2 * Procedures for creating, accessing and interpreting the device tree.
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
10 * Adapted for sparc64 by David S. Miller davem@davemloft.net
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/string.h>
22 #include <linux/bootmem.h>
23 #include <linux/module.h>
26 #include <asm/of_device.h>
27 #include <asm/oplib.h>
32 static struct device_node *allnodes;
34 /* use when traversing tree through the allnext, child, sibling,
35 * or parent members of struct device_node.
37 static DEFINE_RWLOCK(devtree_lock);
39 int of_device_is_compatible(struct device_node *device, const char *compat)
44 cp = (char *) of_get_property(device, "compatible", &cplen);
48 if (strncmp(cp, compat, strlen(compat)) == 0)
57 EXPORT_SYMBOL(of_device_is_compatible);
59 struct device_node *of_get_parent(const struct device_node *node)
61 struct device_node *np;
70 EXPORT_SYMBOL(of_get_parent);
72 struct device_node *of_get_next_child(const struct device_node *node,
73 struct device_node *prev)
75 struct device_node *next;
77 next = prev ? prev->sibling : node->child;
78 for (; next != 0; next = next->sibling) {
84 EXPORT_SYMBOL(of_get_next_child);
86 struct device_node *of_find_node_by_path(const char *path)
88 struct device_node *np = allnodes;
90 for (; np != 0; np = np->allnext) {
91 if (np->full_name != 0 && strcmp(np->full_name, path) == 0)
97 EXPORT_SYMBOL(of_find_node_by_path);
99 struct device_node *of_find_node_by_phandle(phandle handle)
101 struct device_node *np;
103 for (np = allnodes; np != 0; np = np->allnext)
104 if (np->node == handle)
109 EXPORT_SYMBOL(of_find_node_by_phandle);
111 struct device_node *of_find_node_by_name(struct device_node *from,
114 struct device_node *np;
116 np = from ? from->allnext : allnodes;
117 for (; np != NULL; np = np->allnext)
118 if (np->name != NULL && strcmp(np->name, name) == 0)
123 EXPORT_SYMBOL(of_find_node_by_name);
125 struct device_node *of_find_node_by_type(struct device_node *from,
128 struct device_node *np;
130 np = from ? from->allnext : allnodes;
131 for (; np != 0; np = np->allnext)
132 if (np->type != 0 && strcmp(np->type, type) == 0)
137 EXPORT_SYMBOL(of_find_node_by_type);
139 struct device_node *of_find_compatible_node(struct device_node *from,
140 const char *type, const char *compatible)
142 struct device_node *np;
144 np = from ? from->allnext : allnodes;
145 for (; np != 0; np = np->allnext) {
147 && !(np->type != 0 && strcmp(np->type, type) == 0))
149 if (of_device_is_compatible(np, compatible))
155 EXPORT_SYMBOL(of_find_compatible_node);
157 struct property *of_find_property(struct device_node *np, const char *name,
162 for (pp = np->properties; pp != 0; pp = pp->next) {
163 if (strcmp(pp->name, name) == 0) {
171 EXPORT_SYMBOL(of_find_property);
174 * Find a property with a given name for a given node
175 * and return the value.
177 void *of_get_property(struct device_node *np, const char *name, int *lenp)
179 struct property *pp = of_find_property(np,name,lenp);
180 return pp ? pp->value : NULL;
182 EXPORT_SYMBOL(of_get_property);
184 int of_getintprop_default(struct device_node *np, const char *name, int def)
186 struct property *prop;
189 prop = of_find_property(np, name, &len);
190 if (!prop || len != 4)
193 return *(int *) prop->value;
195 EXPORT_SYMBOL(of_getintprop_default);
197 int of_n_addr_cells(struct device_node *np)
203 ip = of_get_property(np, "#address-cells", NULL);
206 } while (np->parent);
207 /* No #address-cells property for the root node, default to 2 */
210 EXPORT_SYMBOL(of_n_addr_cells);
212 int of_n_size_cells(struct device_node *np)
218 ip = of_get_property(np, "#size-cells", NULL);
221 } while (np->parent);
222 /* No #size-cells property for the root node, default to 1 */
225 EXPORT_SYMBOL(of_n_size_cells);
227 int of_set_property(struct device_node *dp, const char *name, void *val, int len)
229 struct property **prevp;
233 new_val = kmalloc(len, GFP_KERNEL);
237 memcpy(new_val, val, len);
241 write_lock(&devtree_lock);
242 prevp = &dp->properties;
244 struct property *prop = *prevp;
246 if (!strcmp(prop->name, name)) {
247 void *old_val = prop->value;
250 ret = prom_setprop(dp->node, name, val, len);
253 prop->value = new_val;
256 if (OF_IS_DYNAMIC(prop))
259 OF_MARK_DYNAMIC(prop);
265 prevp = &(*prevp)->next;
267 write_unlock(&devtree_lock);
269 /* XXX Upate procfs if necessary... */
273 EXPORT_SYMBOL(of_set_property);
275 static unsigned int prom_early_allocated;
