Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / drivers / ide / ide-iops.c
1 /*
2  * linux/drivers/ide/ide-iops.c Version 0.37    Mar 05, 2003
3  *
4  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
5  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
6  *
7  */
8
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/major.h>
17 #include <linux/errno.h>
18 #include <linux/genhd.h>
19 #include <linux/blkpg.h>
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/hdreg.h>
24 #include <linux/ide.h>
25 #include <linux/bitops.h>
26 #include <linux/nmi.h>
27
28 #include <asm/byteorder.h>
29 #include <asm/irq.h>
30 #include <asm/uaccess.h>
31 #include <asm/io.h>
32
33 /*
34  *      Conventional PIO operations for ATA devices
35  */
36
37 static u8 ide_inb (unsigned long port)
38 {
39         return (u8) inb(port);
40 }
41
42 static u16 ide_inw (unsigned long port)
43 {
44         return (u16) inw(port);
45 }
46
47 static void ide_insw (unsigned long port, void *addr, u32 count)
48 {
49         insw(port, addr, count);
50 }
51
52 static void ide_insl (unsigned long port, void *addr, u32 count)
53 {
54         insl(port, addr, count);
55 }
56
57 static void ide_outb (u8 val, unsigned long port)
58 {
59         outb(val, port);
60 }
61
62 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
63 {
64         outb(addr, port);
65 }
66
67 static void ide_outw (u16 val, unsigned long port)
68 {
69         outw(val, port);
70 }
71
72 static void ide_outsw (unsigned long port, void *addr, u32 count)
73 {
74         outsw(port, addr, count);
75 }
76
77 static void ide_outsl (unsigned long port, void *addr, u32 count)
78 {
79         outsl(port, addr, count);
80 }
81
82 void default_hwif_iops (ide_hwif_t *hwif)
83 {
84         hwif->OUTB      = ide_outb;
85         hwif->OUTBSYNC  = ide_outbsync;
86         hwif->OUTW      = ide_outw;
87         hwif->OUTSW     = ide_outsw;
88         hwif->OUTSL     = ide_outsl;
89         hwif->INB       = ide_inb;
90         hwif->INW       = ide_inw;
91         hwif->INSW      = ide_insw;
92         hwif->INSL      = ide_insl;
93 }
94
95 /*
96  *      MMIO operations, typically used for SATA controllers
97  */
98
99 static u8 ide_mm_inb (unsigned long port)
100 {
101         return (u8) readb((void __iomem *) port);
102 }
103
104 static u16 ide_mm_inw (unsigned long port)
105 {
106         return (u16) readw((void __iomem *) port);
107 }
108
109 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
110 {
111         __ide_mm_insw((void __iomem *) port, addr, count);
112 }
113
114 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
115 {
116         __ide_mm_insl((void __iomem *) port, addr, count);
117 }
118
119 static void ide_mm_outb (u8 value, unsigned long port)
120 {
121         writeb(value, (void __iomem *) port);
122 }
123
124 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
125 {
126         writeb(value, (void __iomem *) port);
127 }
128
129 static void ide_mm_outw (u16 value, unsigned long port)
130 {
131         writew(value, (void __iomem *) port);
132 }
133
134 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
135 {
136         __ide_mm_outsw((void __iomem *) port, addr, count);
137 }
138
139 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
140 {
141         __ide_mm_outsl((void __iomem *) port, addr, count);
142 }
143
144 void default_hwif_mmiops (ide_hwif_t *hwif)
145 {
146         hwif->OUTB      = ide_mm_outb;
147         /* Most systems will need to override OUTBSYNC, alas however
148            this one is controller specific! */
149         hwif->OUTBSYNC  = ide_mm_outbsync;
150         hwif->OUTW      = ide_mm_outw;
151         hwif->OUTSW     = ide_mm_outsw;
152         hwif->OUTSL     = ide_mm_outsl;
153         hwif->INB       = ide_mm_inb;
154         hwif->INW       = ide_mm_inw;
155         hwif->INSW      = ide_mm_insw;
156         hwif->INSL      = ide_mm_insl;
157 }
158
159 EXPORT_SYMBOL(default_hwif_mmiops);
160
161 u32 ide_read_24 (ide_drive_t *drive)
162 {
163         u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
164         u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
165         u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
166         return (hcyl<<16)|(lcyl<<8)|sect;
167 }
168
169 void SELECT_DRIVE (ide_drive_t *drive)
170 {
171         if (HWIF(drive)->selectproc)
172                 HWIF(drive)->selectproc(drive);
173         HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
174 }
175
176 EXPORT_SYMBOL(SELECT_DRIVE);
177
178 void SELECT_INTERRUPT (ide_drive_t *drive)
179 {
180         if (HWIF(drive)->intrproc)
181                 HWIF(drive)->intrproc(drive);
182         else
183                 HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
184 }
185
186 void SELECT_MASK (ide_drive_t *drive, int mask)
187 {
188         if (HWIF(drive)->maskproc)
189                 HWIF(drive)->maskproc(drive, mask);
190 }
191
192 void QUIRK_LIST (ide_drive_t *drive)
193 {
194         if (HWIF(drive)->quirkproc)
195                 drive->quirk_list = HWIF(drive)->quirkproc(drive);
196 }
197
198 /*
199  * Some localbus EIDE interfaces require a special access sequence
200  * when using 32-bit I/O instructions to transfer data.  We call this
201  * the "vlb_sync" sequence, which consists of three successive reads
202  * of the sector count register location, with interrupts disabled
203  * to ensure that the reads all happen together.
