(mapping);
624 de->tx_skb[entry].skb = skb;
625 de->tx_skb[entry].mapping = mapping;
628 txd->opts1 = cpu_to_le32(DescOwn);
631 de->tx_head = NEXT_TX(entry);
632 if (netif_msg_tx_queued(de))
633 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
634 dev->name, entry, skb->len);
637 netif_stop_queue(dev);
639 spin_unlock_irq(&de->lock);
641 /* Trigger an immediate transmit demand. */
642 dw32(TxPoll, NormalTxPoll);
643 dev->trans_start = jiffies;
648 /* Set or clear the multicast filter for this adaptor.
649 Note that we only use exclusion around actually queueing the
650 new frame, not around filling de->setup_frame. This is non-deterministic
651 when re-entered but still correct. */
654 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
656 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
658 struct de_private *de = dev->priv;
660 struct dev_mc_list *mclist;
664 memset(hash_table, 0, sizeof(hash_table));
665 set_bit_le(255, hash_table); /* Broadcast entry */
666 /* This should work on big-endian machines as well. */
667 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
668 i++, mclist = mclist->next) {
669 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
671 set_bit_le(index, hash_table);
673 for (i = 0; i < 32; i++) {
674 *setup_frm++ = hash_table[i];
675 *setup_frm++ = hash_table[i];
677 setup_frm = &de->setup_frame[13*6];
680 /* Fill the final entry with our physical address. */
681 eaddrs = (u16 *)dev->dev_addr;
682 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
683 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
684 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
687 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
689 struct de_private *de = dev->priv;
690 struct dev_mc_list *mclist;
694 /* We have <= 14 addresses so we can use the wonderful
695 16 address perfect filtering of the Tulip. */
696 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
697 i++, mclist = mclist->next) {
698 eaddrs = (u16 *)mclist->dmi_addr;
699 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
700 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
701 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
703 /* Fill the unused entries with the broadcast address. */
704 memset(setup_frm, 0xff, (15-i)*12);
705 setup_frm = &de->setup_frame[15*6];
707 /* Fill the final entry with our physical address. */
708 eaddrs = (u16 *)dev->dev_addr;
709 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
710 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
711 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
715 static void __de_set_rx_mode (struct net_device *dev)
717 struct de_private *de = dev->priv;
722 struct de_desc *dummy_txd = NULL;
724 macmode = dr32(MacMode) & ~(AcceptAllMulticast | AcceptAllPhys);
726 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
727 macmode |= AcceptAllMulticast | AcceptAllPhys;
731 if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
732 /* Too many to filter well -- accept all multicasts. */
733 macmode |= AcceptAllMulticast;
737 /* Note that only the low-address shortword of setup_frame is valid!
738 The values are doubled for big-endian architectures. */
739 if (dev->mc_count > 14) /* Must use a multicast hash table. */
740 build_setup_frame_hash (de->setup_frame, dev);
742 build_setup_frame_perfect (de->setup_frame, dev);
745 * Now add this frame to the Tx list.
750 /* Avoid a chip errata by prefixing a dummy entry. */
752 de->tx_skb[entry].skb = DE_DUMMY_SKB;
754 dummy_txd = &de->tx_ring[entry];
755 dummy_txd->opts2 = (entry == (DE_TX_RING_SIZE - 1)) ?
756 cpu_to_le32(RingEnd) : 0;
757 dummy_txd->addr1 = 0;
759 /* Must set DescOwned later to avoid race with chip */
761 entry = NEXT_TX(entry);
764 de->tx_skb[entry].skb = DE_SETUP_SKB;
765 de->tx_skb[entry].mapping = mapping =
766 pci_map_single (de->pdev, de->setup_frame,
767 sizeof (de->setup_frame), PCI_DMA_TODEVICE);
769 /* Put the setup frame on the Tx list. */
770 txd = &de->tx_ring[entry];
771 if (entry == (DE_TX_RING_SIZE - 1))
772 txd->opts2 = cpu_to_le32(SetupFrame | RingEnd | sizeof (de->setup_frame));
774 txd->opts2 = cpu_to_le32(SetupFrame | sizeof (de->setup_frame));