277 static void * __init prom_early_alloc(unsigned long size)
281 ret = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
283 memset(ret, 0, size);
285 prom_early_allocated += size;
291 /* PSYCHO interrupt mapping support. */
292 #define PSYCHO_IMAP_A_SLOT0 0x0c00UL
293 #define PSYCHO_IMAP_B_SLOT0 0x0c20UL
294 static unsigned long psycho_pcislot_imap_offset(unsigned long ino)
296 unsigned int bus = (ino & 0x10) >> 4;
297 unsigned int slot = (ino & 0x0c) >> 2;
300 return PSYCHO_IMAP_A_SLOT0 + (slot * 8);
302 return PSYCHO_IMAP_B_SLOT0 + (slot * 8);
305 #define PSYCHO_IMAP_SCSI 0x1000UL
306 #define PSYCHO_IMAP_ETH 0x1008UL
307 #define PSYCHO_IMAP_BPP 0x1010UL
308 #define PSYCHO_IMAP_AU_REC 0x1018UL
309 #define PSYCHO_IMAP_AU_PLAY 0x1020UL
310 #define PSYCHO_IMAP_PFAIL 0x1028UL
311 #define PSYCHO_IMAP_KMS 0x1030UL
312 #define PSYCHO_IMAP_FLPY 0x1038UL
313 #define PSYCHO_IMAP_SHW 0x1040UL
314 #define PSYCHO_IMAP_KBD 0x1048UL
315 #define PSYCHO_IMAP_MS 0x1050UL
316 #define PSYCHO_IMAP_SER 0x1058UL
317 #define PSYCHO_IMAP_TIM0 0x1060UL
318 #define PSYCHO_IMAP_TIM1 0x1068UL
319 #define PSYCHO_IMAP_UE 0x1070UL
320 #define PSYCHO_IMAP_CE 0x1078UL
321 #define PSYCHO_IMAP_A_ERR 0x1080UL
322 #define PSYCHO_IMAP_B_ERR 0x1088UL
323 #define PSYCHO_IMAP_PMGMT 0x1090UL
324 #define PSYCHO_IMAP_GFX 0x1098UL
325 #define PSYCHO_IMAP_EUPA 0x10a0UL
327 static unsigned long __psycho_onboard_imap_off[] = {
328 /*0x20*/ PSYCHO_IMAP_SCSI,
329 /*0x21*/ PSYCHO_IMAP_ETH,
330 /*0x22*/ PSYCHO_IMAP_BPP,
331 /*0x23*/ PSYCHO_IMAP_AU_REC,
332 /*0x24*/ PSYCHO_IMAP_AU_PLAY,
333 /*0x25*/ PSYCHO_IMAP_PFAIL,
334 /*0x26*/ PSYCHO_IMAP_KMS,
335 /*0x27*/ PSYCHO_IMAP_FLPY,
336 /*0x28*/ PSYCHO_IMAP_SHW,
337 /*0x29*/ PSYCHO_IMAP_KBD,
338 /*0x2a*/ PSYCHO_IMAP_MS,
339 /*0x2b*/ PSYCHO_IMAP_SER,
340 /*0x2c*/ PSYCHO_IMAP_TIM0,
341 /*0x2d*/ PSYCHO_IMAP_TIM1,
342 /*0x2e*/ PSYCHO_IMAP_UE,
343 /*0x2f*/ PSYCHO_IMAP_CE,
344 /*0x30*/ PSYCHO_IMAP_A_ERR,
345 /*0x31*/ PSYCHO_IMAP_B_ERR,
346 /*0x32*/ PSYCHO_IMAP_PMGMT,
347 /*0x33*/ PSYCHO_IMAP_GFX,
348 /*0x34*/ PSYCHO_IMAP_EUPA,
350 #define PSYCHO_ONBOARD_IRQ_BASE 0x20
351 #define PSYCHO_ONBOARD_IRQ_LAST 0x34
352 #define psycho_onboard_imap_offset(__ino) \
353 __psycho_onboard_imap_off[(__ino) - PSYCHO_ONBOARD_IRQ_BASE]
355 #define PSYCHO_ICLR_A_SLOT0 0x1400UL
356 #define PSYCHO_ICLR_SCSI 0x1800UL
358 #define psycho_iclr_offset(ino) \
359 ((ino & 0x20) ? (PSYCHO_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \
360 (PSYCHO_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
362 static unsigned int psycho_irq_build(struct device_node *dp,
366 unsigned long controller_regs = (unsigned long) _data;
367 unsigned long imap, iclr;
368 unsigned long imap_off, iclr_off;
372 if (ino < PSYCHO_ONBOARD_IRQ_BASE) {
374 imap_off = psycho_pcislot_imap_offset(ino);
377 if (ino > PSYCHO_ONBOARD_IRQ_LAST) {
378 prom_printf("psycho_irq_build: Wacky INO [%x]\n", ino);
381 imap_off = psycho_onboard_imap_offset(ino);
384 /* Now build the IRQ bucket. */
385 imap = controller_regs + imap_off;
388 iclr_off = psycho_iclr_offset(ino);
389 iclr = controller_regs + iclr_off;
392 if ((ino & 0x20) == 0)
393 inofixup = ino & 0x03;
395 return build_irq(inofixup, iclr, imap);
398 static void psycho_irq_trans_init(struct device_node *dp)
400 struct linux_prom64_registers *regs;
402 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
403 dp->irq_trans->irq_build = psycho_irq_build;
405 regs = of_get_property(dp, "reg", NULL);
406 dp->irq_trans->data = (void *) regs[2].phys_addr;
409 #define sabre_read(__reg) \
411 __asm__ __volatile__("ldxa [%1] %2, %0" \
413 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
418 struct sabre_irq_data {
419 unsigned long controller_regs;
420 unsigned int pci_first_busno;
422 #define SABRE_CONFIGSPACE 0x001000000UL
423 #define SABRE_WRSYNC 0x1c20UL
425 #define SABRE_CONFIG_BASE(CONFIG_SPACE) \
426 (CONFIG_SPACE | (1UL << 24))
427 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
428 (((unsigned long)(BUS) << 16) | \
429 ((unsigned long)(DEVFN) << 8) | \
430 ((unsigned long)(REG)))
432 /* When a device lives behind a bridge deeper in the PCI bus topology
433 * than APB, a special sequence must run to make sure all pending DMA
434 * transfers at the time of IRQ delivery are visible in the coherency
435 * domain by the cpu. This sequence is to perform a read on the far
436 * side of the non-APB bridge, then perform a read of Sabre's DMA
437 * write-sync register.