204  */
205 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
206 {
207         (void) HWIF(drive)->INB(port);
208         (void) HWIF(drive)->INB(port);
209         (void) HWIF(drive)->INB(port);
210 }
211
212 /*
213  * This is used for most PIO data transfers *from* the IDE interface
214  */
215 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
216 {
217         ide_hwif_t *hwif        = HWIF(drive);
218         u8 io_32bit             = drive->io_32bit;
219
220         if (io_32bit) {
221                 if (io_32bit & 2) {
222                         unsigned long flags;
223                         local_irq_save(flags);
224                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
225                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
226                         local_irq_restore(flags);
227                 } else
228                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
229         } else {
230                 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
231         }
232 }
233
234 /*
235  * This is used for most PIO data transfers *to* the IDE interface
236  */
237 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
238 {
239         ide_hwif_t *hwif        = HWIF(drive);
240         u8 io_32bit             = drive->io_32bit;
241
242         if (io_32bit) {
243                 if (io_32bit & 2) {
244                         unsigned long flags;
245                         local_irq_save(flags);
246                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
247                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
248                         local_irq_restore(flags);
249                 } else
250                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
251         } else {
252                 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
253         }
254 }
255
256 /*
257  * The following routines are mainly used by the ATAPI drivers.
258  *
259  * These routines will round up any request for an odd number of bytes,
260  * so if an odd bytecount is specified, be sure that there's at least one
261  * extra byte allocated for the buffer.
262  */
263
264 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
265 {
266         ide_hwif_t *hwif = HWIF(drive);
267
268         ++bytecount;
269 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
270         if (MACH_IS_ATARI || MACH_IS_Q40) {
271                 /* Atari has a byte-swapped IDE interface */
272                 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
273                 return;
274         }
275 #endif /* CONFIG_ATARI || CONFIG_Q40 */
276         hwif->ata_input_data(drive, buffer, bytecount / 4);
277         if ((bytecount & 0x03) >= 2)
278                 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
279 }
280
281 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
282 {
283         ide_hwif_t *hwif = HWIF(drive);
284
285         ++bytecount;
286 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
287         if (MACH_IS_ATARI || MACH_IS_Q40) {
288                 /* Atari has a byte-swapped IDE interface */
289                 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
290                 return;
291         }
292 #endif /* CONFIG_ATARI || CONFIG_Q40 */
293         hwif->ata_output_data(drive, buffer, bytecount / 4);
294         if ((bytecount & 0x03) >= 2)
295                 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
296 }
297
298 void default_hwif_transport(ide_hwif_t *hwif)
299 {
300         hwif->ata_input_data            = ata_input_data;
301         hwif->ata_output_data           = ata_output_data;
302         hwif->atapi_input_bytes         = atapi_input_bytes;
303         hwif->atapi_output_bytes        = atapi_output_bytes;
304 }
305
306 /*
307  * Beginning of Taskfile OPCODE Library and feature sets.
308  */
309 void ide_fix_driveid (struct hd_driveid *id)
310 {
311 #ifndef __LITTLE_ENDIAN
312 # ifdef __BIG_ENDIAN
313         int i;
314         u16 *stringcast;
315
316         id->config         = __le16_to_cpu(id->config);
317         id->cyls           = __le16_to_cpu(id->cyls);
318         id->reserved2      = __le16_to_cpu(id->reserved2);
319         id->heads          = __le16_to_cpu(id->heads);
320         id->track_bytes    = __le16_to_cpu(id->track_bytes);
321         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
322         id->sectors        = __le16_to_cpu(id->sectors);
323         id->vendor0        = __le16_to_cpu(id->vendor0);
324         id->vendor1        = __le16_to_cpu(id->vendor1);
325         id->vendor2        = __le16_to_cpu(id->vendor2);
326         stringcast = (u16 *)&id->serial_no[0];
327         for (i = 0; i < (20/2); i++)
328                 stringcast[i] = __le16_to_cpu(stringcast[i]);
329         id->buf_type       = __le16_to_cpu(id->buf_type);
330         id->buf_size       = __le16_to_cpu(id->buf_size);
331         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
332         stringcast = (u16 *)&id->fw_rev[0];
333         for (i = 0; i < (8/2); i++)
334                 stringcast[i] = __le16_to_cpu(stringcast[i]);
335         stringcast = (u16 *)&id->model[0];
336         for (i = 0; i < (40/2); i++)
337                 stringcast[i] = __le16_to_cpu(stringcast[i]);
338         id->dword_io       = __le16_to_cpu(id->dword_io);
339         id->reserved50     = __le16_to_cpu(id->reserved50);
340         id->field_valid    = __le16_to_cpu(id->field_valid);
341         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
342         id->cur_heads      = __le16_to_cpu(id->cur_heads);
343         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
344         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
345         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