775 txd->addr1 = cpu_to_le32(mapping);
778 txd->opts1 = cpu_to_le32(DescOwn);
782 dummy_txd->opts1 = cpu_to_le32(DescOwn);
786 de->tx_head = NEXT_TX(entry);
788 BUG_ON(TX_BUFFS_AVAIL(de) < 0);
789 if (TX_BUFFS_AVAIL(de) == 0)
790 netif_stop_queue(dev);
792 /* Trigger an immediate transmit demand. */
793 dw32(TxPoll, NormalTxPoll);
796 if (macmode != dr32(MacMode))
797 dw32(MacMode, macmode);
800 static void de_set_rx_mode (struct net_device *dev)
803 struct de_private *de = dev->priv;
805 spin_lock_irqsave (&de->lock, flags);
806 __de_set_rx_mode(dev);
807 spin_unlock_irqrestore (&de->lock, flags);
810 static inline void de_rx_missed(struct de_private *de, u32 rx_missed)
812 if (unlikely(rx_missed & RxMissedOver))
813 de->net_stats.rx_missed_errors += RxMissedMask;
815 de->net_stats.rx_missed_errors += (rx_missed & RxMissedMask);
818 static void __de_get_stats(struct de_private *de)
820 u32 tmp = dr32(RxMissed); /* self-clearing */
822 de_rx_missed(de, tmp);
825 static struct net_device_stats *de_get_stats(struct net_device *dev)
827 struct de_private *de = dev->priv;
829 /* The chip only need report frame silently dropped. */
830 spin_lock_irq(&de->lock);
831 if (netif_running(dev) && netif_device_present(dev))
833 spin_unlock_irq(&de->lock);
835 return &de->net_stats;
838 static inline int de_is_running (struct de_private *de)
840 return (dr32(MacStatus) & (RxState | TxState)) ? 1 : 0;
843 static void de_stop_rxtx (struct de_private *de)
846 unsigned int work = 1000;
848 macmode = dr32(MacMode);
849 if (macmode & RxTx) {
850 dw32(MacMode, macmode & ~RxTx);
855 if (!de_is_running(de))
860 printk(KERN_WARNING "%s: timeout expired stopping DMA\n", de->dev->name);
863 static inline void de_start_rxtx (struct de_private *de)
867 macmode = dr32(MacMode);
868 if ((macmode & RxTx) != RxTx) {
869 dw32(MacMode, macmode | RxTx);
874 static void de_stop_hw (struct de_private *de)
882 dw32(MacStatus, dr32(MacStatus));
887 de->tx_head = de->tx_tail = 0;
890 static void de_link_up(struct de_private *de)
892 if (!netif_carrier_ok(de->dev)) {
893 netif_carrier_on(de->dev);
894 if (netif_msg_link(de))
895 printk(KERN_INFO "%s: link up, media %s\n",
896 de->dev->name, media_name[de->media_type]);
900 static void de_link_down(struct de_private *de)
902 if (netif_carrier_ok(de->dev)) {
903 netif_carrier_off(de->dev);
904 if (netif_msg_link(de))
905 printk(KERN_INFO "%s: link down\n", de->dev->name);
909 static void de_set_media (struct de_private *de)
911 unsigned media = de->media_type;
912 u32 macmode = dr32(MacMode);
914 BUG_ON(de_is_running(de));
917 dw32(CSR11, FULL_DUPLEX_MAGIC);
918 dw32(CSR13, 0); /* Reset phy */
919 dw32(CSR14, de->media[media].csr14);
920 dw32(CSR15, de->media[media].csr15);
921 dw32(CSR13, de->media[media].csr13);
923 /* must delay 10ms before writing to other registers,
928 if (media == DE_MEDIA_TP_FD)
929 macmode |= FullDuplex;
931 macmode &= ~FullDuplex;
933 if (netif_msg_link(de)) {
934 printk(KERN_INFO "%s: set link %s\n"
935 KERN_INFO "%s: mode 0x%x, sia 0x%x,0x%x,0x%x,0x%x\n"
936 KERN_INFO "%s: set mode 0x%x, set sia 0x%x,0x%x,0x%x\n",
937 de->dev->name, media_name[media],
938 de->dev->name, dr32(MacMode), dr32(SIAStatus),
939 dr32(CSR13), dr32(CSR14), dr32(CSR15),
940 de->dev->name, macmode, de->media[media].csr13,
941 de->media[media].csr14, de->media[media].csr15);
943 if (macmode != dr32(MacMode))
944 dw32(MacMode, macmode);
947 static void de_next_media (struct de_private *de, u32 *media,
948 unsigned int n_media)
952 for (i = 0; i < n_media; i++) {
953 if (de_ok_to_advertise(de, media[i])) {
954 de->media_type = media[i];
960 static void de21040_media_timer (unsigned long data)
962 struct de_private *de = (struct de_private *) data;
963 struct net_device *dev = de->dev;
964 u32 status = dr32(SIAStatus);
965 unsigned int carrier;
968 carrier = (status & NetCxnErr) ? 0 : 1;
971 if (de->media_type != DE_MEDIA_AUI && (status & LinkFailStatus))
974 de->media_timer.expires = jiffies + DE_TIMER_LINK;
975 add_timer(&de->media_timer);
976 if (!netif_carrier_ok(dev))
979 if (netif_msg_timer(de))
980 printk(KERN_INFO "%s: %s link ok, status %x\n",
981 dev->name, media_name[de->media_type],
991 if (de->media_type == DE_MEDIA_AUI) {