439 static void sabre_wsync_handler(unsigned int ino, void *_arg1, void *_arg2)
441 unsigned int phys_hi = (unsigned int) (unsigned long) _arg1;
442 struct sabre_irq_data *irq_data = _arg2;
443 unsigned long controller_regs = irq_data->controller_regs;
444 unsigned long sync_reg = controller_regs + SABRE_WRSYNC;
445 unsigned long config_space = controller_regs + SABRE_CONFIGSPACE;
446 unsigned int bus, devfn;
449 config_space = SABRE_CONFIG_BASE(config_space);
451 bus = (phys_hi >> 16) & 0xff;
452 devfn = (phys_hi >> 8) & 0xff;
454 config_space |= SABRE_CONFIG_ENCODE(bus, devfn, 0x00);
456 __asm__ __volatile__("membar #Sync\n\t"
457 "lduha [%1] %2, %0\n\t"
460 : "r" ((u16 *) config_space),
461 "i" (ASI_PHYS_BYPASS_EC_E_L)
464 sabre_read(sync_reg);
467 #define SABRE_IMAP_A_SLOT0 0x0c00UL
468 #define SABRE_IMAP_B_SLOT0 0x0c20UL
469 #define SABRE_IMAP_SCSI 0x1000UL
470 #define SABRE_IMAP_ETH 0x1008UL
471 #define SABRE_IMAP_BPP 0x1010UL
472 #define SABRE_IMAP_AU_REC 0x1018UL
473 #define SABRE_IMAP_AU_PLAY 0x1020UL
474 #define SABRE_IMAP_PFAIL 0x1028UL
475 #define SABRE_IMAP_KMS 0x1030UL
476 #define SABRE_IMAP_FLPY 0x1038UL
477 #define SABRE_IMAP_SHW 0x1040UL
478 #define SABRE_IMAP_KBD 0x1048UL
479 #define SABRE_IMAP_MS 0x1050UL
480 #define SABRE_IMAP_SER 0x1058UL
481 #define SABRE_IMAP_UE 0x1070UL
482 #define SABRE_IMAP_CE 0x1078UL
483 #define SABRE_IMAP_PCIERR 0x1080UL
484 #define SABRE_IMAP_GFX 0x1098UL
485 #define SABRE_IMAP_EUPA 0x10a0UL
486 #define SABRE_ICLR_A_SLOT0 0x1400UL
487 #define SABRE_ICLR_B_SLOT0 0x1480UL
488 #define SABRE_ICLR_SCSI 0x1800UL
489 #define SABRE_ICLR_ETH 0x1808UL
490 #define SABRE_ICLR_BPP 0x1810UL
491 #define SABRE_ICLR_AU_REC 0x1818UL
492 #define SABRE_ICLR_AU_PLAY 0x1820UL
493 #define SABRE_ICLR_PFAIL 0x1828UL
494 #define SABRE_ICLR_KMS 0x1830UL
495 #define SABRE_ICLR_FLPY 0x1838UL
496 #define SABRE_ICLR_SHW 0x1840UL
497 #define SABRE_ICLR_KBD 0x1848UL
498 #define SABRE_ICLR_MS 0x1850UL
499 #define SABRE_ICLR_SER 0x1858UL
500 #define SABRE_ICLR_UE 0x1870UL
501 #define SABRE_ICLR_CE 0x1878UL
502 #define SABRE_ICLR_PCIERR 0x1880UL
504 static unsigned long sabre_pcislot_imap_offset(unsigned long ino)
506 unsigned int bus = (ino & 0x10) >> 4;
507 unsigned int slot = (ino & 0x0c) >> 2;
510 return SABRE_IMAP_A_SLOT0 + (slot * 8);
512 return SABRE_IMAP_B_SLOT0 + (slot * 8);
515 static unsigned long __sabre_onboard_imap_off[] = {
516 /*0x20*/ SABRE_IMAP_SCSI,
517 /*0x21*/ SABRE_IMAP_ETH,
518 /*0x22*/ SABRE_IMAP_BPP,
519 /*0x23*/ SABRE_IMAP_AU_REC,
520 /*0x24*/ SABRE_IMAP_AU_PLAY,
521 /*0x25*/ SABRE_IMAP_PFAIL,
522 /*0x26*/ SABRE_IMAP_KMS,
523 /*0x27*/ SABRE_IMAP_FLPY,
524 /*0x28*/ SABRE_IMAP_SHW,
525 /*0x29*/ SABRE_IMAP_KBD,
526 /*0x2a*/ SABRE_IMAP_MS,
527 /*0x2b*/ SABRE_IMAP_SER,
528 /*0x2c*/ 0 /* reserved */,
529 /*0x2d*/ 0 /* reserved */,
530 /*0x2e*/ SABRE_IMAP_UE,
531 /*0x2f*/ SABRE_IMAP_CE,
532 /*0x30*/ SABRE_IMAP_PCIERR,
533 /*0x31*/ 0 /* reserved */,
534 /*0x32*/ 0 /* reserved */,
535 /*0x33*/ SABRE_IMAP_GFX,
536 /*0x34*/ SABRE_IMAP_EUPA,
538 #define SABRE_ONBOARD_IRQ_BASE 0x20
539 #define SABRE_ONBOARD_IRQ_LAST 0x30
540 #define sabre_onboard_imap_offset(__ino) \
541 __sabre_onboard_imap_off[(__ino) - SABRE_ONBOARD_IRQ_BASE]
543 #define sabre_iclr_offset(ino) \
544 ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \
545 (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
547 static int sabre_device_needs_wsync(struct device_node *dp)
549 struct device_node *parent = dp->parent;
550 char *parent_model, *parent_compat;
552 /* This traversal up towards the root is meant to
555 * 1) non-PCI bus sitting under PCI, such as 'ebus'
556 * 2) the PCI controller interrupts themselves, which
557 * will use the sabre_irq_build but do not need
558 * the DMA synchronization handling
561 if (!strcmp(parent->type, "pci"))
563 parent = parent->parent;
569 parent_model = of_get_property(parent,
572 (!strcmp(parent_model, "SUNW,sabre") ||
573 !strcmp(parent_model, "SUNW,simba")))
576 parent_compat = of_get_property(parent,
579 (!strcmp(parent_compat, "pci108e,a000") ||