346         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
347         id->dma_1word      = __le16_to_cpu(id->dma_1word);
348         id->dma_mword      = __le16_to_cpu(id->dma_mword);
349         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
350         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
351         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
352         id->eide_pio       = __le16_to_cpu(id->eide_pio);
353         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
354         for (i = 0; i < 2; ++i)
355                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
356         for (i = 0; i < 4; ++i)
357                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
358         id->queue_depth    = __le16_to_cpu(id->queue_depth);
359         for (i = 0; i < 4; ++i)
360                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
361         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
362         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
363         id->command_set_1  = __le16_to_cpu(id->command_set_1);
364         id->command_set_2  = __le16_to_cpu(id->command_set_2);
365         id->cfsse          = __le16_to_cpu(id->cfsse);
366         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
367         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
368         id->csf_default    = __le16_to_cpu(id->csf_default);
369         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
370         id->trseuc         = __le16_to_cpu(id->trseuc);
371         id->trsEuc         = __le16_to_cpu(id->trsEuc);
372         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
373         id->mprc           = __le16_to_cpu(id->mprc);
374         id->hw_config      = __le16_to_cpu(id->hw_config);
375         id->acoustic       = __le16_to_cpu(id->acoustic);
376         id->msrqs          = __le16_to_cpu(id->msrqs);
377         id->sxfert         = __le16_to_cpu(id->sxfert);
378         id->sal            = __le16_to_cpu(id->sal);
379         id->spg            = __le32_to_cpu(id->spg);
380         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
381         for (i = 0; i < 22; i++)
382                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
383         id->last_lun       = __le16_to_cpu(id->last_lun);
384         id->word127        = __le16_to_cpu(id->word127);
385         id->dlf            = __le16_to_cpu(id->dlf);
386         id->csfo           = __le16_to_cpu(id->csfo);
387         for (i = 0; i < 26; i++)
388                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
389         id->word156        = __le16_to_cpu(id->word156);
390         for (i = 0; i < 3; i++)
391                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
392         id->cfa_power      = __le16_to_cpu(id->cfa_power);
393         for (i = 0; i < 14; i++)
394                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
395         for (i = 0; i < 31; i++)
396                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
397         for (i = 0; i < 48; i++)
398                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
399         id->integrity_word  = __le16_to_cpu(id->integrity_word);
400 # else
401 #  error "Please fix <asm/byteorder.h>"
402 # endif
403 #endif
404 }
405
406 /* FIXME: exported for use by the USB storage (isd200.c) code only */
407 EXPORT_SYMBOL(ide_fix_driveid);
408
409 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
410 {
411         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
412
413         if (byteswap) {
414                 /* convert from big-endian to host byte order */
415                 for (p = end ; p != s;) {
416                         unsigned short *pp = (unsigned short *) (p -= 2);
417                         *pp = ntohs(*pp);
418                 }
419         }
420         /* strip leading blanks */
421         while (s != end && *s == ' ')
422                 ++s;
423         /* compress internal blanks and strip trailing blanks */
424         while (s != end && *s) {
425                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
426                         *p++ = *(s-1);
427         }
428         /* wipe out trailing garbage */
429         while (p != end)
430                 *p++ = '\0';
431 }
432
433 EXPORT_SYMBOL(ide_fixstring);
434
435 /*
436  * Needed for PCI irq sharing
437  */
438 int drive_is_ready (ide_drive_t *drive)
439 {
440         ide_hwif_t *hwif        = HWIF(drive);
441         u8 stat                 = 0;
442
443         if (drive->waiting_for_dma)
444                 return hwif->ide_dma_test_irq(drive);
445
446 #if 0
447         /* need to guarantee 400ns since last command was issued */
448         udelay(1);
449 #endif
450
451 #ifdef CONFIG_IDEPCI_SHARE_IRQ
452         /*
453          * We do a passive status test under shared PCI interrupts on
454          * cards that truly share the ATA side interrupt, but may also share
455          * an interrupt with another pci card/device.  We make no assumptions
456          * about possible isa-pnp and pci-pnp issues yet.
457          */
458         if (IDE_CONTROL_REG)
459                 stat = hwif->INB(IDE_ALTSTATUS_REG);
460         else
461 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
462                 /* Note: this may clear a pending IRQ!! */
463                 stat = hwif->INB(IDE_STATUS_REG);
464
465         if (stat & BUSY_STAT)
466                 /* drive busy:  definitely not interrupting */
467                 return 0;
468
469         /* drive ready: *might* be interrupting */
470         return 1;
471 }
472
473 EXPORT_SYMBOL(drive_is_ready);
474
475 /*
476  * Global for All, and taken from ide-pmac.c. Can be called
477  * with spinlock held & IRQs disabled, so don't schedule !