992 u32 next_state = DE_MEDIA_TP;
993 de_next_media(de, &next_state, 1);
995 u32 next_state = DE_MEDIA_AUI;
996 de_next_media(de, &next_state, 1);
999 spin_lock_irqsave(&de->lock, flags);
1001 spin_unlock_irqrestore(&de->lock, flags);
1006 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1007 add_timer(&de->media_timer);
1009 if (netif_msg_timer(de))
1010 printk(KERN_INFO "%s: no link, trying media %s, status %x\n",
1011 dev->name, media_name[de->media_type], status);
1014 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media)
1016 switch (new_media) {
1017 case DE_MEDIA_TP_AUTO:
1018 if (!(de->media_advertise & ADVERTISED_Autoneg))
1020 if (!(de->media_advertise & (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full)))
1024 if (!(de->media_advertise & ADVERTISED_BNC))
1028 if (!(de->media_advertise & ADVERTISED_AUI))
1032 if (!(de->media_advertise & ADVERTISED_10baseT_Half))
1035 case DE_MEDIA_TP_FD:
1036 if (!(de->media_advertise & ADVERTISED_10baseT_Full))
1044 static void de21041_media_timer (unsigned long data)
1046 struct de_private *de = (struct de_private *) data;
1047 struct net_device *dev = de->dev;
1048 u32 status = dr32(SIAStatus);
1049 unsigned int carrier;
1050 unsigned long flags;
1052 carrier = (status & NetCxnErr) ? 0 : 1;
1055 if ((de->media_type == DE_MEDIA_TP_AUTO ||
1056 de->media_type == DE_MEDIA_TP ||
1057 de->media_type == DE_MEDIA_TP_FD) &&
1058 (status & LinkFailStatus))
1061 de->media_timer.expires = jiffies + DE_TIMER_LINK;
1062 add_timer(&de->media_timer);
1063 if (!netif_carrier_ok(dev))
1066 if (netif_msg_timer(de))
1067 printk(KERN_INFO "%s: %s link ok, mode %x status %x\n",
1068 dev->name, media_name[de->media_type],
1069 dr32(MacMode), status);
1075 /* if media type locked, don't switch media */
1079 /* if activity detected, use that as hint for new media type */
1080 if (status & NonselPortActive) {
1081 unsigned int have_media = 1;
1083 /* if AUI/BNC selected, then activity is on TP port */
1084 if (de->media_type == DE_MEDIA_AUI ||
1085 de->media_type == DE_MEDIA_BNC) {
1086 if (de_ok_to_advertise(de, DE_MEDIA_TP_AUTO))
1087 de->media_type = DE_MEDIA_TP_AUTO;
1092 /* TP selected. If there is only TP and BNC, then it's BNC */
1093 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_BNC) &&
1094 de_ok_to_advertise(de, DE_MEDIA_BNC))
1095 de->media_type = DE_MEDIA_BNC;
1097 /* TP selected. If there is only TP and AUI, then it's AUI */
1098 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_AUI) &&
1099 de_ok_to_advertise(de, DE_MEDIA_AUI))
1100 de->media_type = DE_MEDIA_AUI;
1102 /* otherwise, ignore the hint */
1111 * Absent or ambiguous activity hint, move to next advertised
1112 * media state. If de->media_type is left unchanged, this
1113 * simply resets the PHY and reloads the current media settings.
1115 if (de->media_type == DE_MEDIA_AUI) {
1116 u32 next_states[] = { DE_MEDIA_BNC, DE_MEDIA_TP_AUTO };
1117 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1118 } else if (de->media_type == DE_MEDIA_BNC) {
1119 u32 next_states[] = { DE_MEDIA_TP_AUTO, DE_MEDIA_AUI };
1120 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1122 u32 next_states[] = { DE_MEDIA_AUI, DE_MEDIA_BNC, DE_MEDIA_TP_AUTO };
1123 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1127 spin_lock_irqsave(&de->lock, flags);
1129 spin_unlock_irqrestore(&de->lock, flags);
1134 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1135 add_timer(&de->media_timer);
1137 if (netif_msg_timer(de))
1138 printk(KERN_INFO "%s: no link, trying media %s, status %x\n",
1139 dev->name, media_name[de->media_type], status);
1142 static void de_media_interrupt (struct de_private *de, u32 status)
1144 if (status & LinkPass) {
1146 mod_timer(&de->media_timer, jiffies + DE_TIMER_LINK);
1150 BUG_ON(!(status & LinkFail));
1152 if (netif_carrier_ok(de->dev)) {
1154 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1158 static int de_reset_mac (struct de_private *de)
1163 * Reset MAC. de4x5.c and tulip.c examined for "advice"
1167 if (dr32(BusMode) == 0xffffffff)
1170 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
1171 dw32 (BusMode, CmdReset);
1174 dw32 (BusMode, de_bus_mode);