580 !strcmp(parent_compat, "pci108e,a001")))
586 static unsigned int sabre_irq_build(struct device_node *dp,
590 struct sabre_irq_data *irq_data = _data;
591 unsigned long controller_regs = irq_data->controller_regs;
592 struct linux_prom_pci_registers *regs;
593 unsigned long imap, iclr;
594 unsigned long imap_off, iclr_off;
599 if (ino < SABRE_ONBOARD_IRQ_BASE) {
601 imap_off = sabre_pcislot_imap_offset(ino);
604 if (ino > SABRE_ONBOARD_IRQ_LAST) {
605 prom_printf("sabre_irq_build: Wacky INO [%x]\n", ino);
608 imap_off = sabre_onboard_imap_offset(ino);
611 /* Now build the IRQ bucket. */
612 imap = controller_regs + imap_off;
615 iclr_off = sabre_iclr_offset(ino);
616 iclr = controller_regs + iclr_off;
619 if ((ino & 0x20) == 0)
620 inofixup = ino & 0x03;
622 virt_irq = build_irq(inofixup, iclr, imap);
624 /* If the parent device is a PCI<->PCI bridge other than
625 * APB, we have to install a pre-handler to ensure that
626 * all pending DMA is drained before the interrupt handler
629 regs = of_get_property(dp, "reg", NULL);
630 if (regs && sabre_device_needs_wsync(dp)) {
631 irq_install_pre_handler(virt_irq,
633 (void *) (long) regs->phys_hi,
640 static void sabre_irq_trans_init(struct device_node *dp)
642 struct linux_prom64_registers *regs;
643 struct sabre_irq_data *irq_data;
646 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
647 dp->irq_trans->irq_build = sabre_irq_build;
649 irq_data = prom_early_alloc(sizeof(struct sabre_irq_data));
651 regs = of_get_property(dp, "reg", NULL);
652 irq_data->controller_regs = regs[0].phys_addr;
654 busrange = of_get_property(dp, "bus-range", NULL);
655 irq_data->pci_first_busno = busrange[0];
657 dp->irq_trans->data = irq_data;
660 /* SCHIZO interrupt mapping support. Unlike Psycho, for this controller the
661 * imap/iclr registers are per-PBM.
663 #define SCHIZO_IMAP_BASE 0x1000UL
664 #define SCHIZO_ICLR_BASE 0x1400UL
666 static unsigned long schizo_imap_offset(unsigned long ino)
668 return SCHIZO_IMAP_BASE + (ino * 8UL);
671 static unsigned long schizo_iclr_offset(unsigned long ino)
673 return SCHIZO_ICLR_BASE + (ino * 8UL);
676 static unsigned long schizo_ino_to_iclr(unsigned long pbm_regs,
679 return pbm_regs + schizo_iclr_offset(ino) + 4;
682 static unsigned long schizo_ino_to_imap(unsigned long pbm_regs,
685 return pbm_regs + schizo_imap_offset(ino) + 4;
688 #define schizo_read(__reg) \
690 __asm__ __volatile__("ldxa [%1] %2, %0" \
692 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
696 #define schizo_write(__reg, __val) \
697 __asm__ __volatile__("stxa %0, [%1] %2" \
699 : "r" (__val), "r" (__reg), \
700 "i" (ASI_PHYS_BYPASS_EC_E) \
703 static void tomatillo_wsync_handler(unsigned int ino, void *_arg1, void *_arg2)
705 unsigned long sync_reg = (unsigned long) _arg2;
706 u64 mask = 1UL << (ino & IMAP_INO);
710 schizo_write(sync_reg, mask);
715 val = schizo_read(sync_reg);
720 printk("tomatillo_wsync_handler: DMA won't sync [%lx:%lx]\n",
725 static unsigned char cacheline[64]
726 __attribute__ ((aligned (64)));
728 __asm__ __volatile__("rd %%fprs, %0\n\t"
730 "wr %1, 0x0, %%fprs\n\t"
731 "stda %%f0, [%5] %6\n\t"
732 "wr %0, 0x0, %%fprs\n\t"
734 : "=&r" (mask), "=&r" (val)
735 : "0" (mask), "1" (val),
736 "i" (FPRS_FEF), "r" (&cacheline[0]),
737 "i" (ASI_BLK_COMMIT_P));
741 struct schizo_irq_data {
742 unsigned long pbm_regs;
743 unsigned long sync_reg;
748 static unsigned int schizo_irq_build(struct device_node *dp,
752 struct schizo_irq_data *irq_data = _data;
753 unsigned long pbm_regs = irq_data->pbm_regs;
754 unsigned long imap, iclr;
761 /* Now build the IRQ bucket. */
762 imap = schizo_ino_to_imap(pbm_regs, ino);
763 iclr = schizo_ino_to_iclr(pbm_regs, ino);
765 /* On Schizo, no inofixup occurs. This is because each
766 * INO has it's own IMAP register. On Psycho and Sabre
767 * there is only one IMAP register for each PCI slot even
768 * though four different INOs can be generated by each
771 * But, for JBUS variants (essentially, Tomatillo), we have
772 * to fixup the lowest bit of the interrupt group number.