478  */
479 int wait_for_ready (ide_drive_t *drive, int timeout)
480 {
481         ide_hwif_t *hwif        = HWIF(drive);
482         u8 stat                 = 0;
483
484         while(--timeout) {
485                 stat = hwif->INB(IDE_STATUS_REG);
486                 if (!(stat & BUSY_STAT)) {
487                         if (drive->ready_stat == 0)
488                                 break;
489                         else if ((stat & drive->ready_stat)||(stat & ERR_STAT))
490                                 break;
491                 }
492                 mdelay(1);
493         }
494         if ((stat & ERR_STAT) || timeout <= 0) {
495                 if (stat & ERR_STAT) {
496                         printk(KERN_ERR "%s: wait_for_ready, "
497                                 "error status: %x\n", drive->name, stat);
498                 }
499                 return 1;
500         }
501         return 0;
502 }
503
504 /*
505  * This routine busy-waits for the drive status to be not "busy".
506  * It then checks the status for all of the "good" bits and none
507  * of the "bad" bits, and if all is okay it returns 0.  All other
508  * cases return 1 after invoking ide_error() -- caller should just return.
509  *
510  * This routine should get fixed to not hog the cpu during extra long waits..
511  * That could be done by busy-waiting for the first jiffy or two, and then
512  * setting a timer to wake up at half second intervals thereafter,
513  * until timeout is achieved, before timing out.
514  */
515 int ide_wait_stat (ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
516 {
517         ide_hwif_t *hwif = HWIF(drive);
518         u8 stat;
519         int i;
520         unsigned long flags;
521  
522         /* bail early if we've exceeded max_failures */
523         if (drive->max_failures && (drive->failures > drive->max_failures)) {
524                 *startstop = ide_stopped;
525                 return 1;
526         }
527
528         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
529         if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
530                 local_irq_set(flags);
531                 timeout += jiffies;
532                 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
533                         if (time_after(jiffies, timeout)) {
534                                 /*
535                                  * One last read after the timeout in case
536                                  * heavy interrupt load made us not make any
537                                  * progress during the timeout..
538                                  */
539                                 stat = hwif->INB(IDE_STATUS_REG);
540                                 if (!(stat & BUSY_STAT))
541                                         break;
542
543                                 local_irq_restore(flags);
544                                 *startstop = ide_error(drive, "status timeout", stat);
545                                 return 1;
546                         }
547                 }
548                 local_irq_restore(flags);
549         }
550         /*
551          * Allow status to settle, then read it again.
552          * A few rare drives vastly violate the 400ns spec here,
553          * so we'll wait up to 10usec for a "good" status
554          * rather than expensively fail things immediately.
555          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
556          */
557         for (i = 0; i < 10; i++) {
558                 udelay(1);
559                 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad))
560                         return 0;
561         }
562         *startstop = ide_error(drive, "status error", stat);
563         return 1;
564 }
565
566 EXPORT_SYMBOL(ide_wait_stat);
567
568 /**
569  *      ide_in_drive_list       -       look for drive in black/white list
570  *      @id: drive identifier
571  *      @drive_table: list to inspect
572  *
573  *      Look for a drive in the blacklist and the whitelist tables
574  *      Returns 1 if the drive is found in the table.
575  */
576
577 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
578 {
579         for ( ; drive_table->id_model; drive_table++)
580                 if ((!strcmp(drive_table->id_model, id->model)) &&
581                     (!drive_table->id_firmware ||
582                      strstr(id->fw_rev, drive_table->id_firmware)))
583                         return 1;
584         return 0;
585 }
586
587 EXPORT_SYMBOL_GPL(ide_in_drive_list);
588
589 /*
590  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
591  * We list them here and depend on the device side cable detection for them.
592  */
593 static const struct drive_list_entry ivb_list[] = {
594         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
595         { NULL                          , NULL          }
596 };
597
598 /*
599  *  All hosts that use the 80c ribbon must use!
600  *  The name is derived from upper byte of word 93 and the 80c ribbon.
601  */
602 u8 eighty_ninty_three (ide_drive_t *drive)
603 {
604         ide_hwif_t *hwif = drive->hwif;
605         struct hd_driveid *id = drive->id;
606         int ivb = ide_in_drive_list(id, ivb_list);
607
608         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
609                 return 1;
610
611         if (ivb)
612                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
613                                   drive->name);
614
615         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
616                 goto no_80w;
617
618         if (ide_dev_is_sata(id))
619                 return 1;
620
621         /*
622          * FIXME:
623          * - change master/slave IDENTIFY order
624          * - force bit13 (80c cable present) check also for !ivb devices
625          *   (unless the slave device is pre-ATA3)
626          */
627 #ifndef CONFIG_IDEDMA_IVB
628         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
629 #else
630         if (id->hw_config & 0x6000)
631 #endif
632                 return 1;
633
634 no_80w:
635         if (drive->udma33_warned == 1)
636                 return 0;
637
638         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
639                             "limiting max speed to UDMA33\n",
640                             drive->name,
641                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
642
643         drive->udma33_warned = 1;
644
645         return 0;
646 }
647
648 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
649 {
650         if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
651             (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
652             (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
653                 if (eighty_ninty_three(drive) == 0) {
654                         printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
655                                             "be set\n", drive->name);
656                         return 1;
657                 }
658         }
659
660         return 0;
661 }
662
663 /*
664  * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
665  * 1 : Safe to update drive->id DMA registers.