1177 for (tmp = 0; tmp < 5; tmp++) {
1184 status = dr32(MacStatus);
1185 if (status & (RxState | TxState))
1187 if (status == 0xffffffff)
1192 static void de_adapter_wake (struct de_private *de)
1199 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1200 if (pmctl & PM_Mask) {
1202 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1204 /* de4x5.c delays, so we do too */
1209 static void de_adapter_sleep (struct de_private *de)
1216 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1218 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1221 static int de_init_hw (struct de_private *de)
1223 struct net_device *dev = de->dev;
1227 de_adapter_wake(de);
1229 macmode = dr32(MacMode) & ~MacModeClear;
1231 rc = de_reset_mac(de);
1235 de_set_media(de); /* reset phy */
1237 dw32(RxRingAddr, de->ring_dma);
1238 dw32(TxRingAddr, de->ring_dma + (sizeof(struct de_desc) * DE_RX_RING_SIZE));
1240 dw32(MacMode, RxTx | macmode);
1242 dr32(RxMissed); /* self-clearing */
1244 dw32(IntrMask, de_intr_mask);
1246 de_set_rx_mode(dev);
1251 static int de_refill_rx (struct de_private *de)
1255 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1256 struct sk_buff *skb;
1258 skb = dev_alloc_skb(de->rx_buf_sz);
1264 de->rx_skb[i].mapping = pci_map_single(de->pdev,
1265 skb->data, de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1266 de->rx_skb[i].skb = skb;
1268 de->rx_ring[i].opts1 = cpu_to_le32(DescOwn);
1269 if (i == (DE_RX_RING_SIZE - 1))
1270 de->rx_ring[i].opts2 =
1271 cpu_to_le32(RingEnd | de->rx_buf_sz);
1273 de->rx_ring[i].opts2 = cpu_to_le32(de->rx_buf_sz);
1274 de->rx_ring[i].addr1 = cpu_to_le32(de->rx_skb[i].mapping);
1275 de->rx_ring[i].addr2 = 0;
1285 static int de_init_rings (struct de_private *de)
1287 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1288 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1291 de->tx_head = de->tx_tail = 0;
1293 return de_refill_rx (de);
1296 static int de_alloc_rings (struct de_private *de)
1298 de->rx_ring = pci_alloc_consistent(de->pdev, DE_RING_BYTES, &de->ring_dma);
1301 de->tx_ring = &de->rx_ring[DE_RX_RING_SIZE];
1302 return de_init_rings(de);
1305 static void de_clean_rings (struct de_private *de)
1309 memset(de->rx_ring, 0, sizeof(struct de_desc) * DE_RX_RING_SIZE);
1310 de->rx_ring[DE_RX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1312 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1313 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1316 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1317 if (de->rx_skb[i].skb) {
1318 pci_unmap_single(de->pdev, de->rx_skb[i].mapping,
1319 de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1320 dev_kfree_skb(de->rx_skb[i].skb);
1324 for (i = 0; i < DE_TX_RING_SIZE; i++) {
1325 struct sk_buff *skb = de->tx_skb[i].skb;
1326 if ((skb) && (skb != DE_DUMMY_SKB)) {
1327 if (skb != DE_SETUP_SKB) {
1328 de->net_stats.tx_dropped++;
1329 pci_unmap_single(de->pdev,
1330 de->tx_skb[i].mapping,
1331 skb->len, PCI_DMA_TODEVICE);
1334 pci_unmap_single(de->pdev,
1335 de->tx_skb[i].mapping,
1336 sizeof(de->setup_frame),
1342 memset(&de->rx_skb, 0, sizeof(struct ring_info) * DE_RX_RING_SIZE);
1343 memset(&de->tx_skb, 0, sizeof(struct ring_info) * DE_TX_RING_SIZE);
1346 static void de_free_rings (struct de_private *de)
1349 pci_free_consistent(de->pdev, DE_RING_BYTES, de->rx_ring, de->ring_dma);
1354 static int de_open (struct net_device *dev)
1356 struct de_private *de = dev->priv;
1359 if (netif_msg_ifup(de))
1360 printk(KERN_DEBUG "%s: enabling interface\n", dev->name);
1362 de->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1364 rc = de_alloc_rings(de);
1366 printk(KERN_ERR "%s: ring allocation failure, err=%d\n",
1373 rc = request_irq(dev->irq, de_interrupt, IRQF_SHARED, dev->name, dev);
1375 printk(KERN_ERR "%s: IRQ %d request failure, err=%d\n",
1376 dev->name, dev->irq, rc);
1380 rc = de_init_hw(de);
1382 printk(KERN_ERR "%s: h/w init failure, err=%d\n",
1384 goto err_out_free_irq;
1387 netif_start_queue(dev);
1388 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1393 free_irq(dev->irq, dev);
1399 static int de_close (struct net_device *dev)
1401 struct de_private *de = dev->priv;
1402 unsigned long flags;