776 is_tomatillo = (irq_data->sync_reg != 0UL);
779 if (irq_data->portid & 1)
780 ign_fixup = (1 << 6);
783 virt_irq = build_irq(ign_fixup, iclr, imap);
786 irq_install_pre_handler(virt_irq,
787 tomatillo_wsync_handler,
788 ((irq_data->chip_version <= 4) ?
789 (void *) 1 : (void *) 0),
790 (void *) irq_data->sync_reg);
796 static void schizo_irq_trans_init(struct device_node *dp)
798 struct linux_prom64_registers *regs;
799 struct schizo_irq_data *irq_data;
801 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
802 dp->irq_trans->irq_build = schizo_irq_build;
804 irq_data = prom_early_alloc(sizeof(struct schizo_irq_data));
806 regs = of_get_property(dp, "reg", NULL);
807 dp->irq_trans->data = irq_data;
809 irq_data->pbm_regs = regs[0].phys_addr;
810 irq_data->sync_reg = regs[3].phys_addr + 0x1a18UL;
811 irq_data->portid = of_getintprop_default(dp, "portid", 0);
812 irq_data->chip_version = of_getintprop_default(dp, "version#", 0);
815 static unsigned int pci_sun4v_irq_build(struct device_node *dp,
819 u32 devhandle = (u32) (unsigned long) _data;
821 return sun4v_build_irq(devhandle, devino);
824 static void pci_sun4v_irq_trans_init(struct device_node *dp)
826 struct linux_prom64_registers *regs;
828 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
829 dp->irq_trans->irq_build = pci_sun4v_irq_build;
831 regs = of_get_property(dp, "reg", NULL);
832 dp->irq_trans->data = (void *) (unsigned long)
833 ((regs->phys_addr >> 32UL) & 0x0fffffff);
835 #endif /* CONFIG_PCI */
838 /* INO number to IMAP register offset for SYSIO external IRQ's.
839 * This should conform to both Sunfire/Wildfire server and Fusion
842 #define SYSIO_IMAP_SLOT0 0x2c04UL
843 #define SYSIO_IMAP_SLOT1 0x2c0cUL
844 #define SYSIO_IMAP_SLOT2 0x2c14UL
845 #define SYSIO_IMAP_SLOT3 0x2c1cUL
846 #define SYSIO_IMAP_SCSI 0x3004UL
847 #define SYSIO_IMAP_ETH 0x300cUL
848 #define SYSIO_IMAP_BPP 0x3014UL
849 #define SYSIO_IMAP_AUDIO 0x301cUL
850 #define SYSIO_IMAP_PFAIL 0x3024UL
851 #define SYSIO_IMAP_KMS 0x302cUL
852 #define SYSIO_IMAP_FLPY 0x3034UL
853 #define SYSIO_IMAP_SHW 0x303cUL
854 #define SYSIO_IMAP_KBD 0x3044UL
855 #define SYSIO_IMAP_MS 0x304cUL
856 #define SYSIO_IMAP_SER 0x3054UL
857 #define SYSIO_IMAP_TIM0 0x3064UL
858 #define SYSIO_IMAP_TIM1 0x306cUL
859 #define SYSIO_IMAP_UE 0x3074UL
860 #define SYSIO_IMAP_CE 0x307cUL
861 #define SYSIO_IMAP_SBERR 0x3084UL
862 #define SYSIO_IMAP_PMGMT 0x308cUL
863 #define SYSIO_IMAP_GFX 0x3094UL
864 #define SYSIO_IMAP_EUPA 0x309cUL
866 #define bogon ((unsigned long) -1)
867 static unsigned long sysio_irq_offsets[] = {
868 /* SBUS Slot 0 --> 3, level 1 --> 7 */
869 SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0,
870 SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0,
871 SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1,
872 SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1,
873 SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2,
874 SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2,
875 SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3,
876 SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3,
878 /* Onboard devices (not relevant/used on SunFire). */
909 #define NUM_SYSIO_OFFSETS ARRAY_SIZE(sysio_irq_offsets)
911 /* Convert Interrupt Mapping register pointer to associated
912 * Interrupt Clear register pointer, SYSIO specific version.