666  * 0 : OOPs not allowed.
667  */
668 int set_transfer (ide_drive_t *drive, ide_task_t *args)
669 {
670         if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
671             (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
672             (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
673             (drive->id->dma_ultra ||
674              drive->id->dma_mword ||
675              drive->id->dma_1word))
676                 return 1;
677
678         return 0;
679 }
680
681 #ifdef CONFIG_BLK_DEV_IDEDMA
682 static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
683 {
684         if (!drive->crc_count)
685                 return drive->current_speed;
686         drive->crc_count = 0;
687
688         switch(drive->current_speed) {
689                 case XFER_UDMA_7:       return XFER_UDMA_6;
690                 case XFER_UDMA_6:       return XFER_UDMA_5;
691                 case XFER_UDMA_5:       return XFER_UDMA_4;
692                 case XFER_UDMA_4:       return XFER_UDMA_3;
693                 case XFER_UDMA_3:       return XFER_UDMA_2;
694                 case XFER_UDMA_2:       return XFER_UDMA_1;
695                 case XFER_UDMA_1:       return XFER_UDMA_0;
696                         /*
697                          * OOPS we do not goto non Ultra DMA modes
698                          * without iCRC's available we force
699                          * the system to PIO and make the user
700                          * invoke the ATA-1 ATA-2 DMA modes.
701                          */
702                 case XFER_UDMA_0:
703                 default:                return XFER_PIO_4;
704         }
705 }
706 #endif /* CONFIG_BLK_DEV_IDEDMA */
707
708 /*
709  * Update the 
710  */
711 int ide_driveid_update (ide_drive_t *drive)
712 {
713         ide_hwif_t *hwif        = HWIF(drive);
714         struct hd_driveid *id;
715 #if 0
716         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
717         if (!id)
718                 return 0;
719
720         taskfile_lib_get_identify(drive, (char *)&id);
721
722         ide_fix_driveid(id);
723         if (id) {
724                 drive->id->dma_ultra = id->dma_ultra;
725                 drive->id->dma_mword = id->dma_mword;
726                 drive->id->dma_1word = id->dma_1word;
727                 /* anything more ? */
728                 kfree(id);
729         }
730         return 1;
731 #else
732         /*
733          * Re-read drive->id for possible DMA mode
734          * change (copied from ide-probe.c)
735          */
736         unsigned long timeout, flags;
737
738         SELECT_MASK(drive, 1);
739         if (IDE_CONTROL_REG)
740                 hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
741         msleep(50);
742         hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
743         timeout = jiffies + WAIT_WORSTCASE;
744         do {
745                 if (time_after(jiffies, timeout)) {
746                         SELECT_MASK(drive, 0);
747                         return 0;       /* drive timed-out */
748                 }
749                 msleep(50);     /* give drive a breather */
750         } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
751         msleep(50);     /* wait for IRQ and DRQ_STAT */
752         if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
753                 SELECT_MASK(drive, 0);
754                 printk("%s: CHECK for good STATUS\n", drive->name);
755                 return 0;
756         }
757         local_irq_save(flags);
758         SELECT_MASK(drive, 0);
759         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
760         if (!id) {
761                 local_irq_restore(flags);
762                 return 0;
763         }
764         ata_input_data(drive, id, SECTOR_WORDS);
765         (void) hwif->INB(IDE_STATUS_REG);       /* clear drive IRQ */
766         local_irq_enable();
767         local_irq_restore(flags);
768         ide_fix_driveid(id);
769         if (id) {
770                 drive->id->dma_ultra = id->dma_ultra;
771                 drive->id->dma_mword = id->dma_mword;
772                 drive->id->dma_1word = id->dma_1word;
773                 /* anything more ? */
774                 kfree(id);
775         }
776
777         return 1;
778 #endif
779 }
780
781 /*
782  * Similar to ide_wait_stat(), except it never calls ide_error internally.
783  *
784  * const char *msg == consider adding for verbose errors.
785  */
786 int ide_config_drive_speed (ide_drive_t *drive, u8 speed)
787 {
788         ide_hwif_t *hwif        = HWIF(drive);
789         int     i, error        = 1;
790         u8 stat;
791
792 //      while (HWGROUP(drive)->busy)
793 //              msleep(50);
794
795 #ifdef CONFIG_BLK_DEV_IDEDMA
796         if (hwif->ide_dma_check)         /* check if host supports DMA */
797                 hwif->dma_host_off(drive);
798 #endif
799
800         /*
801          * Don't use ide_wait_cmd here - it will
802          * attempt to set_geometry and recalibrate,
803          * but for some reason these don't work at
804          * this point (lost interrupt).