1404 if (netif_msg_ifdown(de))
1405 printk(KERN_DEBUG "%s: disabling interface\n", dev->name);
1407 del_timer_sync(&de->media_timer);
1409 spin_lock_irqsave(&de->lock, flags);
1411 netif_stop_queue(dev);
1412 netif_carrier_off(dev);
1413 spin_unlock_irqrestore(&de->lock, flags);
1415 free_irq(dev->irq, dev);
1418 de_adapter_sleep(de);
1419 pci_disable_device(de->pdev);
1423 static void de_tx_timeout (struct net_device *dev)
1425 struct de_private *de = dev->priv;
1427 printk(KERN_DEBUG "%s: NIC status %08x mode %08x sia %08x desc %u/%u/%u\n",
1428 dev->name, dr32(MacStatus), dr32(MacMode), dr32(SIAStatus),
1429 de->rx_tail, de->tx_head, de->tx_tail);
1431 del_timer_sync(&de->media_timer);
1433 disable_irq(dev->irq);
1434 spin_lock_irq(&de->lock);
1437 netif_stop_queue(dev);
1438 netif_carrier_off(dev);
1440 spin_unlock_irq(&de->lock);
1441 enable_irq(dev->irq);
1443 /* Update the error counts. */
1446 synchronize_irq(dev->irq);
1453 netif_wake_queue(dev);
1456 static void __de_get_regs(struct de_private *de, u8 *buf)
1459 u32 *rbuf = (u32 *)buf;
1462 for (i = 0; i < DE_NUM_REGS; i++)
1463 rbuf[i] = dr32(i * 8);
1465 /* handle self-clearing RxMissed counter, CSR8 */
1466 de_rx_missed(de, rbuf[8]);
1469 static int __de_get_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1471 ecmd->supported = de->media_supported;
1472 ecmd->transceiver = XCVR_INTERNAL;
1473 ecmd->phy_address = 0;
1474 ecmd->advertising = de->media_advertise;
1476 switch (de->media_type) {
1478 ecmd->port = PORT_AUI;
1482 ecmd->port = PORT_BNC;
1486 ecmd->port = PORT_TP;
1487 ecmd->speed = SPEED_10;
1491 if (dr32(MacMode) & FullDuplex)
1492 ecmd->duplex = DUPLEX_FULL;
1494 ecmd->duplex = DUPLEX_HALF;
1497 ecmd->autoneg = AUTONEG_DISABLE;
1499 ecmd->autoneg = AUTONEG_ENABLE;
1501 /* ignore maxtxpkt, maxrxpkt for now */
1506 static int __de_set_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1509 unsigned int media_lock;
1511 if (ecmd->speed != SPEED_10 && ecmd->speed != 5 && ecmd->speed != 2)
1513 if (de->de21040 && ecmd->speed == 2)
1515 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
1517 if (ecmd->port != PORT_TP && ecmd->port != PORT_AUI && ecmd->port != PORT_BNC)
1519 if (de->de21040 && ecmd->port == PORT_BNC)
1521 if (ecmd->transceiver != XCVR_INTERNAL)
1523 if (ecmd->autoneg != AUTONEG_DISABLE && ecmd->autoneg != AUTONEG_ENABLE)
1525 if (ecmd->advertising & ~de->media_supported)
1527 if (ecmd->autoneg == AUTONEG_ENABLE &&
1528 (!(ecmd->advertising & ADVERTISED_Autoneg)))
1531 switch (ecmd->port) {
1533 new_media = DE_MEDIA_AUI;
1534 if (!(ecmd->advertising & ADVERTISED_AUI))
1538 new_media = DE_MEDIA_BNC;
1539 if (!(ecmd->advertising & ADVERTISED_BNC))
1543 if (ecmd->autoneg == AUTONEG_ENABLE)
1544 new_media = DE_MEDIA_TP_AUTO;
1545 else if (ecmd->duplex == DUPLEX_FULL)
1546 new_media = DE_MEDIA_TP_FD;
1548 new_media = DE_MEDIA_TP;
1549 if (!(ecmd->advertising & ADVERTISED_TP))
1551 if (!(ecmd->advertising & (ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half)))
1556 media_lock = (ecmd->autoneg == AUTONEG_ENABLE) ? 0 : 1;
1558 if ((new_media == de->media_type) &&
1559 (media_lock == de->media_lock) &&
1560 (ecmd->advertising == de->media_advertise))
1561 return 0; /* nothing to change */
1566 de->media_type = new_media;
1567 de->media_lock = media_lock;
1568 de->media_advertise = ecmd->advertising;
1574 static void de_get_drvinfo (struct net_device *dev,struct ethtool_drvinfo *info)
1576 struct de_private *de = dev->priv;
1578 strcpy (info->driver, DRV_NAME);
1579 strcpy (info->version, DRV_VERSION);
1580 strcpy (info->bus_info, pci_name(de->pdev));
1581 info->eedump_len = DE_EEPROM_SIZE;
1584 static int de_get_regs_len(struct net_device *dev)
1586 return DE_REGS_SIZE;
1589 static int de_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1591 struct de_private *de = dev->priv;
1594 spin_lock_irq(&de->lock);
1595 rc = __de_get_settings(de, ecmd);
1596 spin_unlock_irq(&de->lock);
1601 static int de_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1603 struct de_private *de = dev->priv;
1606 spin_lock_irq(&de->lock);
1607 rc = __de_set_settings(de, ecmd);
1608 spin_unlock_irq(&de->lock);