914 #define SYSIO_ICLR_UNUSED0 0x3400UL
915 #define SYSIO_ICLR_SLOT0 0x340cUL
916 #define SYSIO_ICLR_SLOT1 0x344cUL
917 #define SYSIO_ICLR_SLOT2 0x348cUL
918 #define SYSIO_ICLR_SLOT3 0x34ccUL
919 static unsigned long sysio_imap_to_iclr(unsigned long imap)
921 unsigned long diff = SYSIO_ICLR_UNUSED0 - SYSIO_IMAP_SLOT0;
925 static unsigned int sbus_of_build_irq(struct device_node *dp,
929 unsigned long reg_base = (unsigned long) _data;
930 struct linux_prom_registers *regs;
931 unsigned long imap, iclr;
937 regs = of_get_property(dp, "reg", NULL);
939 sbus_slot = regs->which_io;
942 ino += (sbus_slot * 8);
944 imap = sysio_irq_offsets[ino];
945 if (imap == ((unsigned long)-1)) {
946 prom_printf("get_irq_translations: Bad SYSIO INO[%x]\n",
952 /* SYSIO inconsistency. For external SLOTS, we have to select
953 * the right ICLR register based upon the lower SBUS irq level
957 iclr = sysio_imap_to_iclr(imap);
959 sbus_level = ino & 0x7;
963 iclr = reg_base + SYSIO_ICLR_SLOT0;
966 iclr = reg_base + SYSIO_ICLR_SLOT1;
969 iclr = reg_base + SYSIO_ICLR_SLOT2;
973 iclr = reg_base + SYSIO_ICLR_SLOT3;
977 iclr += ((unsigned long)sbus_level - 1UL) * 8UL;
979 return build_irq(sbus_level, iclr, imap);
982 static void sbus_irq_trans_init(struct device_node *dp)
984 struct linux_prom64_registers *regs;
986 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
987 dp->irq_trans->irq_build = sbus_of_build_irq;
989 regs = of_get_property(dp, "reg", NULL);
990 dp->irq_trans->data = (void *) (unsigned long) regs->phys_addr;
992 #endif /* CONFIG_SBUS */
995 static unsigned int central_build_irq(struct device_node *dp,
999 struct device_node *central_dp = _data;
1000 struct of_device *central_op = of_find_device_by_node(central_dp);
1001 struct resource *res;
1002 unsigned long imap, iclr;
1005 if (!strcmp(dp->name, "eeprom")) {
1006 res = ¢ral_op->resource[5];
1007 } else if (!strcmp(dp->name, "zs")) {
1008 res = ¢ral_op->resource[4];
1009 } else if (!strcmp(dp->name, "clock-board")) {
1010 res = ¢ral_op->resource[3];
1015 imap = res->start + 0x00UL;
1016 iclr = res->start + 0x10UL;
1018 /* Set the INO state to idle, and disable. */
1019 upa_writel(0, iclr);
1022 tmp = upa_readl(imap);
1024 upa_writel(tmp, imap);
1026 return build_irq(0, iclr, imap);
1029 static void central_irq_trans_init(struct device_node *dp)
1031 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
1032 dp->irq_trans->irq_build = central_build_irq;
1034 dp->irq_trans->data = dp;
1039 void (*init)(struct device_node *);
1043 static struct irq_trans pci_irq_trans_table[] = {
1044 { "SUNW,sabre", sabre_irq_trans_init },
1045 { "pci108e,a000", sabre_irq_trans_init },
1046 { "pci108e,a001", sabre_irq_trans_init },
1047 { "SUNW,psycho", psycho_irq_trans_init },
1048 { "pci108e,8000", psycho_irq_trans_init },
1049 { "SUNW,schizo", schizo_irq_trans_init },
1050 { "pci108e,8001", schizo_irq_trans_init },
1051 { "SUNW,schizo+", schizo_irq_trans_init },
1052 { "pci108e,8002", schizo_irq_trans_init },
1053 { "SUNW,tomatillo", schizo_irq_trans_init },
1054 { "pci108e,a801", schizo_irq_trans_init },
1055 { "SUNW,sun4v-pci", pci_sun4v_irq_trans_init },
1059 static unsigned int sun4v_vdev_irq_build(struct device_node *dp,
1060 unsigned int devino,
1063 u32 devhandle = (u32) (unsigned long) _data;
1065 return sun4v_build_irq(devhandle, devino);
1068 static void sun4v_vdev_irq_trans_init(struct device_node *dp)
1070 struct linux_prom64_registers *regs;
1072 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
1073 dp->irq_trans->irq_build = sun4v_vdev_irq_build;
1075 regs = of_get_property(dp, "reg", NULL);
1076 dp->irq_trans->data = (void *) (unsigned long)
1077 ((regs->phys_addr >> 32UL) & 0x0fffffff);
1080 static void irq_trans_init(struct device_node *dp)
1087 model = of_get_property(dp, "model", NULL);
1089 model = of_get_property(dp, "compatible", NULL);
1094 for (i = 0; i < ARRAY_SIZE(pci_irq_trans_table); i++) {
1095 struct irq_trans *t = &pci_irq_trans_table[i];
1097 if (!strcmp(model, t->name))
1102 if (!strcmp(dp->name, "sbus") ||
1103 !strcmp(dp->name, "sbi"))
1104 return sbus_irq_trans_init(dp);
1106 if (!strcmp(dp->name, "central"))
1107 return central_irq_trans_init(dp->child);
1108 if (!strcmp(dp->name, "virtual-devices"))
1109 return sun4v_vdev_irq_trans_init(dp);
1112 static int is_root_node(const struct device_node *dp)
1117 return (dp->parent == NULL);
1120 /* The following routines deal with the black magic of fully naming a
1123 * Certain well known named nodes are just the simple name string.
1125 * Actual devices have an address specifier appended to the base name
1126 * string, like this "foo@addr". The "addr" can be in any number of
1127 * formats, and the platform plus the type of the node determine the
1128 * format and how it is constructed.
1130 * For children of the ROOT node, the naming convention is fixed and
1131 * determined by whether this is a sun4u or sun4v system.