805          */
806         /*
807          * Select the drive, and issue the SETFEATURES command
808          */
809         disable_irq_nosync(hwif->irq);
810         
811         /*
812          *      FIXME: we race against the running IRQ here if
813          *      this is called from non IRQ context. If we use
814          *      disable_irq() we hang on the error path. Work
815          *      is needed.
816          */
817          
818         udelay(1);
819         SELECT_DRIVE(drive);
820         SELECT_MASK(drive, 0);
821         udelay(1);
822         if (IDE_CONTROL_REG)
823                 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
824         hwif->OUTB(speed, IDE_NSECTOR_REG);
825         hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
826         hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
827         if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
828                 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
829         udelay(1);
830         /*
831          * Wait for drive to become non-BUSY
832          */
833         if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
834                 unsigned long flags, timeout;
835                 local_irq_set(flags);
836                 timeout = jiffies + WAIT_CMD;
837                 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
838                         if (time_after(jiffies, timeout))
839                                 break;
840                 }
841                 local_irq_restore(flags);
842         }
843
844         /*
845          * Allow status to settle, then read it again.
846          * A few rare drives vastly violate the 400ns spec here,
847          * so we'll wait up to 10usec for a "good" status
848          * rather than expensively fail things immediately.
849          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
850          */
851         for (i = 0; i < 10; i++) {
852                 udelay(1);
853                 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), drive->ready_stat, BUSY_STAT|DRQ_STAT|ERR_STAT)) {
854                         error = 0;
855                         break;
856                 }
857         }
858
859         SELECT_MASK(drive, 0);
860
861         enable_irq(hwif->irq);
862
863         if (error) {
864                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
865                 return error;
866         }
867
868         drive->id->dma_ultra &= ~0xFF00;
869         drive->id->dma_mword &= ~0x0F00;
870         drive->id->dma_1word &= ~0x0F00;
871
872 #ifdef CONFIG_BLK_DEV_IDEDMA
873         if (speed >= XFER_SW_DMA_0)
874                 hwif->dma_host_on(drive);
875         else if (hwif->ide_dma_check)   /* check if host supports DMA */
876                 hwif->dma_off_quietly(drive);
877 #endif
878
879         switch(speed) {
880                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
881                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
882                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
883                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
884                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
885                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
886                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
887                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
888                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
889                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
890                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
891                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
892                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
893                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
894                 default: break;
895         }
896         if (!drive->init_speed)
897                 drive->init_speed = speed;
898         drive->current_speed = speed;
899         return error;
900 }
901
902 EXPORT_SYMBOL(ide_config_drive_speed);
903
904
905 /*
906  * This should get invoked any time we exit the driver to
907  * wait for an interrupt response from a drive.  handler() points
908  * at the appropriate code to handle the next interrupt, and a
909  * timer is started to prevent us from waiting forever in case
910  * something goes wrong (see the ide_timer_expiry() handler later on).
911  *
912  * See also ide_execute_command
913  */
914 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
915                       unsigned int timeout, ide_expiry_t *expiry)
916 {
917         ide_hwgroup_t *hwgroup = HWGROUP(drive);
918
919         if (hwgroup->handler != NULL) {
920                 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
921                         "old=%p, new=%p\n",
922                         drive->name, hwgroup->handler, handler);
923         }
924         hwgroup->handler        = handler;
925         hwgroup->expiry         = expiry;
926         hwgroup->timer.expires  = jiffies + timeout;
927         hwgroup->req_gen_timer = hwgroup->req_gen;
928         add_timer(&hwgroup->timer);
929 }
930
931 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
932                       unsigned int timeout, ide_expiry_t *expiry)
933 {
934         unsigned long flags;
935         spin_lock_irqsave(&ide_lock, flags);
936         __ide_set_handler(drive, handler, timeout, expiry);
937         spin_unlock_irqrestore(&ide_lock, flags);
938 }
939
940 EXPORT_SYMBOL(ide_set_handler);
941  
942 /**
943  *      ide_execute_command     -       execute an IDE command
944  *      @drive: IDE drive to issue the command against
945  *      @command: command byte to write
946  *      @handler: handler for next phase
947  *      @timeout: timeout for command
948  *      @expiry:  handler to run on timeout
949  *
950  *      Helper function to issue an IDE command. This handles the
951  *      atomicity requirements, command timing and ensures that the 
952  *      handler and IRQ setup do not race. All IDE command kick off
953  *      should go via this function or do equivalent locking.
954  */
955  
956 void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
957 {
958         unsigned long flags;
959         ide_hwgroup_t *hwgroup = HWGROUP(drive);
960         ide_hwif_t *hwif = HWIF(drive);
961         
962         spin_lock_irqsave(&ide_lock, flags);
963         
964         BUG_ON(hwgroup->handler);
965         hwgroup->handler        = handler;
966         hwgroup->expiry         = expiry;
967         hwgroup->timer.expires  = jiffies + timeout;
968         hwgroup->req_gen_timer = hwgroup->req_gen;
969         add_timer(&hwgroup->timer);
970         hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
971         /* Drive takes 400nS to respond, we must avoid the IRQ being
972            serviced before that. 