1613 static u32 de_get_msglevel(struct net_device *dev)
1615 struct de_private *de = dev->priv;
1617 return de->msg_enable;
1620 static void de_set_msglevel(struct net_device *dev, u32 msglvl)
1622 struct de_private *de = dev->priv;
1624 de->msg_enable = msglvl;
1627 static int de_get_eeprom(struct net_device *dev,
1628 struct ethtool_eeprom *eeprom, u8 *data)
1630 struct de_private *de = dev->priv;
1634 if ((eeprom->offset != 0) || (eeprom->magic != 0) ||
1635 (eeprom->len != DE_EEPROM_SIZE))
1637 memcpy(data, de->ee_data, eeprom->len);
1642 static int de_nway_reset(struct net_device *dev)
1644 struct de_private *de = dev->priv;
1647 if (de->media_type != DE_MEDIA_TP_AUTO)
1649 if (netif_carrier_ok(de->dev))
1652 status = dr32(SIAStatus);
1653 dw32(SIAStatus, (status & ~NWayState) | NWayRestart);
1654 if (netif_msg_link(de))
1655 printk(KERN_INFO "%s: link nway restart, status %x,%x\n",
1656 de->dev->name, status, dr32(SIAStatus));
1660 static void de_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1663 struct de_private *de = dev->priv;
1665 regs->version = (DE_REGS_VER << 2) | de->de21040;
1667 spin_lock_irq(&de->lock);
1668 __de_get_regs(de, data);
1669 spin_unlock_irq(&de->lock);
1672 static const struct ethtool_ops de_ethtool_ops = {
1673 .get_link = ethtool_op_get_link,
1674 .get_tx_csum = ethtool_op_get_tx_csum,
1675 .get_sg = ethtool_op_get_sg,
1676 .get_drvinfo = de_get_drvinfo,
1677 .get_regs_len = de_get_regs_len,
1678 .get_settings = de_get_settings,
1679 .set_settings = de_set_settings,
1680 .get_msglevel = de_get_msglevel,
1681 .set_msglevel = de_set_msglevel,
1682 .get_eeprom = de_get_eeprom,
1683 .nway_reset = de_nway_reset,
1684 .get_regs = de_get_regs,
1687 static void __devinit de21040_get_mac_address (struct de_private *de)
1691 dw32 (ROMCmd, 0); /* Reset the pointer with a dummy write. */
1693 for (i = 0; i < 6; i++) {
1694 int value, boguscnt = 100000;
1696 value = dr32(ROMCmd);
1697 while (value < 0 && --boguscnt > 0);
1698 de->dev->dev_addr[i] = value;
1701 printk(KERN_WARNING PFX "timeout reading 21040 MAC address byte %u\n", i);
1705 static void __devinit de21040_get_media_info(struct de_private *de)
1709 de->media_type = DE_MEDIA_TP;
1710 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full |
1711 SUPPORTED_10baseT_Half | SUPPORTED_AUI;
1712 de->media_advertise = de->media_supported;
1714 for (i = 0; i < DE_MAX_MEDIA; i++) {
1718 case DE_MEDIA_TP_FD:
1719 de->media[i].type = i;
1720 de->media[i].csr13 = t21040_csr13[i];
1721 de->media[i].csr14 = t21040_csr14[i];
1722 de->media[i].csr15 = t21040_csr15[i];
1725 de->media[i].type = DE_MEDIA_INVALID;
1731 /* Note: this routine returns extra data bits for size detection. */
1732 static unsigned __devinit tulip_read_eeprom(void __iomem *regs, int location, int addr_len)
1735 unsigned retval = 0;
1736 void __iomem *ee_addr = regs + ROMCmd;
1737 int read_cmd = location | (EE_READ_CMD << addr_len);
1739 writel(EE_ENB & ~EE_CS, ee_addr);
1740 writel(EE_ENB, ee_addr);
1742 /* Shift the read command bits out. */
1743 for (i = 4 + addr_len; i >= 0; i--) {
1744 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1745 writel(EE_ENB | dataval, ee_addr);
1747 writel(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1749 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1751 writel(EE_ENB, ee_addr);
1754 for (i = 16; i > 0; i--) {
1755 writel(EE_ENB | EE_SHIFT_CLK, ee_addr);
1757 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1758 writel(EE_ENB, ee_addr);
1762 /* Terminate the EEPROM access. */
1763 writel(EE_ENB & ~EE_CS, ee_addr);
1767 static void __devinit de21041_get_srom_info (struct de_private *de)
1769 unsigned i, sa_offset = 0, ofs;
1770 u8 ee_data[DE_EEPROM_SIZE + 6] = {};
1771 unsigned ee_addr_size = tulip_read_eeprom(de->regs, 0xff, 8) & 0x40000 ? 8 : 6;
1772 struct de_srom_info_leaf *il;
1775 /* download entire eeprom */
1776 for (i = 0; i < DE_EEPROM_WORDS; i++)
1777 ((u16 *)ee_data)[i] =
1778 le16_to_cpu(tulip_read_eeprom(de->regs, i, ee_addr_size));
1780 /* DEC now has a specification but early board makers
1781 just put the address in the first EEPROM locations. */
1782 /* This does memcmp(eedata, eedata+16, 8) */
1784 #ifndef CONFIG_MIPS_COBALT