1133 * For children of other nodes, it is bus type specific. So
1134 * we walk up the tree until we discover a "device_type" property
1135 * we recognize and we go from there.
1137 * As an example, the boot device on my workstation has a full path:
1139 * /pci@1e,600000/ide@d/disk@0,0:c
1141 static void __init sun4v_path_component(struct device_node *dp, char *tmp_buf)
1143 struct linux_prom64_registers *regs;
1144 struct property *rprop;
1145 u32 high_bits, low_bits, type;
1147 rprop = of_find_property(dp, "reg", NULL);
1151 regs = rprop->value;
1152 if (!is_root_node(dp->parent)) {
1153 sprintf(tmp_buf, "%s@%x,%x",
1155 (unsigned int) (regs->phys_addr >> 32UL),
1156 (unsigned int) (regs->phys_addr & 0xffffffffUL));
1160 type = regs->phys_addr >> 60UL;
1161 high_bits = (regs->phys_addr >> 32UL) & 0x0fffffffUL;
1162 low_bits = (regs->phys_addr & 0xffffffffUL);
1164 if (type == 0 || type == 8) {
1165 const char *prefix = (type == 0) ? "m" : "i";
1168 sprintf(tmp_buf, "%s@%s%x,%x",
1170 high_bits, low_bits);
1172 sprintf(tmp_buf, "%s@%s%x",
1176 } else if (type == 12) {
1177 sprintf(tmp_buf, "%s@%x",
1178 dp->name, high_bits);
1182 static void __init sun4u_path_component(struct device_node *dp, char *tmp_buf)
1184 struct linux_prom64_registers *regs;
1185 struct property *prop;
1187 prop = of_find_property(dp, "reg", NULL);
1192 if (!is_root_node(dp->parent)) {
1193 sprintf(tmp_buf, "%s@%x,%x",
1195 (unsigned int) (regs->phys_addr >> 32UL),
1196 (unsigned int) (regs->phys_addr & 0xffffffffUL));
1200 prop = of_find_property(dp, "upa-portid", NULL);
1202 prop = of_find_property(dp, "portid", NULL);
1204 unsigned long mask = 0xffffffffUL;
1206 if (tlb_type >= cheetah)
1209 sprintf(tmp_buf, "%s@%x,%x",
1211 *(u32 *)prop->value,
1212 (unsigned int) (regs->phys_addr & mask));
1216 /* "name@slot,offset" */
1217 static void __init sbus_path_component(struct device_node *dp, char *tmp_buf)
1219 struct linux_prom_registers *regs;
1220 struct property *prop;
1222 prop = of_find_property(dp, "reg", NULL);
1227 sprintf(tmp_buf, "%s@%x,%x",
1233 /* "name@devnum[,func]" */
1234 static void __init pci_path_component(struct device_node *dp, char *tmp_buf)
1236 struct linux_prom_pci_registers *regs;
1237 struct property *prop;
1240 prop = of_find_property(dp, "reg", NULL);
1245 devfn = (regs->phys_hi >> 8) & 0xff;
1247 sprintf(tmp_buf, "%s@%x,%x",
1252 sprintf(tmp_buf, "%s@%x",
1258 /* "name@UPA_PORTID,offset" */
1259 static void __init upa_path_component(struct device_node *dp, char *tmp_buf)
1261 struct linux_prom64_registers *regs;
1262 struct property *prop;
1264 prop = of_find_property(dp, "reg", NULL);
1270 prop = of_find_property(dp, "upa-portid", NULL);
1274 sprintf(tmp_buf, "%s@%x,%x",
1276 *(u32 *) prop->value,
1277 (unsigned int) (regs->phys_addr & 0xffffffffUL));
1281 static void __init vdev_path_component(struct device_node *dp, char *tmp_buf)
1283 struct property *prop;
1286 prop = of_find_property(dp, "reg", NULL);
1292 sprintf(tmp_buf, "%s@%x", dp->name, *regs);
1295 /* "name@addrhi,addrlo" */
1296 static void __init ebus_path_component(struct device_node *dp, char *tmp_buf)
1298 struct linux_prom64_registers *regs;
1299 struct property *prop;
1301 prop = of_find_property(dp, "reg", NULL);
1307 sprintf(tmp_buf, "%s@%x,%x",
1309 (unsigned int) (regs->phys_addr >> 32UL),
1310 (unsigned int) (regs->phys_addr & 0xffffffffUL));
1313 /* "name@bus,addr" */
1314 static void __init i2c_path_component(struct device_node *dp, char *tmp_buf)
1316 struct property *prop;
1319 prop = of_find_property(dp, "reg", NULL);
1325 /* This actually isn't right... should look at the #address-cells
1326 * property of the i2c bus node etc. etc.