973            
974            FIXME: we could skip this delay with care on non shared
975            devices 
976         */
977         ndelay(400);
978         spin_unlock_irqrestore(&ide_lock, flags);
979 }
980
981 EXPORT_SYMBOL(ide_execute_command);
982
983
984 /* needed below */
985 static ide_startstop_t do_reset1 (ide_drive_t *, int);
986
987 /*
988  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
989  * during an atapi drive reset operation. If the drive has not yet responded,
990  * and we have not yet hit our maximum waiting time, then the timer is restarted
991  * for another 50ms.
992  */
993 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
994 {
995         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
996         ide_hwif_t *hwif        = HWIF(drive);
997         u8 stat;
998
999         SELECT_DRIVE(drive);
1000         udelay (10);
1001
1002         if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1003                 printk("%s: ATAPI reset complete\n", drive->name);
1004         } else {
1005                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1006                         BUG_ON(HWGROUP(drive)->handler != NULL);
1007                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1008                         /* continue polling */
1009                         return ide_started;
1010                 }
1011                 /* end of polling */
1012                 hwgroup->polling = 0;
1013                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
1014                                 drive->name, stat);
1015                 /* do it the old fashioned way */
1016                 return do_reset1(drive, 1);
1017         }
1018         /* done polling */
1019         hwgroup->polling = 0;
1020         hwgroup->resetting = 0;
1021         return ide_stopped;
1022 }
1023
1024 /*
1025  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1026  * during an ide reset operation. If the drives have not yet responded,
1027  * and we have not yet hit our maximum waiting time, then the timer is restarted
1028  * for another 50ms.
1029  */
1030 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
1031 {
1032         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
1033         ide_hwif_t *hwif        = HWIF(drive);
1034         u8 tmp;
1035
1036         if (hwif->reset_poll != NULL) {
1037                 if (hwif->reset_poll(drive)) {
1038                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
1039                                 hwif->name, drive->name);
1040                         return ide_stopped;
1041                 }
1042         }
1043
1044         if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1045                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1046                         BUG_ON(HWGROUP(drive)->handler != NULL);
1047                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1048                         /* continue polling */
1049                         return ide_started;
1050                 }
1051                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1052                 drive->failures++;
1053         } else  {
1054                 printk("%s: reset: ", hwif->name);
1055                 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1056                         printk("success\n");
1057                         drive->failures = 0;
1058                 } else {
1059                         drive->failures++;
1060                         printk("master: ");
1061                         switch (tmp & 0x7f) {
1062                                 case 1: printk("passed");
1063                                         break;
1064                                 case 2: printk("formatter device error");
1065                                         break;
1066                                 case 3: printk("sector buffer error");
1067                                         break;
1068                                 case 4: printk("ECC circuitry error");
1069                                         break;
1070                                 case 5: printk("controlling MPU error");
1071                                         break;
1072                                 default:printk("error (0x%02x?)", tmp);
1073                         }
1074                         if (tmp & 0x80)
1075                                 printk("; slave: failed");
1076                         printk("\n");
1077                 }
1078         }
1079         hwgroup->polling = 0;   /* done polling */
1080         hwgroup->resetting = 0; /* done reset attempt */
1081         return ide_stopped;
1082 }
1083
1084 static void check_dma_crc(ide_drive_t *drive)
1085 {
1086 #ifdef CONFIG_BLK_DEV_IDEDMA
1087         if (drive->crc_count) {
1088                 drive->hwif->dma_off_quietly(drive);
1089                 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1090                 if (drive->current_speed >= XFER_SW_DMA_0)
1091                         (void) HWIF(drive)->ide_dma_on(drive);
1092         } else
1093                 ide_dma_off(drive);
1094 #endif
1095 }
1096
1097 static void ide_disk_pre_reset(ide_drive_t *drive)
1098 {
1099         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1100
1101         drive->special.all = 0;
1102         drive->special.b.set_geometry = legacy;
1103         drive->special.b.recalibrate  = legacy;
1104         if (OK_TO_RESET_CONTROLLER)
1105                 drive->mult_count = 0;
1106         if (!drive->keep_settings && !drive->using_dma)
1107                 drive->mult_req = 0;
1108         if (drive->mult_req != drive->mult_count)
1109                 drive->special.b.set_multmode = 1;
1110 }
1111
1112 static void pre_reset(ide_drive_t *drive)
1113 {
1114         if (drive->media == ide_disk)
1115                 ide_disk_pre_reset(drive);
1116         else
1117                 drive->post_reset = 1;
1118
1119         if (!drive->keep_settings) {
1120                 if (drive->using_dma) {
1121                         check_dma_crc(drive);
1122                 } else {
1123                         drive->unmask = 0;
1124                         drive->io_32bit = 0;
1125                 }
1126                 return;
1127         }
1128         if (drive->using_dma)
1129                 check_dma_crc(drive);
1130
1131         if (HWIF(drive)->pre_reset != NULL)
1132                 HWIF(drive)->pre_reset(drive);
1133
1134         if (drive->current_speed != 0xff)
1135                 drive->desired_speed = drive->current_speed;
1136         drive->current_speed = 0xff;
1137 }
1138
1139 /*
1140  * do_reset1() attempts to recover a confused drive by resetting it.