1786 for (i = 0; i < 8; i ++)
1787 if (ee_data[i] != ee_data[16+i])
1792 /* store MAC address */
1793 for (i = 0; i < 6; i ++)
1794 de->dev->dev_addr[i] = ee_data[i + sa_offset];
1796 /* get offset of controller 0 info leaf. ignore 2nd byte. */
1797 ofs = ee_data[SROMC0InfoLeaf];
1798 if (ofs >= (sizeof(ee_data) - sizeof(struct de_srom_info_leaf) - sizeof(struct de_srom_media_block)))
1801 /* get pointer to info leaf */
1802 il = (struct de_srom_info_leaf *) &ee_data[ofs];
1804 /* paranoia checks */
1805 if (il->n_blocks == 0)
1807 if ((sizeof(ee_data) - ofs) <
1808 (sizeof(struct de_srom_info_leaf) + (sizeof(struct de_srom_media_block) * il->n_blocks)))
1811 /* get default media type */
1812 switch (DE_UNALIGNED_16(&il->default_media)) {
1813 case 0x0001: de->media_type = DE_MEDIA_BNC; break;
1814 case 0x0002: de->media_type = DE_MEDIA_AUI; break;
1815 case 0x0204: de->media_type = DE_MEDIA_TP_FD; break;
1816 default: de->media_type = DE_MEDIA_TP_AUTO; break;
1819 if (netif_msg_probe(de))
1820 printk(KERN_INFO "de%d: SROM leaf offset %u, default media %s\n",
1822 media_name[de->media_type]);
1824 /* init SIA register values to defaults */
1825 for (i = 0; i < DE_MAX_MEDIA; i++) {
1826 de->media[i].type = DE_MEDIA_INVALID;
1827 de->media[i].csr13 = 0xffff;
1828 de->media[i].csr14 = 0xffff;
1829 de->media[i].csr15 = 0xffff;
1832 /* parse media blocks to see what medias are supported,
1833 * and if any custom CSR values are provided
1835 bufp = ((void *)il) + sizeof(*il);
1836 for (i = 0; i < il->n_blocks; i++) {
1837 struct de_srom_media_block *ib = bufp;
1840 /* index based on media type in media block */
1841 switch(ib->opts & MediaBlockMask) {
1842 case 0: /* 10baseT */
1843 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Half
1844 | SUPPORTED_Autoneg;
1846 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1849 de->media_supported |= SUPPORTED_BNC;
1853 de->media_supported |= SUPPORTED_AUI;
1856 case 4: /* 10baseT-FD */
1857 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full
1858 | SUPPORTED_Autoneg;
1859 idx = DE_MEDIA_TP_FD;
1860 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1866 de->media[idx].type = idx;
1868 if (netif_msg_probe(de))
1869 printk(KERN_INFO "de%d: media block #%u: %s",
1871 media_name[de->media[idx].type]);
1873 bufp += sizeof (ib->opts);
1875 if (ib->opts & MediaCustomCSRs) {
1876 de->media[idx].csr13 = DE_UNALIGNED_16(&ib->csr13);
1877 de->media[idx].csr14 = DE_UNALIGNED_16(&ib->csr14);
1878 de->media[idx].csr15 = DE_UNALIGNED_16(&ib->csr15);
1879 bufp += sizeof(ib->csr13) + sizeof(ib->csr14) +
1882 if (netif_msg_probe(de))
1883 printk(" (%x,%x,%x)\n",
1884 de->media[idx].csr13,
1885 de->media[idx].csr14,
1886 de->media[idx].csr15);
1888 } else if (netif_msg_probe(de))
1891 if (bufp > ((void *)&ee_data[DE_EEPROM_SIZE - 3]))
1895 de->media_advertise = de->media_supported;
1898 /* fill in defaults, for cases where custom CSRs not used */
1899 for (i = 0; i < DE_MAX_MEDIA; i++) {
1900 if (de->media[i].csr13 == 0xffff)
1901 de->media[i].csr13 = t21041_csr13[i];
1902 if (de->media[i].csr14 == 0xffff)
1903 de->media[i].csr14 = t21041_csr14[i];
1904 if (de->media[i].csr15 == 0xffff)
1905 de->media[i].csr15 = t21041_csr15[i];
1908 de->ee_data = kmemdup(&ee_data[0], DE_EEPROM_SIZE, GFP_KERNEL);
1913 /* for error cases, it's ok to assume we support all these */
1914 for (i = 0; i < DE_MAX_MEDIA; i++)
1915 de->media[i].type = i;
1916 de->media_supported =
1917 SUPPORTED_10baseT_Half |
1918 SUPPORTED_10baseT_Full |
1926 static int __devinit de_init_one (struct pci_dev *pdev,
1927 const struct pci_device_id *ent)
1929 struct net_device *dev;
1930 struct de_private *de;
1933 unsigned long pciaddr;
1934 static int board_idx = -1;
1940 printk("%s", version);
1943 /* allocate a new ethernet device structure, and fill in defaults */
1944 dev = alloc_etherdev(sizeof(struct de_private));
1948 SET_MODULE_OWNER(dev);
1949 SET_NETDEV_DEV(dev, &pdev->dev);
1950 dev->open = de_open;
1951 dev->stop = de_close;
1952 dev->set_multicast_list = de_set_rx_mode;
1953 dev->hard_start_xmit = de_start_xmit;
1954 dev->get_stats = de_get_stats;
1955 dev->ethtool_ops = &de_ethtool_ops;