1328 sprintf(tmp_buf, "%s@%x,%x",
1329 dp->name, regs[0], regs[1]);
1332 /* "name@reg0[,reg1]" */
1333 static void __init usb_path_component(struct device_node *dp, char *tmp_buf)
1335 struct property *prop;
1338 prop = of_find_property(dp, "reg", NULL);
1344 if (prop->length == sizeof(u32) || regs[1] == 1) {
1345 sprintf(tmp_buf, "%s@%x",
1348 sprintf(tmp_buf, "%s@%x,%x",
1349 dp->name, regs[0], regs[1]);
1353 /* "name@reg0reg1[,reg2reg3]" */
1354 static void __init ieee1394_path_component(struct device_node *dp, char *tmp_buf)
1356 struct property *prop;
1359 prop = of_find_property(dp, "reg", NULL);
1365 if (regs[2] || regs[3]) {
1366 sprintf(tmp_buf, "%s@%08x%08x,%04x%08x",
1367 dp->name, regs[0], regs[1], regs[2], regs[3]);
1369 sprintf(tmp_buf, "%s@%08x%08x",
1370 dp->name, regs[0], regs[1]);
1374 static void __init __build_path_component(struct device_node *dp, char *tmp_buf)
1376 struct device_node *parent = dp->parent;
1378 if (parent != NULL) {
1379 if (!strcmp(parent->type, "pci") ||
1380 !strcmp(parent->type, "pciex"))
1381 return pci_path_component(dp, tmp_buf);
1382 if (!strcmp(parent->type, "sbus"))
1383 return sbus_path_component(dp, tmp_buf);
1384 if (!strcmp(parent->type, "upa"))
1385 return upa_path_component(dp, tmp_buf);
1386 if (!strcmp(parent->type, "ebus"))
1387 return ebus_path_component(dp, tmp_buf);
1388 if (!strcmp(parent->name, "usb") ||
1389 !strcmp(parent->name, "hub"))
1390 return usb_path_component(dp, tmp_buf);
1391 if (!strcmp(parent->type, "i2c"))
1392 return i2c_path_component(dp, tmp_buf);
1393 if (!strcmp(parent->type, "firewire"))
1394 return ieee1394_path_component(dp, tmp_buf);
1395 if (!strcmp(parent->type, "virtual-devices"))
1396 return vdev_path_component(dp, tmp_buf);
1398 /* "isa" is handled with platform naming */
1401 /* Use platform naming convention. */
1402 if (tlb_type == hypervisor)
1403 return sun4v_path_component(dp, tmp_buf);
1405 return sun4u_path_component(dp, tmp_buf);
1408 static char * __init build_path_component(struct device_node *dp)
1410 char tmp_buf[64], *n;
1413 __build_path_component(dp, tmp_buf);
1414 if (tmp_buf[0] == '\0')
1415 strcpy(tmp_buf, dp->name);
1417 n = prom_early_alloc(strlen(tmp_buf) + 1);
1423 static char * __init build_full_name(struct device_node *dp)
1425 int len, ourlen, plen;
1428 plen = strlen(dp->parent->full_name);
1429 ourlen = strlen(dp->path_component_name);
1430 len = ourlen + plen + 2;
1432 n = prom_early_alloc(len);
1433 strcpy(n, dp->parent->full_name);
1434 if (!is_root_node(dp->parent)) {
1435 strcpy(n + plen, "/");
1438 strcpy(n + plen, dp->path_component_name);
1443 static unsigned int unique_id;
1445 static struct property * __init build_one_prop(phandle node, char *prev, char *special_name, void *special_val, int special_len)
1447 static struct property *tmp = NULL;
1452 memset(p, 0, sizeof(*p) + 32);
1455 p = prom_early_alloc(sizeof(struct property) + 32);
1456 p->unique_id = unique_id++;
1459 p->name = (char *) (p + 1);
1461 strcpy(p->name, special_name);
1462 p->length = special_len;
1463 p->value = prom_early_alloc(special_len);
1464 memcpy(p->value, special_val, special_len);
1467 prom_firstprop(node, p->name);
1469 prom_nextprop(node, prev, p->name);
1471 if (strlen(p->name) == 0) {
1475 p->length = prom_getproplen(node, p->name);
1476 if (p->length <= 0) {
1479 p->value = prom_early_alloc(p->length + 1);
1480 prom_getproperty(node, p->name, p->value, p->length);
1481 ((unsigned char *)p->value)[p->length] = '\0';
1487 static struct property * __init build_prop_list(phandle node)
1489 struct property *head, *tail;
1491 head = tail = build_one_prop(node, NULL,
1492 ".node", &node, sizeof(node));
1494 tail->next = build_one_prop(node, NULL, NULL, NULL, 0);
1497 tail->next = build_one_prop(node, tail->name,
1505 static char * __init get_one_property(phandle node, const char *name)
1507 char *buf = "<NULL>";
1510 len = prom_getproplen(node, name);
1512 buf = prom_early_alloc(len);
1513 prom_getproperty(node, name, buf, len);
1519 static struct device_node * __init create_node(phandle node)
1521 struct device_node *dp;
1526 dp = prom_early_alloc(sizeof(*dp));
1527 dp->unique_id = unique_id++;
1529 kref_init(&dp->kref);
1531 dp->name = get_one_property(node, "name");
1532 dp->type = get_one_property(node, "device_type");
1535 dp->properties = build_prop_list(node);
1542 static struct device_node * __init build_tree(struct device_node *parent, phandle node, struct device_node ***nextp)
1544 struct device_node *dp;
1546 dp = create_node(node);
1549 *nextp = &dp->allnext;
1551 dp->parent = parent;
1552 dp->path_component_name = build_path_component(dp);
1553 dp->full_name = build_full_name(dp);
1555 dp->child = build_tree(dp, prom_getchild(node), nextp);
1557 dp->sibling = build_tree(parent, prom_getsibling(node), nextp);
1563 void __init prom_build_devicetree(void)
1565 struct device_node **nextp;
1567 allnodes = create_node(prom_root_node);
1568 allnodes->path_component_name = "";
1569 allnodes->full_name = "/";
1571 nextp = &allnodes->allnext;
1572 allnodes->child = build_tree(allnodes,
1573 prom_getchild(allnodes->node),
1575 printk("PROM: Built device tree with %u bytes of memory.\n",
1576 prom_early_allocated);