1141  * Unfortunately, resetting a disk drive actually resets all devices on
1142  * the same interface, so it can really be thought of as resetting the
1143  * interface rather than resetting the drive.
1144  *
1145  * ATAPI devices have their own reset mechanism which allows them to be
1146  * individually reset without clobbering other devices on the same interface.
1147  *
1148  * Unfortunately, the IDE interface does not generate an interrupt to let
1149  * us know when the reset operation has finished, so we must poll for this.
1150  * Equally poor, though, is the fact that this may a very long time to complete,
1151  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1152  * we set a timer to poll at 50ms intervals.
1153  */
1154 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1155 {
1156         unsigned int unit;
1157         unsigned long flags;
1158         ide_hwif_t *hwif;
1159         ide_hwgroup_t *hwgroup;
1160         
1161         spin_lock_irqsave(&ide_lock, flags);
1162         hwif = HWIF(drive);
1163         hwgroup = HWGROUP(drive);
1164
1165         /* We must not reset with running handlers */
1166         BUG_ON(hwgroup->handler != NULL);
1167
1168         /* For an ATAPI device, first try an ATAPI SRST. */
1169         if (drive->media != ide_disk && !do_not_try_atapi) {
1170                 hwgroup->resetting = 1;
1171                 pre_reset(drive);
1172                 SELECT_DRIVE(drive);
1173                 udelay (20);
1174                 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1175                 ndelay(400);
1176                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1177                 hwgroup->polling = 1;
1178                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1179                 spin_unlock_irqrestore(&ide_lock, flags);
1180                 return ide_started;
1181         }
1182
1183         /*
1184          * First, reset any device state data we were maintaining
1185          * for any of the drives on this interface.
1186          */
1187         for (unit = 0; unit < MAX_DRIVES; ++unit)
1188                 pre_reset(&hwif->drives[unit]);
1189
1190 #if OK_TO_RESET_CONTROLLER
1191         if (!IDE_CONTROL_REG) {
1192                 spin_unlock_irqrestore(&ide_lock, flags);
1193                 return ide_stopped;
1194         }
1195
1196         hwgroup->resetting = 1;
1197         /*
1198          * Note that we also set nIEN while resetting the device,
1199          * to mask unwanted interrupts from the interface during the reset.
1200          * However, due to the design of PC hardware, this will cause an
1201          * immediate interrupt due to the edge transition it produces.
1202          * This single interrupt gives us a "fast poll" for drives that
1203          * recover from reset very quickly, saving us the first 50ms wait time.
1204          */
1205         /* set SRST and nIEN */
1206         hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1207         /* more than enough time */
1208         udelay(10);
1209         if (drive->quirk_list == 2) {
1210                 /* clear SRST and nIEN */
1211                 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1212         } else {
1213                 /* clear SRST, leave nIEN */
1214                 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1215         }
1216         /* more than enough time */
1217         udelay(10);
1218         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1219         hwgroup->polling = 1;
1220         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1221
1222         /*
1223          * Some weird controller like resetting themselves to a strange
1224          * state when the disks are reset this way. At least, the Winbond
1225          * 553 documentation says that
1226          */
1227         if (hwif->resetproc != NULL) {
1228                 hwif->resetproc(drive);
1229         }
1230         
1231 #endif  /* OK_TO_RESET_CONTROLLER */
1232
1233         spin_unlock_irqrestore(&ide_lock, flags);
1234         return ide_started;
1235 }
1236
1237 /*
1238  * ide_do_reset() is the entry point to the drive/interface reset code.
1239  */
1240
1241 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1242 {
1243         return do_reset1(drive, 0);
1244 }
1245
1246 EXPORT_SYMBOL(ide_do_reset);
1247
1248 /*
1249  * ide_wait_not_busy() waits for the currently selected device on the hwif
1250  * to report a non-busy status, see comments in probe_hwif().
1251  */
1252 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1253 {
1254         u8 stat = 0;
1255
1256         while(timeout--) {
1257                 /*
1258                  * Turn this into a schedule() sleep once I'm sure
1259                  * about locking issues (2.5 work ?).
1260                  */
1261                 mdelay(1);
1262                 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1263                 if ((stat & BUSY_STAT) == 0)
1264                         return 0;
1265                 /*
1266                  * Assume a value of 0xff means nothing is connected to
1267                  * the interface and it doesn't implement the pull-down
1268                  * resistor on D7.
1269                  */
1270                 if (stat == 0xff)
1271                         return -ENODEV;
1272                 touch_softlockup_watchdog();
1273                 touch_nmi_watchdog();
1274         }
1275         return -EBUSY;
1276 }
1277
1278 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1279