1956 dev->tx_timeout = de_tx_timeout;
1957 dev->watchdog_timeo = TX_TIMEOUT;
1960 de->de21040 = ent->driver_data == 0 ? 1 : 0;
1963 de->msg_enable = (debug < 0 ? DE_DEF_MSG_ENABLE : debug);
1964 de->board_idx = board_idx;
1965 spin_lock_init (&de->lock);
1966 init_timer(&de->media_timer);
1968 de->media_timer.function = de21040_media_timer;
1970 de->media_timer.function = de21041_media_timer;
1971 de->media_timer.data = (unsigned long) de;
1973 netif_carrier_off(dev);
1974 netif_stop_queue(dev);
1976 /* wake up device, assign resources */
1977 rc = pci_enable_device(pdev);
1981 /* reserve PCI resources to ensure driver atomicity */
1982 rc = pci_request_regions(pdev, DRV_NAME);
1984 goto err_out_disable;
1986 /* check for invalid IRQ value */
1987 if (pdev->irq < 2) {
1989 printk(KERN_ERR PFX "invalid irq (%d) for pci dev %s\n",
1990 pdev->irq, pci_name(pdev));
1994 dev->irq = pdev->irq;
1996 /* obtain and check validity of PCI I/O address */
1997 pciaddr = pci_resource_start(pdev, 1);
2000 printk(KERN_ERR PFX "no MMIO resource for pci dev %s\n",
2004 if (pci_resource_len(pdev, 1) < DE_REGS_SIZE) {
2006 printk(KERN_ERR PFX "MMIO resource (%llx) too small on pci dev %s\n",
2007 (unsigned long long)pci_resource_len(pdev, 1), pci_name(pdev));
2011 /* remap CSR registers */
2012 regs = ioremap_nocache(pciaddr, DE_REGS_SIZE);
2015 printk(KERN_ERR PFX "Cannot map PCI MMIO (%llx@%lx) on pci dev %s\n",
2016 (unsigned long long)pci_resource_len(pdev, 1),
2017 pciaddr, pci_name(pdev));
2020 dev->base_addr = (unsigned long) regs;
2023 de_adapter_wake(de);
2025 /* make sure hardware is not running */
2026 rc = de_reset_mac(de);
2028 printk(KERN_ERR PFX "Cannot reset MAC, pci dev %s\n",
2033 /* get MAC address, initialize default media type and
2034 * get list of supported media
2037 de21040_get_mac_address(de);
2038 de21040_get_media_info(de);
2040 de21041_get_srom_info(de);
2043 /* register new network interface with kernel */
2044 rc = register_netdev(dev);
2048 /* print info about board and interface just registered */
2049 printk (KERN_INFO "%s: %s at 0x%lx, "
2050 "%02x:%02x:%02x:%02x:%02x:%02x, "
2053 de->de21040 ? "21040" : "21041",
2055 dev->dev_addr[0], dev->dev_addr[1],
2056 dev->dev_addr[2], dev->dev_addr[3],
2057 dev->dev_addr[4], dev->dev_addr[5],
2060 pci_set_drvdata(pdev, dev);
2062 /* enable busmastering */
2063 pci_set_master(pdev);
2065 /* put adapter to sleep */
2066 de_adapter_sleep(de);
2074 pci_release_regions(pdev);
2076 pci_disable_device(pdev);
2082 static void __devexit de_remove_one (struct pci_dev *pdev)
2084 struct net_device *dev = pci_get_drvdata(pdev);
2085 struct de_private *de = dev->priv;
2088 unregister_netdev(dev);
2091 pci_release_regions(pdev);
2092 pci_disable_device(pdev);
2093 pci_set_drvdata(pdev, NULL);
2099 static int de_suspend (struct pci_dev *pdev, pm_message_t state)
2101 struct net_device *dev = pci_get_drvdata (pdev);
2102 struct de_private *de = dev->priv;
2105 if (netif_running (dev)) {
2106 del_timer_sync(&de->media_timer);
2108 disable_irq(dev->irq);
2109 spin_lock_irq(&de->lock);
2112 netif_stop_queue(dev);
2113 netif_device_detach(dev);
2114 netif_carrier_off(dev);
2116 spin_unlock_irq(&de->lock);
2117 enable_irq(dev->irq);
2119 /* Update the error counts. */
2122 synchronize_irq(dev->irq);
2125 de_adapter_sleep(de);
2126 pci_disable_device(pdev);
2128 netif_device_detach(dev);
2134 static int de_resume (struct pci_dev *pdev)
2136 struct net_device *dev = pci_get_drvdata (pdev);
2137 struct de_private *de = dev->priv;
2141 if (netif_device_present(dev))
2143 if (!netif_running(dev))
2145 if ((retval = pci_enable_device(pdev))) {
2146 printk (KERN_ERR "%s: pci_enable_device failed in resume\n",
2152 netif_device_attach(dev);
2158 #endif /* CONFIG_PM */
2160 static struct pci_driver de_driver = {
2162 .id_table = de_pci_tbl,
2163 .probe = de_init_one,
2164 .remove = __devexit_p(de_remove_one),
2166 .suspend = de_suspend,
2167 .resume = de_resume,
2171 static int __init de_init (void)
2174 printk("%s", version);
2176 return pci_register_driver(&de_driver);
2179 static void __exit de_exit (void)
2181 pci_unregister_driver (&de_driver);
2184 module_init(de_init);
2185 module_exit(de_exit);